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OPTIMAL CONTROL OF HEMIVARIATIONAL INEQUALITIES
WITH DELAYS

Jong Yeoul Park and Jae Ug Jeong

Abstract. In this paper we prove the existence of solutions for hemivariational
inequalities with delays and then investigate optimal control problems for some
cost functions.

1. INTRODUCTION

Let Ω be a given bounded domain in R
n with C2 boundary ∂Ω. Let r and T be

constants satisfying 0 < r < T . For t > 0, set Q = (0, T )×Ω, Q−r = (−r, 0)×Ω
and Σ = (0, T )× ∂Ω. Let B be the Borel σ-algebra of the interval [−r, 0] and µ(·)
be a given finite signed measure defined on ([−r, 0], B). We define the time-delay
operator G as follows: For any h ∈ L2((−r,∞)× Ω; R

n),

(Gh)(t, x) �
∫ 0

−r
h(t + θ, x)µ(dθ) a.e. (t, x) ∈ (0,∞)× Ω.

In order for the above integral to make sense, we always take the integrand to
be a Borel correction of h (by which we mean a Borel measurable function that is
equal to h almost everywhere). In this paper, we shall study the following optimal
control problem:

(P ) Minimize J(y, u, v)

subject to the hemivariational inequality with delay of the form:

(1.1)

y′(t, x) −�y(t, x) + G(�y)(t, x) + Ξ(t, x)
= Bu(t, x) + f(t, y(t, x)) a.e. (t, x) ∈ Q,

y(0, x) = φ0(x) a.e. x ∈ Ω,

y(t, x) = φ(t, x) a.e. (t, x) ∈ Q−r,

Ξ(t, x) ∈ ϕ(t, x, v(t, x), y(t, x)) a.e. (t, x) ∈ Q,
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where ϕ is a discontinuous and nonlinear multi-valued mapping by filling in jumps
of a locally bounded function b, u and v denote the control variables and B is a
bounded linear operator. Here the cost functional J(y, u, v) is given by

J(y, u, v) =
∫ T

0

{g(y(t)) + h(u(t), v(t))}dt,

where g and h are convex functionals.
Optimal control problems for variational inequalities without delays have been

discussed by many authors from different aspect( see [1,3,6]). There is also an
extensive literature on the optimal control of infinite-dimensional evolution equations
with time-delays( see [2,5]). Pan and Yong([9]) studied the optimal control problem
for an abstract parabolic equation with delays in the highest-order spatial derivative
terms. Haslinger and Panagiotopoulous([7]) proved the existence of optimal controls
for coercive hemivariational inequality and Migórski and Ochal([8]) showed the
existence of optimal control problems for parabolic hemivariational inequalities.
Zhu([10]) studied the optimal control of variational inequalities with delays in the
highest order spatial derivatives.

Motivated by those works, we consider the optimal control problems for hemi-
variational inequalities with delays. This paper is organized as follows. In section
2, assumptions and lemmas are given. In section 3, the existence of a solution to
the problem (1.1) is proved using the Faedo-Galerkin method and finally in section
4 the existence of solutions to the optimal control problem (P) is investigated.

2. ASSUMPTIONS AND LEMMAS

Throughout this paper, we denote

(y, z) =
∫

Ω
y(x)z(x)dx and ‖y‖2 =

∫
Ω
|y(x)|2dx

and (·, ·) the dual pairing between H 1
0 (Ω) and H−1(Ω). Let U be a real Hilbert

space of variable u, L2(Q) a space of variable v and Uad ×Wad a nonempty subset
of L2(0, T ; U)×L2(Q). We denote by ‖ · ‖X the norm of a Banach space X . Now
we assume the following conditions concerning (1.1).

