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NONLINEAR OPERATORS OF MONOTONE TYPE AND
CONVERGENCE THEOREMS WITH EQUILIBRIUM PROBLEMS IN

BANACH SPACES

Wataru Takahashi and Jen-Chih Yao*

Abstract. Our purpose in this paper is first to discuss nonlinear operators
and nonlinear projections in Banach spaces which are related to the resolvents
of m-accretive operators and maximal monotone operators. Some of these
operators in Banach spaces are new. Next, we discuss some properties for such
nonlinear operators and nonlinear projections in Banach spaces. Further, using
these properties, we prove strong convergence theorems by hybrid methods for
nonlinear operators with equilibrium problems in Banach spaces.

1. INTRODUCTION

Let E be a Banach space and let E∗ be the dual space of E . Let A : E → 2E

be a multi-valued operator with domain D(A) = {z ∈ E : Az �= ∅} and range
R(A) = ∪{Az : z ∈ D(A)}. Then, A is called accretive if for each xi ∈ D(A)
and yi ∈ Axi, i = 1, 2, there exists j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0,
where J is the duality mapping from E into 2E∗ An accretive operator A is m-
accretive if and only if R(I + rA) = E for all r > 0. If A is m-accretive, then for
each r > 0 and x ∈ E , we can define the resolvent Jr : R(I + rA) → D(A) by
Jrx = {z ∈ E : x ∈ z + rAz}. A multi-valued operator A : E → 2E∗ with domain
D(A) = {z ∈ E : Az �= ∅} and range R(A) = ∪{Az : z ∈ D(A)} is said to be
monotone if 〈x1−x2, y1−y2〉 ≥ 0 for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2. The
monotone operator A is said to be maximal if its graph G(A) = {(x, y) : y ∈ Ax}
is not properly contained in the graph of any other monotone operator. Let E be
a reflexive, strictly convex and smooth Banach space and let A : E → 2E∗ be a
monotone operator. Then, A is maximal if and only if R(J + rA) = E∗ for all
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r > 0; see [47]. If A : E → 2E∗ is a maximal monotone operator, then for λ > 0
and x ∈ E , we can consider the following resolvents:

Jλx = {z ∈ E : 0 ∈ J(z − x) + λA(z)}

and
Qλx = {z ∈ E : Jx ∈ Jz + λA(z)}.

Further, if B : E∗ → 2E be a maximal monotone operator, then for λ > 0 and
x ∈ E , we can consider the resolvent

Rλx = {z ∈ E : x ∈ z + λBJ(z)}.

These four resolvents are important and have interesting properties.
Let C be a nonempty closed convex subset of a Banach space E and let f :

C × C → R be a bifunction. We consider the following equilibrium problem:

(1.1) Find z ∈ C such that f(z, y) ≥ 0, ∀y ∈ C.

The set of such z ∈ C is denoted by EP (f), i.e.,

EP (f) = {z ∈ C : f(z, y) ≥ 0, ∀y ∈ C}.

Problem (1.1) is also important in the sense that it includes, as special cases, op-
timization problems, variational inequalities, minimax problems, Nash equilibrium
problem in noncooperative games and others; see, for instance, [32] and [6].

Our purpose in this paper is first to discuss nonlinear operators and nonlinear
projections in Banach spaces which are related to the resolvents of m-accretive
operators and maximal monotone operators. Some of these operators are new. Next,
we discuss fixed point theorems and duality theorems for such nonlinear operators
and nonlinear projections in Banach spaces. Further, using these properties, we
prove strong convergence theorems by hybrid methods for nonlinear operators with
equilibrium problems in Banach spaces.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual of E . We
denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in
E , we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
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for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex
if δ(ε) > 0 for every ε > 0. A uniformly convex Banach space is strictly convex
and reflexive. Let C be a nonempty closed convex subset of a strictly convex and
reflexive Banach space E . Then we know that for any x ∈ E , there exists a unique
element z ∈ C such that ‖x − z‖ ≤ ‖x − y‖ for all y ∈ C. Putting z = PC(x),
we call PC the metric projection of E onto C. The duality mapping J from E into
2E∗ is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ E . Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be
Gâteaux differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists. In the case, E is called smooth. We know that E is smooth if and only if
J ia a single valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. The norm of E is said to be uniformly Gâteaux
differentiable if for each y ∈ U , the limit (2.1) is attained uniformly for x ∈ U . It
is also said to be Fréchet differentiable if for each x ∈ U , the limit (2.1) is attained
uniformly for y ∈ U . A Banach space E is called uniformly smooth if the limit
(2.1) is attained uniformly for x, y ∈ U . It is known that if the norm of E is
uniformly Gâteaux differentiable, then J is uniformly norm to weak∗ continuous on
each bounded subset of E , and if the norm of E is Fréchet differentiable, then J is
norm to norm continuous. If E is uniformly smooth, J is uniformly norm to norm
continuous on each bounded subset of E . For more details, see [46].

We know the following result: Let E be a smooth, strictly convex and reflexive
Banach space. Let C be a nonempty closed convex subset of E and let PC be the
metric projection of E onto C. Let x0 ∈ C and x1 ∈ E . Then, x0 = PC(x1) if
and only if

〈x0 − y, J(x1 − x0)〉 ≥ 0

for all y ∈ C, where J is the duality mapping of E .
Let C be a nonempty subset of E and let T be a mapping of C into E . We

denote the set of all fixed points of T by F (T ). A mapping T : C → E is said to
be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. Let D be a subset of
C and let P be a mapping of C into D. Then P is said to be sunny if

P (Px + t(x − Px)) = Px



790 Wataru Takahashi and Jen-Chih Yao

whenever Px + t(x − Px) ∈ C for x ∈ C and t ≥ 0. A mapping P of C into C

is said to be a retraction if P 2 = P . We denote the closure of the convex hull of
D by coD.

Let E be a Banach space and let A : E → 2E be a multi-valued operator.
Then, A is called accretive if for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2, there
exists j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0. An accretive operator A is
m-accretive if and only if R(I + rA) = E for all r > 0. If A is m-accretive,
then for each r > 0 and x ∈ E , we can define Jr : R(I + rA) → D(A) by
Jrx = {z ∈ E : x ∈ z + rAz}. We call such Jr = (I + rA)−1 the accretive
resolvent of A for r > 0.

A multi-valued operator A : E → 2E∗ with domain D(A) = {z ∈ E : Az �= ∅}
and range R(A) =

⋃{Az : z ∈ D(A)} is said to be monotone if 〈x1−x2, y1−y2〉 ≥
0 for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2. A monotone operator A is said to
be maximal if its graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in
the graph of any other monotone operator. The following theorems are well known;
see, for instance, [47].

Theorem 2.1. Let E be a reflexive, strictly convex and smooth Banach space
and let A : E → 2E∗ be a monotone operator. Then A is maximal if and only if
R(J + rA) = E∗ for all r > 0.

Theorem 2.2. Let E be a smooth Banach space and let J be the duality mapping
on E . Then, 〈x−y, Jx−Jy〉 ≥ 0 for all x, y ∈ E . Further, if E is strictly convex
and 〈x − y, Jx− Jy〉 = 0, then x = y.

Let E be a reflexive, strictly convex and smooth Banach space and let A : E →
2E∗ be a maximal monotone operator. Then, for λ > 0 and x ∈ E , consider

Jλx = {z ∈ E : 0 ∈ J(z − x) + λA(z)}

and
Qλx = {z ∈ E : Jx ∈ Jz + λA(z)}.

