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ABELIAN p-GROUPS OF SYMMETRIES OF SURFACES

Y. Talu

Abstract. An integer g ≥ 2 is said to be a genus of a finite group G
if there is a compact Riemann surface of genus g on which G acts as a
group of automorphisms. In this paper finite abelian p-groups of arbitrarily
large rank, where p is an odd prime, are investigated. For certain classes of
abelian p-groups the minimum reduced stable genus σ0 of G is calculated and
consequently the genus spectrum of G is completely determined for certain
”extremal” abelian p-groups. Moreover for the case of Zr1

p ⊕ Zr2
p2 we will

see that the genus spectrum determines the isomorphism class of the group
uniquely.

1. INTRODUCTION

Let
∑

g denote a closed orientable surface of genus g ≥ 2. We consider finite
groups G acting effectively on

∑
g and preserving the orientation - for short, G acts

on
∑

g or G is a symmetry group of
∑

g . For each fixed g there can be only finitely
many groups G that act on

∑
g, since by a famous result of Hurwitz [3] the order

of G is bounded above by 84(g − 1).
On the other hand, for each G there is an infinite sequence of integers g ≥ 2

such that G acts on
∑

g [4; 9]. The determination of this sequence, which is
called the genus spectrum of G in [8], is referred to as the Hurwitz problem in
[9]. Kulkarni [4] showed that for any given finite group G there is an integer
n0 = n0(G) such that if G acts on

∑
g then g ≡ 1(mod n0) and for all but a finite

number of g such that g ≡ 1(mod n0), G acts on
∑

g. If g = 1 + n0g0 belongs to
the genus spectrum of G, then g0 ≥ 1 is called a reduced genus of G. There is a
minimum reduced genus µ0 = µ0(G), and a minimum reduced stable genus; that
is a smallest integer σ0 = σ0(G) such that all g0 with g0 ≥ σ0 are reduced genera
for G. The integers in the interval [µ0, σ0] that are not reduced genera for G form
the (reduced ) gap sequence of G. The genus spectrum is completely determined
by n0, µ0, σ0 and the (reduced) gap sequence of G. When G is a p-group with p

Received July 24, 2009, accepted December 9, 2009.
Communicated by Ruibin Zhang.
2000 Mathematics Subject Classification: Primary 57M60; Secondary 20H10, 30F35.
Key words and phrases: Genus spectrum, Minimum reduced stable genus, Symmetries of surfaces.

1129



1130 Y. Talu

odd, n0 = n0(G) = pn−e [4] where G has order pn and exponent pe. The integer
n− e is the cyclic p-deficiency of G.

The complete genus spectrum is known only for cyclic groups of prime order,
elementary abelian p-groups, p-groups of cyclic p-deficiency ≤ 2 and certain other
p-groups, split metacyclic groups of order pq where p and q are primes, p-groups
of exponent p and p-groups of maximal class [5; 8; 13; 11].

In this paper we investigate finite abelian p-groups of arbitrarily large rank and
for certain classes of them prove the following theorem:

Main Theorem. (Theorem 3.5). Let G ∼= Z
r1
p ⊕ Z

r2

p2 ⊕ · · · ⊕ Z
re
pe (re �= 0).

Suppose that, for k = 0, 1, · · · , e− 1
e∑

i=k+1

(p− 1 − ri) ≥ 1.

Then σ0(G) = σe(p) − 1 = 1
2 [(e(p− 1)− 3)pe + 1].

Along the way we determine necessary and sufficient conditions for a finite
abelian p-group to be a ”smooth” quotient of a Fuchsian group (Theorem 3.4). This
is a simple test which is useful in the computer implementation of algorithms which
determine all groups G acting on a given

∑
g. It is immediate from the results given

in [5] that two cyclic p-groups with the same genus spectrum are isomorphic. By the
results given in [8] this is also true for elementary abelian p-groups. We conjecture
that it is true for any pair of abelian p-groups. In this paper we present further
evidence for this conjecture by showing that for an odd prime p abelian p-groups of
the form Z

r1
p ⊕Z

r2

p2 having the same genus spectrum must be isomorphic (Theorem
3.8).