(Hyp.b) b : Q×R
2 → R is a locally bounded function satisfying the following

conditions:
(i) b is continuous in η uniformly with respect to ξ, that is, there exists δ0 > 0

such that for all (t, x, η, ξ) ∈ Q × R
2 and for all ε > 0, there exists γ =

γ(ε, t, x, η, ξ) > 0 such that

|b(t, x, η, ξ)− b(t, x, η′, ξ′)| < ε

if |η − η′| < γ and |ξ − ξ′| < δ0.
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(ii) (t, x) → b(t, x, η, ξ) is continuous on Q for all η ∈ R and a.e. ξ ∈ R.
(iii) (t, x, ξ) → b(t, x, η, ξ) is measurable in Q × R for all η ∈ R.
(iv) |b(t, x, η, ξ)| ≤ ν0(t, x) + ν1(1 + |η|+ |ξ|) for all (t, x, η, ξ) ∈ Q × R

2 with
a nonnegative function ν0 ∈ L2(Q) and a positive constant ν1.

The multi-valued function ϕ : Q × R
2 → 2R is obtained by filling in jumps of

a function b(t, x, η, ·) : R → R by means of the functions bε, bε, b, b : R → R as
follows:

bε(t, x, η, ξ) = ess inf|s−ξ|≤εb(t, x, η, s),

bε(t, x, η, ξ) = ess sup|s−ξ|≤εb(t, x, η, s),

b(t, x, η, ξ) = lim
ε→0+

bε(t, x, η, ξ),

b(t, x, η, ξ) = lim
ε→0+

bε(t, x, η, ξ),

ϕ(t, x, η, ξ) = [b(t, x, η, ξ), b(t, x, η, ξ)].

Remark 2.1. Let j : Q × R
2 → R be a locally Lipschitz continuous function

with respect to the last variable obtained from b by integration, that is,

j(t, x, η, ξ) =
∫ ξ

0
b(t, x, η, τ)dτ.

Then the following relation holds( see [7]):

ϕ(t, x, η, ξ) = ∂j(t, x, η, ξ),

where ∂ denotes the generalized gradient of Clarke( see [4] for example of the
definition and the relevant results for Clarke’s generalized gradient).

We shall need a regularization of b defined by

bm(t, x, η, ξ) = m

∫ ∞

−∞
b(t, x, η, ξ− τ)ρ(mτ)dτ,

where ρ ∈ C∞
0 ((−1, 1)), ρ ≥ 0 and

∫ 1
−1 ρ(τ)dτ = 1.

Remark 2.2. It is easy to show that bm(t, x, η, ξ) is continuous in t for all
m ∈ N and bε, bε, b, b, bm satisfy the same condition (Hyp.b)(iv) with possibly
different constants if b satisfies (Hyp.b)(iv). So, in the remainder of this paper, we
denote different constants by the same symbol as original constants.

(Hyp.B) B : L2(0, T ; U) → L2(0, T ; L2(Ω)) is a bounded linear operator.
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(Hyp.U,W) Uad is a closed convex subset of L2(0, T ; U) and Wad is a compact
subset of L2(Q).

(Hyp.f) (t, x) → f(t, x, y) is measurable in Q for all y ∈ R and f(t, x, ·)
belong to C1(R). Moreover, for some constant k > 0, we have

f(t, x, 0) = 0 and |fy(t, x, y)| ≤ k,

for all (t, x, y) ∈ Q × R.

(Hyp.µ) lims→0 |µ|([−r, 0])|µ|([−s, 0]) < 1.

(Hyp.g) g : L2(Ω) → R is proper, convex and continuous. Moreover, there
exists k1 and k2 ∈ R such that

g(y) ≥ k1‖y|+ k2

for all y ∈ L2(Ω).
(Hyp.h) h : U × L2(Ω) → R̄ is a proper, convex and lower semicontinuous

functional satisfying

h(u, v) ≥ k3(‖u‖2
U + ‖v‖2) + k4

for all (u, v) ∈ U × L2(Ω), where k3 > 0 and k4 ∈ R.