We denote Jλ and Qλ by Jλ = (I+λJ−1A)−1 and Qλ = (J+λA)−1J , respectively.
We call such Jλ and Qλ the metric resolvent and the relative resolvent of A for
λ > 0, respectively. We also consider another resolvent of a maximal monotone
operator. Let B : E∗ → 2E be a maximal monotone operator. Then, for λ > 0 and
x ∈ E , consider

Rλx = {z ∈ E : x ∈ z + λBJ(z)}.
We denote Rλ by Rλ = (I + λBJ)−1. We call such Rλ the generalized resolvent
of B for λ > 0.
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Let E be a reflexive, strictly convex and smooth Banach space. The function
φ : E × E → (−∞,∞) is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E , where J is the duality mapping of E; see [1] and [20]. We have from
the definition of φ that

(2.2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉
for all x, y, z ∈ E . From (‖x‖2−‖y‖2) ≤ φ(x, y) for all x, y ∈ E , we can see that
φ(x, y) ≥ 0. Let φ∗ : E∗ × E∗ → (−∞,∞) be the function defined by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉 + ‖y∗‖2

for x∗, y∗ ∈ E∗, where J is the duality mapping of E . It is easy to see that

(2.3) φ(x, y) = φ∗(Jy, Jx)

for x, y ∈ E . If E is additionally assumed to be strictly convex, then

(2.4) φ(x, y) = 0 ⇐⇒ x = y.

If C is a nonempty closed convex subset of a smooth, strictly and reflexive Banach
space E , then for all x ∈ E there exists a unique z ∈ C (denoted by ΠCx) such
that

(2.5) φ(z, x) = min
y∈C

φ(y, x).

The mapping ΠC is called the generalized projection from E onto C; see Alber [1],
Alber and Reich [2], and Kamimura and Takahashi [20].

The following theorem is well known; see, for instance, [20].

Theorem 2.3. Let E be a reflexive, strictly convex and smooth Banach space
and let {xn} and {yn} be sequences in E such that {xn} or {yn} is bounded. If
limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

For a sequence {Cn} of nonempty closed convex subsets of a reflexive Banach
space E , define s-LinCn and w-LsnCn as follows: x ∈s-LinCn if and only if there
exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn for
all n ∈ N. Similarly, y ∈w-LsnCn if and only if there exist a subsequence {Cni}
of {Cn} and a sequence {yi} ⊂ E such that {yi} converges weakly to y and that
yi ∈ Cni for all i ∈ N. If C0 satisfies that

(2.6) C0 =s-LinCn =w-LsnCn,
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it is said that {Cn} converges to C0 in the sense of Mosco [30] and we write
C0 =M-limn→∞ Cn. It is easy to show that if {Cn} is nonincreasing with respect
to inclusion, then {Cn} converges to ∩∞

n=1Cn in the sense of Mosco. For more
details, see [30]. We know the following theorem [11].

Theorem 2.4. Let E be a smooth Banach space and let E ∗ have a Fréchet
differentiable norm. Let {Cn} be a sequence of nonempty closed convex subsets
of E . If C0 =M-limn→∞ Cn exists and nonempty, then for each x ∈ E , ΠCnx

converges strongly to ΠC0x, where ΠCn and ΠC0 are the generalized projections
of E onto Cn and C0, respectively.

Let C be a nonempty closed subset of a smooth, strictly convex and reflexive
Banach space E such that JC is closed and convex. For solving the equilibrium
problem, let us assume that a bifunction f : JC × JC → R satisfies the following
conditons:

(A1) f(x∗, x∗) = 0, ∀x∗ ∈ JC;

(A2) f is monotone, i.e., f(x∗, y∗) + f(y∗, x∗) ≤ 0, ∀x∗, y∗ ∈ JC;
(A3) limt↓0 f(tz∗ + (1 − t)x∗, y∗) ≤ f(x∗, y∗), ∀x∗, y∗, z∗ ∈ JC;

(A4) for each x∗ ∈ JC, y∗ �→ f(x∗, y∗) is convex and lower semicontinuous.

The following result is in Takahashi and Zembayashi [57]; see also Blum and Oettli
[6] and Aoyama, Kimura and Takahashi [3].

Lemma 2.5. Let C be a nonempty closed subset of a smooth, strictly convex and
reflexive Banach space E such that JC is closed and convex, let f be a bifunction
from JC × JC into R satisfying (A1), (A2), (A3) and (A4). Then, for any r > 0
and x ∈ E , there exists a unique z ∈ C such that

f(Jz, Jy) +
1
r
〈Jy − Jz, z − x〉 ≥ 0, ∀y ∈ C.

Further, define Trx = {z ∈ C : f(Jz, Jy)+ 1
r 〈Jy − Jz, z − x〉 ≥ 0, ∀y ∈ C} for

all r > 0 and x ∈ H . Then the following hold:

(1) Tr is single-valued;
(2) Tr is firmly generalized nonexpansive, i.e.,

〈Trx − Try, JTrx − JTry〉 ≤ 〈x − y, JTrx − JTry〉, ∀x, y ∈ E;

(3) F (Tr) = EP (f);

(4) JEP (f) is closed and convex;
(5) φ(x, Trx) + φ(Trx, q) ≤ φ(x, q), ∀x ∈ E, q ∈ F (Tr).



Nonlinear Operators and Equilibrium Problems in Banach Spaces 793

3. FOUR NONLINEAR RETRACTIONS

In this section, we first define nonlinear operators which are deduced from m-
accretive operators and maximal monotone operators in a Banach space. If A : E →
2E is m-accretive, then for each λ > 0 and x ∈ E , we can define the accretive
resolvent Jλ : E → D(A) by Jλx = {z ∈ E : x ∈ z + λAz}. Then, we know that
Jλx is always nonempty and a singleton. We denote such Jλ by Jλ = (I + λA)−1.
If Jλ is the accretive resolvent, then we can show that

0 ≤ 〈x − Jλx − (y − Jλy), J(Jλx − Jλy)〉

for all x, y ∈ E . Let C be a subset of E . Then, a nonlinear operator T : C → E

is called firmly nonexpansive if

(3.1) 0 ≤ 〈x − Tx − (y − Ty), J(Tx− Ty)〉

for all x, y ∈ C. If A : E → 2E∗ is a maximal monotone operator, then for λ > 0
and x ∈ E , we define the metric resolvent Jλ : E → D(A) by Jλx = {z ∈ E : 0 ∈
J(z − x) + λA(z)}. Then, we know that Jλx is always nonempty and a singleton.
We denote such Jλ by Jλ = (I +λJ−1A)−1. If Jλ is the metric resolvent, then we
have

0 ≤ 〈Jλx − Jλy, J(x − Jλx) − J(y − Jλy)〉
for all x, y ∈ E; see, for instance, [4]. In general, a nonlinear operator T : C → E

is called firmly metric if

(3.2) 0 ≤ 〈Tx − Ty, J(x − Tx) − J(y − Ty)〉

for all x, y ∈ C. If A : E → 2E∗ is a maximal monotone operator, then for
λ > 0 and x ∈ E , we can consider the relative resolvent Qλ : E → D(A) by
Qλx = {z ∈ E : Jx ∈ Jz + λA(z)}. Then, we know that Qλx is always
nonempty and a singleton. We denote such Qλ by Qλ = (J + λA)−1J . If Qλ is
the relative resolvent, then we have

0 ≤ 〈Jλx − Jλy, Jx − JJλx − (Jy − JJλy)〉

for all x, y ∈ E . In general, a nonlinear operator T : C → E is firmly relative
nonexpansive if