2. PRELIMINARIES

It is assumed throughout that G is a p-group and that p is an odd prime. Let
G have order pn and exponent pe, so that it has cyclic p-deficiency n − e and
n0 = n0(G) = pn−e. It was proved in [4] that:

Theorem 2.1. If G acts on
∑

g, then g− 1 ∈ n0N and furthermore, for all but
a finite number of integers g where g ∈ 1 + n0N, G acts on

∑
g .

The general approach is to regard these groups of symmetries as quotient groups
of Fuchsian groups and to use the following well-known result :

Theorem 2.2. G acts on a compact surface
∑

g of genus g ≥ 2 if and only
if there exist a Fuchsian group Γ and an epimorphism φ : Γ −→ G such that the
kernel of φ is isomorphic to π1(

∑
g).
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If the kernel of φ is torsion-free, then φ is called a smooth epimorphism.

SinceG is a p-group of order pn and exponent pe, in order for φ to be smooth, the
periods of Γ can only be of the form pi where 1 ≤ i ≤ e. Let Γ have xi conjugacy
classes of maximal cyclic subgroups of order pi so that Γ has a presentation of the
form

(1)

Generators : c11, c12, · · · , c1x1, c21, · · · , cexe, a1, b1, · · · , ah, bh;

Relations : cp
i

ij = 1 for i = 1, 2, · · · , e, j = 1, 2, · · · , xi

h∏
k=1

[ak, bk]
∏
i,j

cij = 1.

This group has signature (h; p(x1), p2(x2), · · · , pe(xe)), where n(r) indicates
that the period n is repeated r times.

If µ(Γ) denotes the area of a fundamental region for Γ and K the kernel of φ,
then the equation µ(K) = o(G)µ(Γ) yields the Riemann - Hurwitz relation

(2) 2(g − 1) = pn

[
2(h− 1) +

e∑
i=1

xi

(
1− 1

pi

)]
.

Thus to decide whether G acts on
∑

g, one must determine integers h ≥ 0 and
xi ≥ 0 - the data {h; x1, x2, · · · , xe} - such that (2) holds and such that there
exists a smooth epimorphism φ from the group Γ, determined by the data, onto G.
Sometimes the abbreviated notation {h; xi} will be used for the data.

From (2), it is immediately clear that for p odd, g ≡ 1 (mod pn−e) (see
Theorem 2.1 ), and it remains to consider solutions of the Diophantine equation

(3) N = peh+
e∑

i=1

1
2
xi(pe − pe−i).

Let Ωe = Ωe(p) denote all the solutions N of (3) for which h ≥ 0 and xi ≥ 0 for
all i. We know from [5] that:

Theorem 2.3. If 2N = a0 + a1p + a2p
2 + · · · + aep

e is a truncated p-adic
expansion of 2N , where 0 ≤ ai < p for i = 0, 1, · · · , e − 1 and ae ≥ 0, then

Ωe = {N ∈ N | Se(2N ) =
e∑

k=0

ak ≥ (e − i)(p− 1)}. Here ai is the first nonzero

coefficient in the expansion of 2N .

and

Corollary 2.4. Let σe(p) denote the minimum stable solution in Ω e(p); that
is, σe(p) is minimal with the property that all N ≥ σ e(p) lie in Ωe(p). Then
σe(p) = 1

2 [(e(p− 1) − 3)pe + 3].
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Definition 2.5. (1) For each N with 1 ≤ N ≤ e, define

ΛN(G) =< x ∈ G | xpN
= 1 > .

(2) G is said to have property MN if all elements of order ≥ pN lie in
G \G′ΛN−1(G).

(3) The group G is said to have the maximal exponent property (MEP) if G has
exponent pe and property Me.

Then we have the following results from [8]:

Lemma 2.6. Let G act on
∑

g (g ≥ 2) with corresponding Fuchsian group Γ,
whose associated data is {h; x1, x2, · · · , xN} for some N ≤ e. If G has property
MN and xN �= 0, then xN ≥ 2.

Theorem 2.7. Let G have exponent pe. If G has MEP, then
σ0(G) ≥ σe(p)− 1.

3. ABELIAN p-GROUPS OF SYMMETRIES OF SURFACES

Throughout this section we consider abelian p-groups of arbitrary rank where p
is an odd prime. Note that we continue our use of the word rank in the sense of
minimal number of generators.

In this section we first obtain simple necessary and sufficient conditions on the
signature of a Fuchsian group so that there will be a smooth homomorphism onto
an arbitrary given abelian p-group. We then use these conditions,together with a
key computational result, Lemma 3.6, to prove our main result, Theorem 3.5.