Definition 2.1. Given (u, v) ∈ L2(0, T ; U) × L2(Q), φ0 ∈ H1
0 (Ω) and φ ∈

L2(−r, 0; H1
0(Ω)∩H2(Ω)), y is said to be a solution of (1.1) if y ∈ L2(−r, T ; H1

0(Ω)
∩H2(Ω))∩W 1,2([0, T ]; L2(Ω)), there exists Ξ ∈ L2(0, T ; L2(Ω)) and the following
relations hold:∫ t

0
(y′(s), w)ds +

∫ t

0
(∇y(s),∇w)ds−

∫ t

0
(G(∇y),∇w)ds

+
∫ t

0
(Ξ(s), w)ds

=
∫ t

0
(Bu(s), w)ds +

∫ t

0
(f(s, y(s)), w)ds, ∀t ∈ [0, T ], ∀w ∈ H1

0 (Ω),(2.1)

Ξ(t, x) ∈ ϕ(t, x, v(t, x), y(t, x)) a.e. (t, x) ∈ Q,(2.2)

y(0, x) = φ0(x) a.e. x ∈ Ω,

y(t, x) = φ(t, x), a.e. (t, x) ∈ Q−r.(2.3)

Remark 2.3. ([10]). For any 0 < s ≤ +∞, G is a bounded linear operator
from L2([−r, s)× Ω; Rm) to L2((0, s)× Ω; Rm) and ‖G‖ ≤ µ([−r, 0]).
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3. EXISTENCE RESULTS

In this section we are going to show the existence of solutions to the problem
(1.1) using the Faedo-Galerkin approximation.

Lemma 3.1. ([10]). If (Hyp.µ) holds, y ∈ L2((−r, T )× Ω; Rm), z ∈ L2(Q),
α > 0 and

∫
Ω
|y(t, x)|2dx + α

∫ t

0

∫
Ω
|z(t, x)|2dxdt

≤ γ + δ

∫ t

0

∫
Ω
|y(t, x)|2dxdt + α|

∫ t

0

∫
Ω

G(z(t, x))z(t, x)dxdt|,

for any t ∈ [0, T ] and some constants γ, δ > 0, then y ∈ L 2(0, T ; L2(Ω)).

Furthermore, there exists a constant C = C(r, T, δ, µ(·)) > 0 such that

‖y‖2 + α

∫ t

0
‖z‖2ds ≤ C(γ + α

∫ 0

−r
‖z‖2ds).

Theorem 3.1. Assume that (Hyp.µ), (Hyp.b), (Hyp.B) and (Hyp.f ) hold. Let
(u, v) ∈ L2(0, T ; U)× L2(Q), φ0 ∈ H1

0 (Ω) and φ ∈ L2(−r, 0; H1
0(Ω) ∩ H2(Ω)).

Then the problem (1.1) has a solution.

Proof. We represent by {wj}j≥1 a basis in H 1
0 (Ω) which is orthogonal in

L2(Ω). Let Vm be the space generated by w1, w2, · · · , wm. We may choose (ϕ0m)
in Vm such that ϕ0m → ϕ0 in H1

0 (Ω). Let ym(t) =
∑m

j=1 gjm(t)wj be the solution
of the equation

(y′m(t), w) + (∇ym(t),∇w)− (G(∇ym(t)),∇w)

+ (bm(t, v(t), ym(t)), w)

= (f(t, ym(t)), w) + (Bu(t), w), ∀w ∈ Vm,(3.1)

ym(0) = φ0m,(3.2)

ym(t) = φm(t), t ∈ [−r, 0).(3.3)

By standard differential equation methods, we can prove the existence of a solution
to (3.1)-(3.3) on some interval [0, tm). This solution can be extended to the closed
interval [0, T ] using a priori estimates below.

Step 1. (A priori estimates).
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Replacing w by ym(t) in (3.1), we obtain

(y
′
m(t), ym(t)) + (∇ym(t),∇ym(t))

= (G(∇ym(t)),∇ym(t)) − (bm(t, v(t), ym(t)), ym(t))(3.4)

+ (f(t, ym(t)), ym(t)) + (Bu(t), ym(t)).