(3.3) 0 ≤ 〈Tx − Ty, Jx− JTx − (Jy − JTy)〉

for all x, y ∈ C. We can define another nonlinear operator. If B : E∗ → 2E is
a maximal monotone operator, then for λ > 0 and x ∈ E , we can consider the
generalized resolvent Rλ : E → D(A) by Rλx = {z ∈ E : x ∈ z + λBJ(z)}.
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Then, we know that Rλx is always nonempty and a singleton. We denote such Rλ

by Rλ = (I + λBJ)−1. If Rλ is the generalized resolvent, then we know that

0 ≤ 〈x − Jλx − (y − Jλy), JJλx − JJλy〉

for all x, y ∈ E . In general, a nonlinear operator T : C → E is firmly generalized
nonexpansive if

(3.4) 0 ≤ 〈x − Tx − (y − Ty), JTx− JTy〉

for all x, y ∈ C.
Next, we define four projections in a Banach space. Let E be a reflexive,

smooth and strictly convex Banach space. We know that T : C → E is firmly
nonexpansive if

0 ≤ 〈x − Tx− (y − Ty), J(Tx − Ty)〉
for all x, y ∈ C. If F (T ) is nonempty, then we have that

0 ≤ 〈x − Tx, J(Tx − y)〉

for all x ∈ C and y ∈ F (T ). Let P be a retraction of E onto C, i.e., P2 = P and
P (E) = C. Then a retraction P is called sunny nonexpansive if

(3.5) 0 ≤ 〈x− Px, J(Px − y)〉

for all x ∈ E and y ∈ C. We know that T : C → E is a firmly metric operator if

0 ≤ 〈Tx− Ty, J(x − Tx)− J(y − Ty)〉

for all x, y ∈ C. If F (T ) is nonempty, then we have that

0 ≤ 〈Tx − y, J(x − Tx)〉

for all x ∈ C and y ∈ F (T ). A retraction P of E onto C is called metric if

(3.6) 0 ≤ 〈Px − y, J(x − Px)〉

for all x ∈ E and y ∈ C. If T : C → E is firmly relative nonexpansive, then we
have

0 ≤ 〈Tx− Ty, Jx − JTx − (Jy − JTy)〉
for all x, y ∈ C. If F (T ) is nonempty, then we have that

0 ≤ 〈Tx − y, Jx − JTx〉
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for all x ∈ C and y ∈ F (T ). A retraction ΠC of E onto C is called generalized if

(3.7) 0 ≤ 〈ΠCx − y, Jx − JΠCx〉

for all x ∈ E and y ∈ C. Such a retraction is also the generalized projection; see
[1, 2]. If T : C → E is firmly generalized nonexpansive, we have

0 ≤ 〈x − Tx − (y − Ty), JTx − JTy〉

for all x, y ∈ C. If F (T ) is nonempty, then we have

0 ≤ 〈x − Tx, JTx − Jy〉

for all x ∈ C and y ∈ F (T ). A retraction R of E onto C is called sunny generalized
nonexpansive if

(3.8) 0 ≤ 〈x − Rx, JRx − Jy〉

for all x ∈ E and y ∈ C; see also [12].
Kohsaka and Takahashi [24] proved the following theorems.

Theorem 3.1. (Kohsaka and Takahashi [24]). LetE be a smooth,strictly convex
and reflexive Banach space and let C∗ be a nonempty closed convex subset of E ∗.
Suppose that ΠC∗ is the generalized projection of E ∗ onto C∗. Then, R defined by
R=J−1ΠC∗J is a sunny generalized nonexpansive retraction of E onto J −1C∗.

Theorem 3.2. (Kohsaka and Takahashi [24]). Let E be a smooth, strictly
convex and reflexive Banach space and let D be a nonempty subset of E . Then,
the following conditions are equivalent

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Theorem 3.3. (Kohsaka and Takahashi [24]). Let E be a smooth, strictly
convex and reflexive Banach space and let D be a nonempty closed subset of E .
Suppose that there exists a sunny generalized nonexpansive retraction R of E onto
D and let (x, z) ∈ E × C. Then, the following conditions are equivalent

(1) z = Rx;
(2) φ(x, z) = miny∈D φ(x, y).

Ibaraki and Takahashi [12] also proved the following theorems.
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Theorem 3.4. (Ibaraki and Takahashi [12]). Let E be a smooth, strictly convex
and reflexive Banach space and let D be a nonempty closed subset of E . Then, a
sunny generalized nonexpansive retraction of E onto D is uniquely determined.

Theorem 3.5. (Ibaraki and Takahashi [12]). Let E be a smooth, strictly convex
and reflexive Banach space and let D be a nonempty closed subset of E . Suppose
that there exists a sunny generalized nonexpansive retraction R of E onto D and
let (x, z) ∈ E × C. Then, the following hold:

(1) z = Rx if and only if 〈x − z, Jy − Jz〉 ≤ 0, ∀y ∈ D;
(2) φ(Rx, z) + φ(x, Rx) ≤ φ(x, z).

4. FOUR NONLINEAR OPERATORS

Let E be a reflexive, smooth and strictly convex Banach space. Let C be a
nonempty subset of E . If T : C → E is a firmly nonexpansive mapping, then we
have that for any x, y ∈ C,

0 ≤ 〈x− Tx − (y − Ty), J(Tx− Ty)〉
⇐⇒ ‖Tx− Ty‖2 ≤ 〈x− y, J(Tx − Ty)〉
⇐⇒ 2‖Tx− Ty‖2 ≤ 2〈x − y, J(Tx − Ty)〉
⇐⇒ 2‖Tx− Ty‖2 ≤ ‖x − y‖2 + ‖Tx− Ty‖2 − φ(x− y, Tx− Ty),

where
φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E . So, from a firmly nonexpansive mapping T : C → E , we can define
a nonexpansive mapping. That is, a mapping T : C → E is called nonexpansive if

(4.1) ‖Tx− Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. In the case that E is a Hilbert space, an operator T : C → E is
nonexpansive if and only if

2‖Tx − Ty‖2 ≤ ‖x − Ty‖2 + ‖y − Tx‖2 − 2〈x − Tx, y − Ty〉
for all x, y ∈ C; see [52, 56].

An operator T : C → E is firmly metric if

0 ≤ 〈Tx− Ty, J(x − Tx)− J(y − Ty)〉
for all x, y ∈ C. Using

2〈x − y, Jz − Jw〉 = φ(x, w) + φ(y, z)− φ(x, z)− φ(y, w)
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for x, y, z, w ∈ E , we have that for any x, y ∈ C,

0 ≤ 〈Tx − Ty, J(x − Tx) − J(y − Ty)〉
⇐⇒ 0 ≤ 2〈Tx − Ty, J(x − Tx) − J(y − Ty)〉
⇐⇒ 2〈x − Tx − (y − Ty), J(x − Tx) − J(y − Ty)〉

≤ 2〈x − y, J(x − Tx) − J(y − Ty)〉
⇐⇒ φ(x − Tx, y − Ty) + φ(y − Ty, x− Tx)

≤ φ(x, y − Ty) + φ(y, x− Tx) − φ(x, x− Tx) − φ(y, y − Ty)
=⇒ φ(x − Tx, y − Ty) + φ(y − Ty, x− Tx)

≤ φ(x, y − Ty) + φ(y, x− Tx).

So, from a firmly metric operator, we can define a metric operator. That is, T :
C → E is called a metric operator if

(4.2) φ(x − Tx, y − Ty) + φ(y − Ty, x− Tx) ≤ φ(x, y − Ty) + φ(y, x− Tx)

for all x, y ∈ C. In the case that E is a Hilbert space, T : C → E is firmly
nonexpansive if

‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉
for all x, y ∈ C. Further, T : C → E is a metric operator if for any x, y ∈ C,

2‖x− Tx − (y − Ty)‖2 ≤ ‖x − (y − Ty)‖2 + ‖y − (x − Ty)‖2.