Throughout this section, let

(4) G ∼= Z
r1
p ⊕ Z

r2

p2 ⊕ · · · ⊕ Z
re
pe (re ≥ 1)

be an abelian p-group of exponent pe. Fix canonical generators

α11, α12, · · · , α1r1, α21, · · · , αere

for G, and denote αere by α.
Let Γ be a Fuchsian group with data {h; x1, x2, · · · , xe}. If all xi = 0, define

N = 0. Otherwise, put N equal to the largest i such that xi �= 0. Clearly N ≤ e.
The abelianization A of Γ can be written as

A ∼= Z
2h ⊕ Z

y1
p ⊕ · · · ⊕ Z

yN

pN .

Lemma 2.6 says that xN ≥ 2 when N > 0, and we then have yi = xi for i < N
and yN = xN − 1 ≥ 1. Fix canonical generators for A:

A1, B1, · · · , Ah, Bh, C11, · · · , C1y1, · · · , CNyN
.

Then we have :
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Theorem 3.1. There exists a smooth epimorphism ϕ : Γ −→ G if and only
if there exists an epimorphism φ : A −→ G such that φ(C ij) has order pi and

φ

(∏
i,j

Cij

)
has order pN . Such an epimorphism φ we will also call a smooth

epimorphism.

Lemma 3.2. Let G ∼= Zr1
p ⊕Zr2

p2 ⊕· · ·⊕Zre
pe , (re �= 0) be an abelian p-group.

If there exists a Fuchsian group Γ with signature (h; p (y1), p2(y2), · · · , pN(yN+1))
where 0 ≤ N ≤ e and a smooth epimorphism ϕ : Γ → G then the following
inequalities are satisfied :

2h+ y1 + y2 · · ·+ yN ≥ r1 + r2 + · · ·+ re

2h+ y2 + · · ·+ yN ≥ r2 + · · ·+ re
...

...
2h+ yN ≥ rN + · · ·+ re

2h ≥ rN+1 + · · ·+ re if N < e .

Proof. First we show that if A is a finitely generated abelian p-group, B
is a finite abelian p-group and ψ : A → B is an epimorphism then ψ induces an
epimorphism

ψ(k) : A/Λk(A) → B/Λk(B)

for all k, where Λk(A) =< x|x ∈ A and xpk
= 1 > :

Let π1 : A→ A/Λk(A) and π2 : B → B/Λk(B) be the natural epimorphisms.
Then for every k there exists a mapping

ψ(k) : A/Λk(A) → B/Λk(B)

such that ψ(k)π1 = π2ψ. In other words

ψ(k)(aΛk(A)) = ψ(a)Λk(B) for every aΛk(A) ∈ A/Λk(A).

Using the fact that ψ is an epimorphism, it can be seen that ψ (k) is an epimorphism
for all k.

Now we are ready to prove the Lemma :
Denote Γ/Γ′ by A. Then

A ∼= Z2h ⊕ Zy1
p ⊕ · · · ⊕ ZyN

pN

is a finitely generated abelian p-group. Let π : Γ → A be the natural epimorphism.
Then there exists a mapping φ : A → G such that φπ = ϕ. Then φ is an
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epimorphism and if we take ψ = φ in the result we proved previously it induces an
epimorphism

φ(k) : A/Λk(A) → G/Λk(G) for k = 1, 2, · · · , N − 1.

Therefore r(A) ≥ r(G) and

r(A/Λk(A)) ≥ r(G/Λk(G)) for k = 1, 2, · · · , N − 1

where r denotes the rank of the given group. Here

Λk(A) ∼= Zp
y1 ⊕ Zp2

y2 ⊕ · · · ⊕ Zpk−1
yk−1 ⊕ Zpk

yk+yk+1+···+yN

A/Λk(A) ∼= Z2h ⊕ Zp
yk+1 ⊕ Zp2

yk+2 ⊕ · · · ⊕ ZpN−k
yN

Λk(G) ∼= Zp
r1 ⊕ · · · ⊕ Zpk

rk+rk+1+···+re

and finally
G/Λk(G) ∼= Zp

rk+1 ⊕ Zp2
rk+2 ⊕ · · · ⊕ Zpe−k

re.