By (Hyp.b)(iv) and v ∈ L2(Q), there exists c1 > 0 such that∫ t

0
‖bm(s, v(s), ym(s))‖2ds

≤
∫ t

0

∫
Ω
|bm(s, x, v(s, x), ym(s, x))|2dxdt(3.5)

≤ 2‖ν0‖2
L2(Q) + 2ν2

1

∫ t

0

∫
Ω
(1 + |v(s, x)|+ |ym(s, x)|)2dxdt

≤ c1 + 2ν2
1

∫ t

0
‖ym(s)‖2ds

and hence ∣∣∣
∫ t

0
(bm(s, v(s), ym(s)), ym(s))ds

∣∣∣

≤
(∫ t

0
‖bm(s, v(s), ym(s))‖2ds

)1
2
(∫ t

0
‖ym(s)‖2ds

)1
2

(3.6)

≤ 1
2
{c1 + (2ν2

1 + 1)
∫ t

0
‖ym(s)‖2ds}.

From (3.4), (3.6) and integrating over (0,t), we get
1
2
‖ym(t)‖2 +

∫ t

0
‖∇ym(s)‖2ds

≤ c2 +
1
2
‖φ0m‖2 + c3

∫ t

0
‖ym(s)‖2ds +

∫ t

0
(f(s, ym(s)), ym(s))ds

+
∫ t

0
(Bu(s), ym(s))ds +

∫ t

0
(G(∇ym(s)),∇ym(s))ds

and by (Hyp.f ), (Hyp.B) and using Young’s inequality, we have
1
2
‖ym(t)‖2 +

∫ t

0
‖∇ym(s)‖2ds

≤ c2 +
1
2
‖φ0m‖2 + c3

∫ t

0
‖ym(s)‖2ds + k

∫ t

0
‖ym(s)‖2ds
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+
M

2

∫ t

0

‖u(s)‖2ds +
1
2

∫ t

0

‖ym(s)‖2ds

+ |
∫ t

0

(G(∇ym(s)),∇ym(s))ds|

for some positive constants c2, c3 and M . Since u ∈ L2(0, T ; U) and φ0 ∈ H1
0 (Ω),

we obtain

‖ym(t)‖2 +
∫ t

0
‖∇ym(s)‖2ds

≤ c4 + c5

∫ t

0
‖ym(s)‖2ds + |

∫ t

0
(G(∇ym(s)),∇ym(s))ds|,

where c4 and c5 are some constants. Thus, in view of Lemma 3.1, we obtain

‖ym(t)‖2 +
∫ t

0
‖∇ym(t)‖2 ≤ C(1 + ‖∇φ‖2

L2(Q−γ)).

Here and in the sequel, we denote C generic positive constant. Since ϕ ∈ L2(−r, 0;
H1

0 (Ω) ∩ H2(Ω)), we deduce that

‖ym(t)‖2 +
∫ t

0
‖∇ym(t)‖2 ≤ C.(3.7)

Similarly, replacing w by �ym(t) in (3.1), we have

(y
′
m(t),�ym(t)) + (�ym(t),�ym(t))

= (G(�ym(t)),�ym(t)) − (bm(t, v(t), ym(t)),�ym(t))(3.8)

+ (f(t, ym(t)),�ym(t)) + (Bu(t),�ym(t)).

From (3.5) we have that
∣∣∣
∫ t

0
(bm(s, v(s), ym(s)),�ym(s))ds

∣∣∣
≤

( ∫ t

0
‖bm(s, v(s), ym(s))‖2ds

) 1
2
( ∫ t

0
‖�ym(s)‖2ds

) 1
2(3.9)