This inequality is equivalent to

‖Tx− Ty‖2 ≤ 2〈x − y, Tx − Ty〉 + 2〈Tx, Ty〉.
An operator T : C → E is firmly relatively nonexpansive if

0 ≤ 〈Tx − Ty, Jx − JTx − (Jy − JTy)〉
for all x, y ∈ C. Then, we have that for any x, y ∈ C,

0 ≤ 〈Tx − Ty, Jx − JTx − (Jy − JTy)〉
⇐⇒ 〈Tx − Ty, JTx − JTy〉 ≤ 〈Tx − Ty, Jx − Jy〉
⇐⇒ φ(Tx, Ty) + φ(Ty, Tx)
≤ φ(Tx, y) + φ(Ty, x)− φ(Tx, x)− φ(Ty, y).

So, from a firmly relatively nonexpansive operator, we can define a nonspreading
operator. That is, T : C → E is a nonspreading operator [26] if

(4.3) φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)
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for all x, y ∈ C. In the case that E is a Hilbert space, an operator T : C → E is
firmly nonexpansive if

2‖Tx− Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2 − ‖Tx − x‖2 − ‖Ty − y‖2

for all x, y ∈ C. Further, an operator T : C → E is nonspreading if

2‖Tx− Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2

for all x, y ∈ C. This inequality is equivalent to

‖Tx− Ty‖2 ≤ ‖x − y‖2 + 2〈x− Tx, y − Ty〉

for all x, y ∈ C; see [14].
An operator T : C → E is firmly generalized nonexpansive if

0 ≤ 〈x − Tx − (y − Ty), JTx − JTy〉

for all x, y ∈ C. Then, we have that for any x, y ∈ C,

0 ≤ 〈x − Tx − (y − Ty), JTx− JTy〉
⇐⇒ 〈Tx − Ty, JTx − JTy〉 ≤ 〈x − y, JTx − JTy〉
⇐⇒ φ(Tx, Ty) + φ(Ty, Tx)
≤ φ(x, Ty) + φ(y, Tx)− φ(x, Tx)− φ(y, Ty).

So, from a firmly generalized nonexpansive operator, we can define a generalized
nonexpansive type operator. That is, T : C → E is a generalized nonexpansive type
operator if

(4.4) φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(x, Ty) + φ(y, Tx)

for all x, y ∈ C.
The following is Kohsaka and Takahashi’s fixed point theorem [26].

Theorem 4.1. (Kohsaka and Takahashi [26]). Let E be a smooth, strictly
convex, and reflexive Banach space and let C is a closed convex subset of E .
Suppose that T : C → C is nonspreading, i.e., for all x, y ∈ C,

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x).

Then the following are equivalent:

(1) There exists x ∈ C such that {T nx} is bounded;
(2) F (T ) is nonempty.
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In the case that E is a Hilbert space, we have the following theorem.

Theorem 4.2. (Kohsaka and Takahashi [26]). Let H be a Hilbert space and
let C be a closed convex subset of H . Suppose that T : C → C is nonspreading,
i.e., for all x, y ∈ C,

2‖Tx− Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2.

Then the following are equivalent:

(1) There exists x ∈ C such that {T nx} is bounded;
(2) F (T ) is nonempty.

In the remainder of this section, we deal with nonlinear operators with fixed
points in a Banach space. Let E be a reflexive, smooth and strictly convex Banach
space. Let C be a nonempty subset of E . A mapping T : C→E is nonexpansive if

(4.5) ‖Tx − Ty‖ ≤ ‖x − y‖

for all x, y ∈ C. A mapping T : C → E is quasi-nonexpansive if F (T ) �= ∅ and

(4.6) ‖Tx − y‖ ≤ ‖x − y‖

for all x ∈ C and y ∈ F (T ). If C is a closed convex subset of E and T : C → C is
quasi-nonexpansive, then F (T ) is closed and convex; see Itoh and Takahashi [16].

A mapping T : C → E is metric if

(4.7) φ(x − Tx, y − Ty) + φ(y − Ty, x− Tx) ≤ φ(x, y − Ty) + φ(y, x− Tx)

for all x, y ∈ C. A mapping T : C → E is quasi-metric if F (T ) �= ∅ and

(4.8) 2‖x − Tx‖2 ≤ ‖x‖2 + φ(y, x− Tx)

for all x ∈ C and y ∈ F (T ).
A mapping T : C → E is nonspreading if

(4.9) φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)

for all x, y ∈ C. A mapping T : C → E is quasi-nonspreading or quasi-relatively
nonexpansive if F (T ) �= ∅ and

(4.10) φ(y, Tx) ≤ φ(y, x)

for all x ∈ C and y ∈ F (T ).
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A mapping T : C → E is generalized nonexpansive type if

(4.11) φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(x, Ty) + φ(y, Tx)

for all x, y ∈ C. A mapping T : C → E is generalized nonexpansive [12] or
quasi-generalized nonexpansive type if F (T ) �= ∅ and

(4.12) φ(Tx, y) ≤ φ(x, y)

for all x ∈ C and y ∈ F (T ).

5. DUALITY THEOREMS

Let E be a reflexive, smooth and strictly convex Banach space. Let C be a
nonempty subset of E . Let T : C → C be a mapping. Then, p ∈ C is called an
asymptotic fixed point of T [37] if there exists {xn} ⊂ C such that xn ⇀ p and
limn→∞ ‖xn−Txn‖ = 0. We denote by F̂ (T ) the set of asymptotic fixed points of
T . Matsushita and Takahashi [28] also gave the following definition: An operator
T : C → E is relatively nonexpansive if F (T ) �= ∅, F̂ (T ) = F (T ) and

φ(y, Tx) ≤ φ(y, x)

for all x ∈ C and y ∈ F (T ).
The following theorems are in Kohsaka and Takahashi [26].

Theorem 5.1. (Kohsaka and Takahashi [26]). Let E be a smooth and strictly
convex Banach space and let C be a closed convex subset of E . Suppose that T :
C → C is nonspreading, i.e.,

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)

for all x, y ∈ C. Then, F (T ) is closed and convex.

Theorem 5.2. (Kohsaka and Takahashi [26]). Let E be a strictly convex Banach
space whose norm is uniformly Gâteaux differentiable and let C be a closed convex
subset of E . Suppose T : C → C is nonspreading, i.e.,

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)

for all x, y ∈ C. Then, F̂ (T ) = F (T ). Further, if F (T ) is nonempty, then,
T : C → C is relatively nonexpansive.

Let E be a smooth Banach space and let C be a nonempty subset of E . Let T :
C → C be a mapping. Then, p ∈ C is called a generalized asymptotic fixed point of
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T [13] if there exists {xn} ⊂ C such that Jxn ⇀ Jp, limn→∞ ‖Jxn−JTxn‖ = 0.
We denote by F̌ (T ) the set of generalized asymptotic fixed points of T .

Let E be a smooth, strictly convex, and reflexive Banach space and let C be a
nonempty subset of E . Let T be a mapping of C into itself. Define a mapping T ∗

as follows:
T ∗x∗ = JTJ−1x∗, ∀x∗ ∈ JC,

where J is the duality mapping on E and J−1 is the duality mapping on E∗. A
mapping T ∗ is called the duality mapping of T ; see also [9]. It is easy to show that
T ∗ is a mapping of JC into itself. In fact, for x∗ ∈ JC, we have J−1x∗ ∈ C and
hence TJ−1x∗ ∈ C. So, we have

T ∗x∗ = JTJ−1x∗ ∈ JC.