Thus we have the following inequalities :

2h+ yk+1 + · · ·+ yN ≥ rk+1 + · · ·+ re for k = 0, 1, · · · , N − 1.

We have
ΛN(A) ∼= Zy1

p ⊕ · · · ⊕ ZyN

pN ,

ΛN(G) ∼= Zr1
p ⊕ · · · ⊕ Z

rN+rN+1+···+re

pN ,

A/ΛN(A) ∼= Z2h,

G/ΛN(G) ∼= Z
rN+1
p ⊕ · · · ⊕ Zre

pe−N .

Hence 2h ≥ rN+1+· · ·+re if N<e which completes the proof of the Lemma.

Suppose φ : A −→ G is a smooth epimorphism. Since
φ(Λk(A)) ⊆ Λk(G) φ induces epimorphisms

φ(k) : A/Λk(A) −→ G/Λk(G)

for each k. Observe that

A/Λk(A) ∼= Z
2h ⊕ Z

yk+1
p ⊕ · · · ⊕ Z

yN

pN−k

for 1 ≤ k < N and is isomorphic to Z2h for k ≥ N , while

G/Λk(G) ∼= Z
rk+1
p ⊕ · · · ⊕ Z

re

pe−k
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for 1 ≤ k ≤ e. By comparing ranks it follows that

(5)
2h+

N∑
i=k+1

yi ≥
e∑

i=k+1

ri for k = 0, 1, 2, · · · , N − 1

2h ≥
e∑

i=N+1

ri if N < e.

We now aim to show that these conditions are sufficient for the existence of a
smooth epimorphism φ : A −→ G. For this purpose we introduce the following
notation :

Let G be as in (4). If the sequence {h;N ; y1, · · · , yN} of nonnegative integers
with 0 ≤ N ≤ e, yN �= 0 satisfies the inequalities (5) then it is called a G-data.

Associated to any set of G-data, there is a G-data groupA, the finitely-generated
abelian group

A = Z
2h ⊕ Z

y1
p ⊕ · · · ⊕ Z

yN

pN

Theorem 3.3. Given any finite abelian p-group G, any G-data group A, there
exists a smooth epimorphism φ : A −→ G.

Proof. Suppose the G-data satisfies (5) with N = e. For i = 1, 2, · · · , e−1,
let Xi = {Cij : 1 ≤ j ≤ yi} and let

Xe = {A1, B1, · · · , Ah, Bh, Cej : 1 ≤ j ≤ ye}.
Choose Ye ⊆ Xe such that Ceye ∈ Ye and | Ye |= re. Let Ze = Xe \ Ye. Now
choose Yi inductively for i = e − 1, · · · , 1 as follows: Yi ⊆ Xi ∪ Zi+1 such that
| Yi |= ri and let Zi = (Xi ∪ Zi+1) \ Yi. By the given inequalities this is always
possible.

Let φ(Ceye) = αt with (t, p) = 1 and let φ map the remaining gen-
erators in Ye onto {αe1, · · · , αere−1}. Let the image of each element of Yi be
αλi1αi1, · · · , αλiriαiri where the λij are chosen such that, if γ ∈ Yi has finite order
then o(γ) = o(φ(γ)). If the order is infinite then we may choose the correspond-
ing λij to be zero. Finally map each element of Z1 onto αλi where λi is chosen

such that the orders of finite elements are preserved. Note that φ
(∏

i,j

Cij

)
will

be α11 · · ·αere−1α
µ where µ = t +

∑
λi +

∑
λij . If re > 1, then this element

automatically has order pe. If re = 1, we choose t such that (µ, p) = 1 and so that
φ is smooth.

If the G-data satisfies (5) for N < e we use a similar argument. Let
Xi = {Cij : 1 ≤ j ≤ yi} for i = 1, 2, · · · , N and XN+1 = {A1, B1, · · · , Ah, Bh}.
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Choose YN+1 ⊆ XN+1 such that | YN+1 |= rN+1 + · · · + re and let ZN+1 =
XN+1 \ YN+1. Now choose Yi and Zi inductively as above.

Then φ will be chosen to map all elements of YN+1 onto αN+11, · · · , αere

(= α), and be defined on the remaining generators as above so that it is smooth.