≤ c
′
1 + ν2

1

∫ t

0
‖ym(s)‖2ds +

1
2

∫ t

0
‖�ym(s)‖2ds,

where c
′
1 is a positive constant. From (3.8), (3.9) and integrating over (0, t) we

obtain
1
2
‖∇ym(t)‖2 +

1
2

∫ t

0
‖�ym(s)‖2ds
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≤ c
′
2 +

1
2
‖∇φ0m‖2 + c

′
3

∫ t

0
‖ym(s)‖2ds +

∫ t

0
(f(s, ym(s)),�ym(s))ds

+
∫ t

0
(Bu(s),�ym(s))ds +

∫ t

0
(G(�ym(s)),�ym(s))ds,

where c
′
2 and c

′
3 are some positive constants. By (Hyp.B), (Hyp.f ) and imbedding

theorem, we derive

1
2
‖∇ym(t)‖2 +

1
2

∫ t

0
‖�ym(s)‖2ds

≤ c
′
2 +

1
2
‖∇φ0m‖2 + c

′
3

∫ t

0
‖ym(s)‖2ds + cε

∫ t

0
‖f(s, ym(s))‖2ds

+ ε

∫ t

0
‖�ym(s)‖2ds + cε

∫ t

0
‖u(s)‖2ds + ε

∫ t

0
‖�ym(s)‖2ds

+ |
∫ t

0
(G(�ym(s)),�ym(s))ds|

≤ c
′
2 +

1
2
‖∇φ0m‖2 + c

′
3

∫ t

0
‖ym(s)‖2ds + cεk

∫ t

0
‖ym(s)‖2ds

+ ε

∫ t

0
‖�ym(s)‖2ds + cε

∫ t

0
‖u(s)‖2ds + ε

∫ t

0
‖�ym(s)‖2ds

+ |
∫ t

0
(G(�ym(s)),�ym(s))ds|

≤ c
′
4 +

1
2
‖∇φ0m‖2 + 2ε

∫ t

0
‖�ym(s)‖2ds + c

′
5

∫ t

0
‖∇ym(s)‖2ds

+ cε

∫ t

0
‖u(s)‖2ds + |

∫ t

0
(G(�ym(s)),�ym(s))ds|,

where c
′
4 and c

′
5 are some positive constants. Since u ∈ L2(0, T ; U) and φ0 ∈

H1
0 (Ω), for a sufficiently small ε > 0, we obtain

‖∇ym(t)‖2 +
∫ t

0
‖�ym(s)‖2ds

≤ c
′
6 + c

′
7

∫ t

0
‖∇ym(s)‖2ds + |

∫ t

0
(G(�ym(s)),�ym(s))ds|

for some constants c
′
6 and c

′
7. In View of Lemma 3.1 we have

‖∇ym(t)‖2 +
∫ t

0
‖�ym(s)‖2ds ≤ C(1 + ‖�φ‖2

L2(Q−r)).
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Since φ ∈ L2(−γ, 0; H1
0(Ω) ∩ H2(Ω)), we derive that

‖∇ym(t)‖2 +
∫ t

0
‖�ym(s)‖2ds ≤ C.(3.10)

From (Hyp.f ) and (3.7)

‖f(s, ym(s))‖L∞(0,T ;L2(Ω)) ≤ C.(3.11)

Thus from (3.7), (3.10) and (3.11), we obtain

‖y′
m‖L2(0,T ;L2(Ω)) ≤ C.(3.12)

Step 2. (Passage to the limit).
From the priori estimates (3.5), (3.7), (3.10) and (3.12) for a subsequence we

deduce that

ym → y weakly star in L∞(0, T ; H1
0(Ω)),

ym → y strongly in L2(0, T ; L2(Ω)),

y
′
m → y′ weakly in L2(0, T ; L2(Ω)),(3.13)

�ym → �y weakly in L2(0, T ; L2(Ω)),

bm(v, ym) → Ξ weakly in L2(0, T ; L2(Ω)).

Since G is a bounded linear operator and f(t, ·) ∈ C1(R), we can take limit m → ∞
in (3.1). Hence we have

(3.14)
(y′(t), w) + (∇y(t),∇w)− (G(�y(t)),�w) + (Ξ, w)

= (f(t, y(t)), w)+ (Bu(t), w), ∀w ∈ H1
0 (Ω).

Step 3. (y is a solution of (1.1)).
We will show that Ξ(t, x) ∈ ϕ(t, x, v(t, x), y(t, x)) a.e. (t, x) ∈ Q. From (3.13)

we infer that

ym(t, x) → y(t, x) a.e. (t, x) ∈ Q.