Then, T ∗ is a mapping of JC into itself. Further, we define the duality mapping
T ∗∗ of T ∗ as follows:

T ∗∗x = J−1T ∗Jx, ∀x ∈ C.

It is easy to show that T∗∗ is a mapping of C into itself. In fact, for x ∈ C, we
have

T ∗∗x = J−1T ∗Jx = J−1JTJ−1Jx = Tx ∈ C.

So, T∗∗ is a mapping of C into itself.
Now, we obtain the following duality theorems in a Banach space.

Theorem 5.3. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty subset of E . Let T be a mapping of C into itself and let
T ∗ be the duality mapping of JC into itself. Then the following hold:

(1) JF (T ) = F (T ∗);
(2) JF̂ (T ) = F̌ (T ∗);
(3) JF̌ (T ) = F̂ (T ∗).

Proof. (1) We have from the definition of T ∗ that

x∗ ∈ JF (T ) ⇐⇒ J−1x∗ ∈ F (T )

⇐⇒ TJ−1x∗ = J−1x∗

⇐⇒ JTJ−1x∗ = JJ−1x∗

⇐⇒ T ∗x∗ = x∗

⇐⇒ x∗ ∈ F (T ∗).

This implies that JF (T ) = F (T ∗).
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(2) Let x∗ ∈ JF̂ (T ). Then J−1x∗ ∈ F̂ (T ). Since J−1x∗ is an asymptotic
fixed point of T , there exists a sequence {xn} ⊂ C such that xn ⇀ J−1x∗ and
limn→∞ ‖xn − Txn‖ = 0. Put x∗

n = Jxn for each n ∈ N. Then, we have that
J−1x∗

n = xn ⇀ J−1x∗ and

‖J−1x∗
n − J−1T ∗x∗

n‖ = ‖J−1Jxn − J−1JTJ−1Jxn‖
= ‖xn − Txn‖ → 0.

Since the duality mapping J∗ on E∗ is J−1, we have x∗ ∈ F̌ (T ∗). This implies
that JF̂ (T ) ⊂ F̌ (T ∗). Conversely, let x∗ ∈ F̌ (T ∗). Then, there exists a sequence
{x∗

n} ⊂ JC such that J−1x∗
n ⇀ J−1x∗ and limn→∞ ‖J−1x∗

n − J−1T ∗x∗
n‖ = 0.

Put xn = J−1x∗
n for each n ∈ N. Then, we have that xn ⇀ J−1x∗ and

‖xn − Txn‖ = ‖J−1x∗
n − J−1JTJ−1x∗

n‖
= ‖J−1x∗

n − J−1T ∗x∗
n‖ → 0.

Hence, we have J−1x∗ ∈ F̂ (T ). So, we have x∗ ∈ JF̂ (T ). This implies that
F̌ (T ∗) ⊂ JF̂ (T ). Then, JF̂ (T ) = F̌ (T ∗).

(3) Let x∗ ∈ JF̌ (T ). Then, J−1x∗ ∈ F̌ (T ). So, there exists a sequence
{xn} ⊂ C such that Jxn ⇀ JJ−1x∗ = x∗ and limn→∞ ‖Jxn − JTxn‖ = 0. Put
x∗

n = Jxn for each n ∈ N. Then, we have that x∗
n ⇀ x∗ and

‖x∗
n − T ∗x∗

n‖ = ‖Jxn − JTJ−1Jxn‖
= ‖Jxn − JTxn‖ → 0.

Hence, we have x∗ ∈ F̂ (T ∗). This implies that J F̌ (T ) ⊂ F̂ (T ∗). Conversely, let
x∗ ∈ F̂ (T ∗). Then, there exists a sequence {x∗

n} ⊂ JC such that x∗
n ⇀ x∗ and

limn→∞ ‖x∗
n − T ∗x∗

n‖ = 0. Put xn = J−1x∗
n for each n ∈ N. Then, we have that

Jxn ⇀ x∗ = JJ−1x∗ and

‖Jxn − JTxn‖ = ‖JJ−1x∗
n − JTJ−1x∗

n‖
= ‖x∗

n − T ∗x∗
n‖ → 0.

Hence, we have J−1x∗ ∈ F̌ (T ). So, we have x∗ ∈ JF̌ (T ). This implies that
F̂ (T ∗) ⊂ JF̌ (T ). Then, JF̌ (T ) = F̂ (T ∗).

Theorem 5.4. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty subset of E . Let T be a nonspreading mapping of C
into itself and let T ∗ be the duality mapping of T . Then T ∗ is a generalized
nonexpansive type mapping of JC into itself.
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Proof. Since T ∗ = JTJ−1, we have that for x, y ∈ C, x∗ = Jx and y∗ = Jy,

φ∗(T ∗x∗, T ∗y∗) + φ∗(T ∗y∗, T ∗x∗)

= φ∗(JTJ−1Jx, JTJ−1Jy) + φ∗(JTJ−1Jy, JTJ−1Jx)

= φ∗(JTx, JTy) + φ∗(JTy, JTx)

= ‖JTx‖2 − 2〈JTx, J−1JTy〉 + ‖JTy‖2

+ ‖JTy‖2 − 2〈JTy, J−1JTx〉 + ‖JTx‖2

= ‖Tx‖2 − 2〈JTx, Ty〉+ ‖Ty‖2 + ‖Ty‖2 − 2〈JTy, Tx〉+ ‖Tx‖2

= φ(Ty, Tx) + φ(Tx, Ty)

and

φ∗(y∗, T ∗x∗) + φ∗(x∗, T ∗y∗)

= φ∗(Jy, JTJ−1Jx) + φ∗(Jx, JTJ−1Jy)

= φ∗(Jy, JTx) + φ∗(Jx, JTy)

= ‖Jy‖2 − 2〈Jy, J−1JTx〉 + ‖JTx‖2

+ ‖Jx‖2 − 2〈Jx, J−1JTy〉 + ‖JTy‖2

= ‖y‖2 − 2〈Jy, Tx〉+ ‖Tx‖2 + ‖x‖2 − 2〈Jx, Ty〉+ ‖Ty‖2

= φ(Tx, y) + φ(Ty, x).

Since T be a nonspreading mapping, we have

φ∗(T ∗x∗, T ∗y∗) + φ∗(T ∗y∗, T ∗x∗)

= φ(Ty, Tx) + φ(Tx, Ty)

≤ φ(Tx, y) + φ(Ty, x)

= φ∗(y∗, T ∗x∗) + φ∗(x∗, T ∗y∗).

So, T∗ is a generalized nonexpansive type mapping.

Theorem 5.5. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty subset of E . Let T be a generalized nonexpansive type
mapping of C into itself and let T ∗ be the duality mapping of T . Then T ∗ is a
nonspreading mapping of JC into itself.

Proof. As in the proof of Theorem 5.4, we obtain Theorem 5.5.
Using such duality theorems, we prove the following theorem which will be

used in Section 6.
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Theorem 5.6. Let E be a smooth and reflexive Banach space and E ∗ has a
uniformly Gâteaux differentiable norm. Let C be a closed subset of E such that
JC is closed and convex and let T : C → C be a gneralized nonexpansive type
mapping, i.e.,

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(x, Ty) + φ(y, Tx)

for all x, y ∈ C. Then, the following hold:
(1) F̌ (T ) = F (T );
(2) JF (T ) is closed and convex;
(3) F (T ) is closed.

Proof. Since T is a mapping of C into itself, we can define the duality mapping
T ∗ of JC into itself. From Theorem 5.5, we have that T∗ is a nonspreading mapping
of JC into itself.