Combining Lemma 2.6 with the inequalities (5) and Theorem 3.3, we obtain :

Theorem 3.4. Let G ∼= Z
r1
p ⊕ Z

r2

p2 ⊕ · · · ⊕ Z
re
pe and let Γ be a Fuchsian group

with signature (h; p(x1), p2(x2), · · · , pe(xe)). Let N = 0 if all xi = 0, otherwise let
N be the largest i with xi �= 0. Then, there is a smooth epimorphism φ : Γ −→ G
if and only if

N = 0 or xN ≥ 2,

and

(6) 2h− 1 +
N∑

i=k+1

xi ≥
e∑

i=k+1

ri for k = 0, 1, 2, · · · , N − 1,

and
2h ≥

e∑
i=N+1

ri if N < e.

Proof of Theorem 3.1. Note that this Theorem is another way of expressing
Theorem 3.4 and the proof follows from Lemma 3.2, the remarks preceeding it and
Theorem 3.3.

Note that, it follows that, g0 is a reduced genus for G if and only if g0 satisfies
the equation

(7) g0 + pe = peh +
e∑

i=1

1
2
xi(pe − pe−i)

where the data {h; xi} satisfies at least one of the conditions (6) for N =
0, 1, 2, · · · , e.

Recall that

σ0(G) ≥ σe(p) − 1 =
1
2
[(e(p− 1)− 3)pe + 1].

We are now ready to state our main result:

Theorem 3.5. Let G ∼= Z
r1
p ⊕ Z

r2

p2 ⊕ · · · ⊕ Z
re
pe (re �= 0). Suppose that for

k = 0, 1, · · · , e− 1, we have
e∑

i=k+1

(p− 1 − ri) ≥ 1.

Then σ0(G) = σe(p)− 1.
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Proof. By Theorem 2.7, we have σ0(G) ≥ σe(p)−1. For the reverse inequality,
we must show that g0 is a reduced genus for G whenever g0 ≥ σe(p)− 1. We will
use the following Lemma:

Lemma 3.6. Suppose that M ≥ 1
2 [(e(p− 1)− 1)pe + 1] and N is the smallest

non-negative integer for which pe−N divides M . Then there exists a solution to

2M = 2peh+
e∑

i=1

xi(pe − pe−i)

where the data {h; xi} satisfy the conditions
• xi ≥ 0, xi = 0 for i > N, and if N > 0 then xN ≥ 2,
• 2h+ xk+1 + · · ·+ xN ≥ (e− k)(p− 1) for k = 0, 1, · · · , N − 1
• 2h ≥ (e−N )(p− 1).

Proof. Before proving Lemma 3.6, we will complete the proof of Theorem
3.5. Write M = g0 + pe, so that using Corollary 2.4, the condition g0 ≥ σe(p)− 1
becomes M ≥ 1

2 ((e(p− 1) − 1)pe + 1). Choose N ≥ 0 minimal such that pe−N

divides M , and apply Lemma 3.6. Using the hypothesis of Theorem 3.5, we have
for 0 ≤ k ≤ N − 1 that

2h− 1 +
N∑

i=k+1

xi ≥ (e− k)(p− 1)− 1 ≥
e∑

i=k+1

ri,

and similarly if N < e then 2h ≥ (e −N )(p− 1) ≥ ∑e
i=N+1 ri. Lemma 3.6 also

provides that N = 0 or xN ≥ 2, so Theorem 3.4 applies to show that g0 is a reduced
genus for G.

Let the statement of the Lemma be denoted by P (e, N ) where
0 ≤ N ≤ e and e ≥ 1. The result is proved by double induction. Consider the case
P (e, 0). Then 2M = 2zpe, and choosing h = z, all xi = 0, P (e, 0) holds.

Now consider P (1, 1). Then 2M = z0 + z1p where 0 < z0 < p, and the
assumption on M forces z1 ≥ p − 2. If z0 �= p − 1, choose x1 = p − z0 and
2h = z0 + z1 + 1 − p. If z0 = p− 1, let x1 = p+ 1 and 2h = z1 + 1 − p.