Let η > 0. Using the theorems of Lusin and Egoroff, we can choose a subset
W ⊂ Q such that meas(W ) < δ, y ∈ L∞(Q − W ) and ym → y uniformly on
Q−W . Thus, for each ε > 0, there is an N > 2

ε such that |ym(t, x)−y(t, x)| < ε
2

for all (t, x) ∈ Q − W and m > N . Then, if |ym(t, x) − s| < 1
m , we have

|y(t, x)− s| < ε for all m > N and (t, x) ∈ Q. Therefore we have
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bε(t, x, v(t, x), y(t, x)) ≤ bm(t, x, v(t, x), y(t, x))

≤ b̄ε(t, x, v(t, x), y(t, x))

for all m > N and (t, x) ∈ Q − W . Let r ∈ L2(Q) and r ≥ 0. Then∫
Q−W

bε(t, x, v(t, x), y(t, x))r(t, x)dxdt

≤
∫

Q−W
bm(t, x, v(t, x), ym(t, x))r(t, x)dxdt(3.15)

≤
∫

Q−W
b̄ε(t, x, v(t, x), y(t, x))r(t, x)dxdt.

Letting m → ∞ in (3.15) and using (3.13) we obtain∫
Q−W

bε(t, x, v(t, x), y(t, x))r(t, x)dxdt

≤
∫

Q−W
Ξ(t, x)r(t, x)dxdt(3.16)

≤
∫

Q−W
b̄ε(t, x, v(t, x), y(t, x))r(t, x)dxdt.

Letting ε → 0+ in (3.16), we infer that Ξ(t, x) ∈ ϕ(t, x, v(t, x), y(t, x)) a.e. in
Q− W . Letting δ → 0+, then we have Ξ(t, x) ∈ ϕ(t, x, v(t, x), y(t, x)) a.e. in Q.
Therefore the proof of Theorem 3.1 is complete.

4. EXISTENCE OF THE SOLUTIONS OF THE OPTIMAL CONTROL PROBLEM

We denote by S(u, v) the set of all solutions of the problem (1.1) for a given
(u, v) ∈ Uad×Wad. Theorem 3.1 implies that S(u, v) �= φ for all (u, v) ∈ Uad×Wad.
Let us consider the following optimal control problem (P):

Minimize{J(y, u, v) : (u, v)× Uad × Wad, y ∈ S(u, v)}.

Theorem 4.1. For a given (u, v) ∈ Uad × Wad, the following estimate holds:

sup
y∈S(u,v)

{‖y‖2
L∞(0,T ;L2(Ω)) + ‖y‖2

L∞(0,T ;H1
0(Ω))

+ ‖y‖2
L2(0,T ;H2(Ω)) + ‖y′‖2

L2(0,T ;L2(Ω))}
≤ c1(1 + ‖∇φ0‖2

L2(Ω) + ‖∇φ‖L2(−r,0;L2(Ω)))

+ c2(‖u‖2
L2(0,T ;U ) + ‖v‖2

L2(0,T ;L2(Ω)))
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where c1 and c2 are positive constants.

Proof. Let y ∈ S(u, v). Then y is satisfies (2.1)-(2.3). Replacing w by y(t) in
(2.1) and then using (Hyp.f ) and Young’s inequality, we obtain

‖y(t)‖2 +
∫ t

0
‖∇y(s)‖2ds

≤ c(1 + ‖φ0‖2 +
∫ t

0
‖y(s)‖2ds) +

∫ t

0
‖Bu(s)‖2ds +

∫ t

0
‖Ξ(s)‖2ds(4.1)

+ |
∫ t

0
(G(∇y(s)),∇y(s))ds|).

By the assumption on b (see (Hyp.b)(iv)) and Remark 2.2, we can easily show that
∫ t

0
‖Ξ(s)‖2ds ≤ c1 + c2{

∫ t

0
(‖y(s)‖2 + ‖v(s)‖2)ds}.(4.2)

From (4.1), (4.2) and Lemma 3.1, we deduce that

(4.3)
‖y(t)‖2 +

∫ t

0
‖∇y(s)‖2ds ≤ c(1+‖φ0‖2

+‖∇φ‖2
L2(−r,0;L2(Ω)))+‖Bu(s)‖2

L2(0,T ;U ) + ‖v‖2
L2(0,T ;L2(Ω)).