(1) From Theorem 5.2, we know F̂ (T ∗) = F (T ∗). Since JF (T ) = F (T ∗) and
JF̌ (T ) = F̂ (T ∗) from Theorem 5.3, we have that JF (T ) = JF̌ (T ). Since the
duality mapping J is one-to-one and onto, we have F̌ (T ) = F (T ).

(2) Since JF (T ) = F (T ∗) from Theorem 5.3 and F (T∗) is closed and convex
from Theorem 5.1, we have that JF (T ) is closed and convex.

(3) Since E is a smooth Banach space, the duality mapping J is norm-to-weak∗
continuous. Since a closed convex set is weakly closed and JF (T ) is closed and
convex from (2), JF (T ) is wealky closed. So, we obtain that F (T ) = J−1JF (T )
is closed.

6. STRONG CONVERGENCE THEOREMS

In this section, using the hybrid method by Nakajo and Takahashi [33], we first
prove a strong convergence theorem for generalized nonexpansive type mappings
with equilibrium problems in a Banach space.

Theorem 6.1. Let E be a uniformly convex and uniformly smooth Banach
space and let C be a closed subset of E such that JC is closed and convex.
Let f : JC × JC → R be a bifunction satisfying (A1), (A2), (A3) and (A4)
and let S be a generalized nonexpansive type mapping of C into itself such that
EP (f) ∩ F (S) �= ∅. Let {xn} ⊂ C be a sequence generated by x0 = x ∈ C and



f(Jzn, Jy) + 1
λn

〈zn − xn, Jy − Jzn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Szn,

Cn = {z ∈ C : φ(yn, z) ≤ φ(xn, z)},
Qn = {z ∈ C : 〈Jxn − Jz, x − xn〉 ≥ 0},
xn+1 = RCn∩Qnx, ∀n ∈ {0} ∪ N,
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where RCn∩Qn is the sunny generalized nonexpansive retraction of E onto C n∩Qn,
and {αn} ⊂ [0, 1] and {λn} ⊂ [0,∞) satisfy

0 ≤ αn ≤ a < 1 and 0 < b ≤ λn

for some a, b ∈ R. Then, {xn} converges strongly to z0 = RF (S)∩EP (f)x, where
RF (S)∩EP (f) is the sunny generalized nonexpansive retraction of E onto F (S) ∩
EP (f).

Proof. We first show that F (S)∩EP (f) is a sunny generalized nonexpansive
retract of E . Using Lemma 2.5 and Theorem 5.6, we have that JF (S) and JEP (f)
are closed and convex. Sinece E is uniformly convex, J is injective and hence

J(F (S) ∩ EP (f)) = JF (S) ∩ JEP (f),

which is also closed and convex. Using Theorem 3.2, we have that F (S)∩EP (f) is
a sunny generalized nonexpansive retract of E . Since E is reflexive, J is surjective
and hence

JQn = {z∗ ∈ JC : 〈x − xn, z∗ − Jxn〉 ≤ 0}
and

JCn = {z∗ ∈ JC : φ∗(z∗, Jyn) ≤ φ∗(z∗, Jxn)}
for all n ∈ {0} ∪ N. We can see that JCn is convex since

φ(yn, z) ≤ φ(xn, z)

⇐⇒‖yn‖2 − ‖xn‖2 − 2〈yn − xn, Jz〉 ≤ 0.

Since J is injective,
J(Cn ∩ Qn) = JCn ∩ JQn.

Thus, JCn, JQn and J(Cn ∩ Qn) are closed and convex for all n ∈ {0} ∪ N.
Using Theorem 3.2, we have that each Cn∩Qn is a sunny generalized nonexpansive
retract of E . We next show that Cn ∩ Qn is nonempty. Let z ∈ F (S) ∩ EP (f).
Put zn = Tλnxn for each n ∈ {0} ∪ N. From z = Tλnz and Lemma 2.5, we have
that for any n ∈ {0} ∪ N,

φ(zn, z) = φ(Tλnxn, z)
≤ φ(xn, z).(6.1)

Since S is of generalized nonexpansive type, we have

φ(yn, z) = φ(αnxn + (1 − αn)Szn, z)

≤ αnφ(xn, z) + (1 − αn)φ(zn, z)

≤ αnφ(xn, z) + (1 − αn)φ(xn, z)

= φ(xn, z).



806 Wataru Takahashi and Jen-Chih Yao

So, we have z ∈ Cn and hence F (S) ∩ EP (f) ⊂ Cn for all n ∈ {0} ∪ N. Next,
we show by induction that F (S) ∩ EP (f) ⊂ Cn ∩ Qn for all n ∈ {0} ∪ N. It is
obvious that F (S) ∩ EP (f) ⊂ C0 ∩ Q0. Suppose that F (S) ∩ EP (f) ⊂ Ck ∩ Qk

for some k. From xk+1 = RCk∩Qk
x, we have

〈Jxk+1 − Jz, x − xk+1〉 ≥ 0, ∀z ∈ Ck ∩ Qk.

Since F (S) ∩ EP (f) ⊂ Ck ∩ Qk, we also have

〈Jxk+1 − Jz, x − xk+1〉 ≥ 0, ∀z ∈ F (S) ∩ EP (f).

This implies F (S)∩EP (f) ⊂ Qk+1. So, we have F (S)∩EP (f) ⊂ Ck+1∩Qk+1.
By induction, we have F (S)∩EP (f) ⊂ Cn ∩Qn for all n ∈ {0}∪N. This means
that {xn} and {zn} are well-defined.

Since xn = RQnx by Theorem 3.5 (1) and xn+1 = RCn∩Qnx ⊂ Qn, we have
from Theorem 3.5 and (2.2) that

0 ≤ 2〈x− xn, Jxn − Jxn+1〉
= φ(x, xn+1) − φ(x, xn) − φ(xn, xn+1)

≤ −φ(x, xn) + φ(x, xn+1).

So, we get that

φ(x, xn) ≤ φ(x, xn+1).(6.2)

Further, since xn = RQnx and z ∈ F (S) ∩ EP (f) ⊂ Cn, from Theorem 3.3 we
have

φ(x, xn) ≤ φ(x, z).(6.3)

So, we have that limn→∞ φ(x, xn) exists. This implies that {xn} is bounded.
Hence, {yn}, {zn} and {Szn} are also bounded. From Theorem 3.5, we have

φ(xn, xn+1) = φ(RQnx, xn+1)

≤ φ(x, xn+1)− φ(x, RQnx)

= φ(x, xn+1)− φ(x, xn) → 0.

So, we have that

φ(xn, xn+1) → 0.(6.4)

From xn+1 ∈ Cn, we have that φ(yn, xn+1) ≤ φ(xn, xn+1). So, we get that
φ(yn, xn+1) → 0. From Theorem 2.3, we have

lim
n→∞ ‖yn − xn+1‖ = lim

n→∞ ‖xn − xn+1‖ = 0.
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So, we have

‖yn − xn‖ ≤ ‖yn − xn+1‖ + ‖xn+1 − xn‖ → 0.(6.5)

From ‖xn − yn‖ = ‖xn − αnxn − (1− αn)Szn‖ = (1 − αn)‖xn − Szn‖, we also
have that

‖Szn − xn‖ → 0.(6.6)

Let z ∈ F (S) ∩ EP (f). Using zn = Tλnxn and Lemma 2.5, we have that

φ(xn, z) ≥ φ(xn, Tλnxn) + φ(Tλnxn, z)

= φ(xn, zn) + φ(zn, z)

and hence

φ(xn, zn) ≤ φ(xn, z)− φ(zn, z).

From the definition of φ, we have φ(yn, z) ≤ αnφ(xn, z) + (1 − αn)φ(zn, z) and
hence

φ(zn, z) ≥ φ(yn, z)− αnφ(xn, z)
1 − αn

.