Now consider P (e, N ) where N < e. So 2M = 2M ′pe−N . Let
2M ′′ = 2M ′ − (e − N )(p− 1)pN . So by the inductive assumption on P (N,N ),
there is a solution to the equation for M ′′ with x′′N ≥ 2 and h′′ ≥ 0 and

2h′′ + x′′k+1 + · · ·+ x′′N ≥ (N − k)(p− 1)

for 0 ≤ k ≤ N − 1. But then, setting xi = x′′i for i = 1, 2, · · · , N , xN+1 = · · · =
xe = 0 and 2h = 2h′′ + (e−N )(p− 1), it follows that P (e, N ) holds.

Now consider P (e, e). Suppose 2M ≡ z0(mod p) with 0 < z0 < p. If
z0 �= p− 1, let
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2M ′p = 2M − (p− z0)(pe − 1) − (z0 − 1)pe − tp

where t = 0, 1 according as z0 is odd or even. Then P (e − 1, N ′) applies to
M ′ for some 0 ≤ N ′ ≤ e − 1. The data for the solution satisfy x′N ′ ≥ 2,
x′N ′+1 = · · · = x′e−1 = 0,

2h′ + x′k+1 + · · ·+ x′N ′ ≥ (e− 1 − k)(p− 1)

for 0 ≤ k < N ′ and 2h′ ≥ (e − 1 − N ′)(p − 1). Setting xi = x′i for
i = 1, 2, · · · , e− 1 and

(h, xe) =




(h′ + 1
2 (z0 − 1), p− z0) if z0 is odd

.
(h′ + z0

2 , p− z0 − 1) if z0 is even

It follows that P (e, e) holds in this case.
Now suppose z0 = p− 1. Let

2M ′p = 2M − (p+ 1)(pe − 1) + 2(pe − p).

Then P (e − 1, N ′) applies to M ′ for some 0 ≤ N ′ ≤ e − 1. If N ′ = e − 1 then

2M ′ = 2h′pe−1 +
e−1∑
i=1

x′i(p
e−1 − pe−1−i) with x′e−1 ≥ 2 and

2h′ + x′k+1 + · · ·+ x′e−1 ≥ (e− 1 − k)(p− 1)

for 0 ≤ k < e − 1. Then choosing xe = p+ 1, xe−1 = x′e−1 − 2 and xi = x′i for
i ≤ e − 2, and h = h′, we see that P (e, e) holds in this case.

It remains to consider the case z0 = p − 1 and N ′ < e − 1, in which case
2M ≡ p− 1(mod ps) for some s ≥ 2. Let s be the highest such power. Let

2M ′ps = 2M − (p+ 1)(pe − 1)− (p− 2)(pe − p)− (p− 1)
s−1∑
i=2

(pe − pi)

+(pe − ps)

= 2M − (p− 1) − s(p− 1)pe.

So P (e − s, e− s) applies to M ′ and we have a solution to

2M ′ = 2h′pe−s +
e−s∑
i=1

x′i(p
e−s − pe−s−i)

with x′e−s ≥ 2 and h′ ≥ 0 and

2h′ + x′k+1 + · · ·+ x′e−s ≥ (e− s− k)(p− 1)
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for 0 ≤ k < e − s. Now choosing xe = p + 1, xe−1 = p − 2, xe−2 = · · · =
xe−s+1 = p − 1, xe−s = x′e−s − 1, xi = x′i for i < e − s and h = h′ again
shows that P (e, e) holds.

If we consider the ”extremal” groups given by Theorem 3.5, we have:

Corollary 3.7. Let G ∼= Z
p−1
p ⊕ Z

p−1
p2 ⊕ · · · ⊕ Z

p−1
pe−1 ⊕ Z

p−2
pe . Then

µ0(G) = σ0(G) = σe(p)− 1.

Proof. The computation of µ0(G) follows from [6].

Finally we have the following uniqueness theorem:

Theorem 3.8. Let G ∼= Z
r1
p ⊕Z

r2

p2, H ∼= Z
s1
p ⊕Z

s2

p2 where p is an odd prime.
If the genus spectrum of G and the genus spectrum of H are the same then G ∼= H.

Proof. If G and H have the same genus spectrum, then they must have
the same cyclic p-deficiency; also µ0(G) = µ0(H), σ0(G) = σ0(H) and their
reduced gap sequences are equal. In this proof we only make use of the fact that the
cyclic p-deficiencies are equal and that µ0(G) = µ0(H). The minumum reduced
genera µ0(G) and µ0(H) can be determined by using the results given in [6]. The
result follows by showing that r1 = s1 and r2 = s2.
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