Similarly, replacing w by �y(t) in (1.1), we obtain

‖∇y(t)‖2 +
∫ t

0
‖�y(s)‖2ds

≤ c(1 + ‖∇φ0‖2 + ‖�φ‖2
L2(−r,0;L2(Ω)) + ‖Bu(t)‖2

L2(0,T ;U )(4.4)

+ ‖v‖2
L2(0,T ;L2(Ω))).

Moreover, from (1.1), (4.1)-(4.4) we have that

(4.5)
‖y′‖2

L2(0,T ;L2(Ω))
≤ c(1 + ‖∇φ0‖2 + ‖�φ‖2

L2(−r,0;L2(Ω))

+‖Bu‖2
L2(0,T ;U ) + ‖v‖2

L2(0,T ;L2(Ω)).

Since B is a bounded linear operator, (4.3), (4.4) and (4.5) complete the proof of
Theorem 4.1.

Theorem 4.2. Assume that the conditions of Theorem 3.1, (Hyp,U ,W ), (Hyp.g)
and (Hyp.h) hold. Then the optimal control problem (P) has at least one solution.
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Proof. Let d = inf{J(y, u, v)|(u, v) ∈ Uad × Wad, y ∈ S(u, v)}. By the
assumptions g and h, it is clear that d > −∞. Let (yn, un, vn) ∈ S(un, vn)×Uad×
Wad be a minimizing sequence, that is,

∫ t

0
(y

′
n(s), w)ds +

∫ t

0
(∇yn(s),∇w)ds−

∫ t

0
(G(∇yn(s)),∇w)ds

+
∫ t

0
(Ξn(s), w)ds

=
∫ t

0
(Bun(s), w)ds+

∫ t

0
(f(s, yn(s)), w)ds, ∀t ∈ (0, T ), ∀w∈H1

0(Ω),(4.7)

Ξn(t, x) ∈ ϕ(t, x, vn(t, x), yn(t, x)) a.e. (t, x) ∈ Q,

yn(0, x) = φ0(x),(4.8)

yn(t, x) = φ(t, x) a.e. (t, x) ∈ Q−r

and

d ≤ J(yn, un, vn) ≤ d +
1
n

, n = 1, 2, · · · .(4.9)

From (Hyp.h), (un, vn) is bounded in Uad × Wad ⊂ L2(0, T ; U)× L2(Q). Thus a
subsequence can be determined such that

un → u∗ weakly in L2(0, T ; U).(4.10)

By (Hyp.U ), Uad is weakly closed, and hence u∗ ∈ Uad. Also, since Wad is compact
in L2(Q) and (vn) is bounded in Wad, we have

vn → v∗ strongly in L2(Q)(4.11)

and v∗ ∈ Wad. Therefore, by Theorem 4.1, we see that

(yn) is bounded in L∞(0, T ; H1
0(Ω) ∩ L2(Ω)),

(yn) is bounded in L2(0, T ; H2(Ω)),(4.12)

(y
′
n) is bounded in L2(0, T ; L2(Ω)).

This together with the fact that
∫ t

0
‖Ξn(s)‖2ds ≤ c + c

∫ t

0
(‖ym(s)‖2 + ‖vn(s)‖2)ds
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implies that {Ξn} is bounded in L2(0, T ; L2(Ω)). Therefore, we have

yn → y∗ weakly star in L∞(0, T ; H1
0(Ω)),

yn → y∗ strongly in L2(0, T ; L2(Ω)),

yn → y∗ weakly in L2(0, T ; H2(Ω)),(4.13)

y
′
n → y∗

′
weakly in L2(0, T ; L2(Ω)),

Ξn → Ξ∗ weakly in L2(o, T ; L2(Ω)).