Therefore, we have

φ(xn, zn) ≤ φ(xn, z)− φ(yn, z)− αnφ(xn, z)
1 − αn

=
φ(xn, z)− φ(yn, z)

1− αn
.

We also have

φ(xn, z)− φ(yn, z) = ‖xn‖2 − 2〈xn, Jz〉 + ‖z‖2 − ‖yn‖2 + 2〈yn, Jz〉 − ‖z‖2

= ‖xn‖2 − ‖yn‖2 − 2〈xn − yn, Jz〉
≤ |‖xn‖2 − ‖yn‖2|+ 2|〈xn − yn, Jz〉|
≤ ‖xn − yn‖(‖xn‖ + ‖yn‖) + 2‖xn − yn‖‖Jz‖.

Since φ(xn, z)− φ(yn, z) ≥ 0 and limn→∞ ‖xn − yn‖ = 0, we have

lim
n→∞(φ(xn, z)− φ(yn, z)) = 0.(6.7)

Since 0 ≤ αn ≤ a < 1, from (6.7) we have limn→∞ φ(xn, zn) = 0. From Theorem
2.3, we have

‖xn − zn‖ → 0.(6.8)
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Since yn = αnxn + (1 − αn)Szn, we have yn − Szn = αn(xn − Szn). So, from
(6.6) we have

(6.9) ‖yn − Szn‖ = αn‖xn − Szn‖ → 0.

Since
‖zn − Szn‖ ≤ ‖zn − xn‖ + ‖xn − yn‖ + ‖yn − Szn‖,

from (6.5), (6.8) and (6.9) we have

(6.10) ‖zn − Szn‖ → 0.

Since E is uniformly smooth, J is norm-to-norm continuous. So, we have

(6.11) ‖Jzn − JSzn‖ → 0.

Since {Jxn} is bounded, there exists a subsequence {xni} ⊂ {xn} such that
Jxni ⇀ z∗. Since J is uniformly norm-to-norm continuous on bounded sets, we
have from (6.8) that

lim
n→∞ ‖Jxn − Jzn‖ = 0.

From Jxni ⇀ z∗, we have Jzni ⇀ z∗. From (6.11), we have J−1z∗ ∈ F̌ (S).
Putting z = J−1z∗, from Theorem 5.6 we have z ∈ F (S). Next, let us show
z ∈ EP (f). Since zn = Tλnxn, we have, for any y ∈ C,

f(Jzn, Jy) +
1
λn

〈Jy − Jzn, zn − xn〉 ≥ 0.

From (A2), we have

1
λn

〈Jy − Jzn, zn − xn〉 ≥ f(Jy, Jzn).

From 0 < b ≤ λn and (6.8), we have

lim
n→∞

zn − xn

λn
= 0.

So, from (A4) we have

(6.12) 0 ≥ f(Jy, z∗).

Put z∗t = tJy + (1 − t)z∗ for all t ∈ (0, 1] and y ∈ C. Since JC is convex, we
have z∗t ∈ JC. From (A1), (A4) and (6.12), we have

0 = f(z∗t , z∗t ) ≤ tf(z∗t , Jy) + (1 − t)f(z∗t , z∗)

≤ tf(z∗t , Jy)



Nonlinear Operators and Equilibrium Problems in Banach Spaces 809

and hence
0 ≤ f(z∗t , Jy).

Letting t → 0, from (A3) we have that for each y ∈ C,

(6.13) 0 ≤ f(z∗, Jy).

This implies z ∈ EP (f). So, we have z ∈ F (S)∩EP (f). Put z0 = RF (S)∩EP (f)x.
Since z0 = RF (S)∩EP (f)x ⊂ Cn ∩ Qn and xn+1 = RCn∩Qnx, we have that

(6.14) φ(x, xn+1) ≤ φ(x, z0).

Since ‖ · ‖2 is weakly lower semicontinuous, from Jxni ⇀ Jz we have that

φ(x, z) = ‖x‖2 − 2〈x, Jz〉+ ‖Jz‖2

≤ lim inf
i→∞

(‖x‖2 − 2〈x, Jxni〉 + ‖Jxni‖2)

= lim inf
i→∞

φ(x, xni)

≤ φ(x, z0).

From the definition of z0, we have z = z0. Thus, we obtain z∗ = Jz = Jz0. So,
we obtain Jxn ⇀ Jz0. We finally show that xn → z0. From (2.2), we have

φ(z0, xn) = φ(z0, x) + φ(x, xn) + 2〈z0 − x, Jx − Jxn〉, ∀n ∈ {0} ∪ N.

Since xn = RQnx and z0 ∈ F (S) ∩ EP (f) ⊂ Qn, we have

(6.15) φ(x, xn) ≤ φ(x, z0)

and hence

lim sup
n→∞

φ(z0, xn) = lim sup
n→∞

(φ(z0, x) + φ(x, xn) + 2〈z0 − x, Jx− Jxn〉)

≤ lim sup
n→∞

(φ(z0, x) + φ(x, z0) + 2〈z0 − x, Jx − Jxn〉)

= lim sup
n→∞

(φ(z0, x) + φ(x, z0) + 2〈z0 − x, Jx − Jz0〉)

= φ(z0, z0) = 0.

Thus, we get limn→∞ φ(z0, xn) = 0. So, from Theorem 2.3 we obtain limn→∞ ‖z0−
xn‖ = 0. Hence, {xn} converges strongly to z0. This completes the proof.

Next, using Theorem 2.4, we prove a strong convergence theorem by the shrink-
ing projection method [53].
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Theorem 6.2. Let E be a uniformly convex and uniformly smooth Banach
space and let C be a closed subset of E such that JC is closed and convex.
Let f : JC × JC → R be a bifunction satisfying (A1), (A2), (A3) and (A4)
and let S be a generalized nonexpansive type mapping of C into itself such that
EP (f) ∩ F (S) �= ∅. Let C1 = C and let {xn} ⊂ C be a sequence generated by
x1 = x ∈ C and



f(Jzn, Jy) + 1
λn

〈zn − xn, Jy − Jzn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Szn,

Cn+1 = {z ∈ Cn : φ(yn, z) ≤ φ(xn, z)},
xn+1 = RCn+1x, ∀n ∈ N,

where RCn+1 is the sunny generalized nonexpansive retraction of E onto C n+1,
and {αn} ⊂ [0, 1] and {λn} ⊂ [0,∞) are sequences such that

0 ≤ αn ≤ a < 1 and 0 < b ≤ λn

for some a, b ∈ R. Then, {xn} converges strongly to z0 = RF (S)∩EP (f)x, where
RF (S)∩EP (f) is the sunny generalized nonexpansive retraction of E onto F (S) ∩
EP (f).

Proof. Put zn = Tλnxn for each n ∈ N and take z ∈ F (S) ∩ EP (f). From
z = Tλnz and Lemma 2.5, we have that for any n ∈ N,

φ(zn, z) = φ(Tλnxn, z)

≤ φ(xn, z).(6.16)

We shall show that JCn are closed and convex, and F (S) ∩ EP (f) ⊂ Cn for
all n ∈ N. It is obvious from the assumption that JC1 = JC is closed and
convex, and F (S) ∩ EP (f) ⊂ C1. Suppose that JCk is closed and convex, and
F (S) ∩ EP (f) ⊂ Ck . From the definition of φ, we know that for z ∈ Ck ,

φ(yk, z) ≤ φ(xk, z)

⇐⇒‖yk‖2 − ‖xk‖2 − 2〈yk − xk, Jz〉 ≤ 0.

So, JCk+1 is closed and convex. If z ∈ F (S) ∩ EP (f) ⊂ Ck , then we have from
(6.16) that

φ(yn, z) = φ(αnxn + (1− αn)Szn, z)

≤ αnφ(xn, z) + (1− αn)φ(zn, z)

≤ αnφ(xn, z) + (1− αn)φ(xn, z)

= φ(xn, z).
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Hence, we have z ∈ Ck+1. By induction, we have that JCn are closed and convex,
and F (S) ∩ EP (f) ⊂ Cn for all n ∈ N. Since JCn is closed and convex, from
Lemma 3.2 there exists a unique sunny generalized nonexpansive retraction RCn of
E onto Cn. We also know from Lemma 3.1 that RCn is denoted by J−1ΠJCnJ ,
where J is the duality mapping and ΠJCn is the generalized projection of E∗ onto
JCn . Thus, {xn} is well-defined.

Since {JCn} is a nonincreasing sequence of nonempty closed convex subsets
of E∗ with respect to inclusion, it follows that

(6.17) ∅ �= JF (S) ∩ JEP (f) ⊂ M- lim
n→∞ JCn =

∞⋂
n=1

JCn.

Put C∗
0 =

⋂∞
n=1 JCn . Then, by Theorem 2.4 we have that {ΠJCn+1Jx} converges

strongly to x∗0 = ΠC∗
0
Jx. Since E∗ has a Fréchet differentiable norm, J−1 is

continuous. So, we have

xn+1 = J−1ΠJCn+1Jx → J−1x∗
0.

To complete the proof, it is sufficient to show that J−1x∗
0 = RF (S)∩EP (f)x.

Since xn = RCnx and xn+1 = RCn+1x ∈ Cn+1 ⊂ Cn, we have from Theorem
3.5 and (2.2) that

0 ≤ 2〈x − xn, Jxn − Jxn+1〉
= φ(x, xn+1) − φ(x, xn) − φ(xn, xn+1)

≤ −φ(x, xn) + φ(x, xn+1).

So, we get that

φ(x, xn) ≤ φ(x, xn+1).(6.18)

Further, since xn = RCnx and z ∈ F (S) ∩ EP (f) ⊂ Cn, from Lemma 3.3 we
have

φ(x, xn) ≤ φ(x, z).(6.19)

So, we have that limn→∞ φ(x, xn) exists. This implies that {xn} is bounded.
Hence, {yn}, {zn} and {Szn} are also bounded. From Theorem 3.5, we have

φ(xn, xn+1) = φ(RCnx, xn+1)

≤ φ(x, xn+1) − φ(x, RCnx)

= φ(x, xn+1) − φ(x, xn) → 0.
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So, we have that

φ(xn, xn+1) → 0.(6.20)

From xn+1 ∈ Cn+1, we also have that φ(yn, xn+1) ≤ φ(xn, xn+1). So, we get that
φ(yn, xn+1) → 0. Using Theorem 2.3, we have

lim
n→∞ ‖yn − xn+1‖ = lim

n→∞ ‖xn − xn+1‖ = 0.

So, we have

‖yn − xn‖ ≤ ‖yn − xn+1‖ + ‖xn+1 − xn‖ → 0.(6.21)

Since ‖xn − yn‖ = ‖xn − αnxn − (1 − αn)Szn‖ = (1 − αn)‖xn − Szn‖ and
0 ≤ αn ≤ a < 1, we also have that

‖Szn − xn‖ → 0.(6.22)

Let z ∈ F (S) ∩ EP (f). Using zn = Tλnxn and Lemma 2.5, we have that

φ(xn, z) ≥ φ(xn, Tλnxn) + φ(Tλnxn, z)

= φ(xn, zn) + φ(zn, z)

and hence

φ(xn, zn) ≤ φ(xn, z)− φ(zn, z).

From the definition of φ, we have φ(yn, z) ≤ αnφ(xn, z) + (1 − αn)φ(zn, z) and
hence

φ(zn, z) ≥ φ(yn, z)− αnφ(xn, z)
1− αn

.

Therefore, we have

φ(xn, zn) ≤ φ(xn, z)− φ(yn, z)− αnφ(xn, z)
1 − αn

=
φ(xn, z)− φ(yn, z)

1 − αn
.

We also have

φ(xn, z)− φ(yn, z) = ‖xn‖2 − 2〈xn, Jz〉+ ‖z‖2 − ‖yn‖2 + 2〈yn, Jz〉 − ‖z‖2

= ‖xn‖2 − ‖yn‖2 − 2〈xn − yn, Jz〉
≤ |‖xn‖2 − ‖yn‖2| + 2|〈xn − yn, Jz〉|
≤ ‖xn − yn‖(‖xn‖ + ‖yn‖) + 2‖xn − yn‖‖Jz‖.
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Since limn→∞ ‖xn − yn‖ = 0 from (6.21), we have

lim
n→∞(φ(xn, z)− φ(yn, z)) = 0.(6.23)

Since 0 ≤ αn ≤ a < 1, we have limn→∞ φ(xn, zn) = 0. So, from Theorem 2.3,
we have

‖xn − zn‖ → 0.(6.24)

From yn = αnxn + (1 − αn)Szn, we have yn − Szn = αn(xn − Szn). So, from
(6.22) we have

(6.25) ‖yn − Szn‖ = αn‖xn − Szn‖ → 0.

Since
‖zn − Szn‖ ≤ ‖zn − xn‖+ ‖xn − yn‖ + ‖yn − Szn‖,

from (6.21), (6.24) and (6.25) we have

(6.26) ‖zn − Szn‖ → 0.

Since E is uniformly smooth, J is norm-to-norm continuous. So, we have

(6.27) ‖Jzn − JSzn‖ → 0.

Since Jxn = ΠJCnx → x∗
0 = JJ−1x∗

0, we have Jzn → x∗
0. So, from (6.27) and

Theorem 5.6 we have J−1x∗
0 ∈ F (S). Next, let us show J−1x∗

0 ∈ EP (f). From
xn → J−1x∗

0 and (6.24), we have zn → J−1x∗
0. We have from zn = Tλnxn that

for any y ∈ C,

f(Jzn, Jy) +
1
λn

〈Jy − Jzn, zn − xn〉 ≥ 0.

From (A2), we have

1
λn

〈Jy − Jzn, zn − xn〉 ≥ f(Jy, Jzn).

From 0 < b ≤ λn and (6.24), we know

lim
n→∞

zn − xn

λn
= 0.

So, we have

(6.28) 0 ≥ f(Jy, x∗
0).
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Put z∗t = tJy + (1 − t)x∗
0 for all t ∈ (0, 1] and y ∈ C. Since JC is convex, we

have z∗t ∈ JC. From (A1), (A4) and (6.28), we have

0 = f(z∗t , z∗t ) ≤ tf(z∗t , Jy) + (1− t)f(z∗t , x∗
0)

≤ tf(z∗t , Jy)

and hence
0 ≤ f(z∗t , Jy).

Letting t → 0, we have from (A3) that for each y ∈ C,

(6.29) 0 ≤ f(x∗
0, Jy).

This implies J−1x∗
0 ∈ EP (f). So, we have that J−1x∗

0 ∈ F (S) ∩ EP (f). Put
z0 = RF (S)∩EP (f)x. Since z0 = RF (S)∩EP (f)x ⊂ Cn+1 and xn+1 = RCn+1x, we
have that

(6.30) φ(x, xn+1) ≤ φ(x, z0).

So, we have that

φ(x, J−1x∗
0) = lim

n→∞φ(x, xn)

≤ φ(x, z0).

So, we get z0 = J−1x∗
0. Hence, {xn} converges strongly to z0. This completes the

proof.
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