Since f(t, ·) belong to C(R), using (4.10), (4.11), (4.13) and letting n → ∞ in
(4.7), we conclude that

∫ t

0
(y∗

′
(s), w)ds +

∫ t

0
(∇y∗(s),∇w)ds−

∫ t

0
(G(∇y∗(s)),∇w)ds

+
∫ t

0
(Ξ∗(s), w)ds(4.14)

=
∫ t

0
(Bu∗(s), w)ds+

∫ t

0
(f(s, y∗(s)), w)ds, ∀t∈(0, T ), ∀w∈H1

0(Ω).

To show that y∗ ∈ S(u∗, v∗), it is sufficient to show that

Ξ∗(t, x) ∈ ϕ(t, x, v∗(t, x), y∗(t, x)) a.e. (t, x) ∈ Q.(4.15)

Indeed, by (4.13) and the Aubin-Lions compactness lemma, we get yn → y∗

strongly in L2(0, T ; L2(Ω)) and hence yn(t, x) → y∗(t, x) a.e. (t, x) ∈ Q. By the
theorems of Lusin and Egoroff, for a given η > 0, we can choose a subset W ⊂ Q

such that meas(W ) < η and yn → y∗ uniformly in Q − W . Thus for each ε > 0,
there is a positive integer N such that

|yn(t, x)− y∗(t, x)| < ε

2
, ∀(t, x) ∈ Q − W, ∀n > N.

On the other hand, (4.8) implies that
∫

Q−W
b ε

2
(t, x, vn(t, x), yn(t, x))φ(t, x)dxdt

≤
∫

Q−W
Ξn(t, x)φ(t, x)dxdt(4.16)

≤
∫

Q−W
b̄ ε

2
(t, x, vn(t, x), yn(t, x))φ(t, x)dxdt



446 Jong Yeoul Park and Jae Ug Jeong

for any φ ∈ L2(Q) with φ ≥ 0. Note that for n > N ,

b ε
2
(t, x, vn(t, x), yn(t, x)) = ess inf|s−yn |≤ ε

2
b(t, x, vn(t, x), s)

≥ ess inf|s−y∗ |≤ε b(t, x, vn(t, x), s)

= bε(t, x, vn(t, x), y∗(t, x))

and

b̄ ε
2
(t, x, vn(t, x), yn(t, x)) = ess sup|s−yn |< ε

2
b(t, x, vn(t, x), s)

≤ ess sup|s−y∗ |≤ε b(t, x, vn(t, x), s)

= b̄ε(t, x, vn(t, x), y∗(t, x)).

From (4.16) we obtain∫
Q−W

bε(t, x, vn(t, x), y∗(t, x))φ(t, x)dxdt

≤
∫

Q−W
Ξn(t, x)φ(t, x)dxdt(4.17)

≤
∫

Q
b̄ε(t, x, vn(t, x), y∗(t, x))φ(t, x)dxdt.

Letting n → ∞ in (4.17) and using (4.11) and (Hyp.b), we conclude that∫
Q−W

bε(t, x, v∗(t, x), y∗(t, x))φ(t, x)dxdt

≤
∫

Q−W
Ξ∗(t, x)φ(t, x)dxdt(4.18)

≤
∫

Q−W

b̄ε(t, x, v∗(t, x), y∗(t, x))φ(t, x)dxdt.

Letting ε → 0+ in (4.18), we infer that Ξ∗(t, x) ∈ ϕ(t, x, v∗(t, x), y∗(t, x)) a.e. in
Q − W and letting η → 0+ we get

Ξ∗(t, x) ∈ ϕ(t, x, v∗(t, x), y∗(t, x)) a.e. in Q.

Hence (y∗, u∗, v∗) ∈ S(u∗, v∗) × Uad × Wad is admissible pair for problem (P).
Taking the limit n → ∞ in (4.9) and using the lower semicontinuity of J , we
conclude that

d ≤ J(y∗, u∗, v∗) ≤ lim
n→∞ J(yn, un, vn) ≤ d.

Thus (y∗, u∗, v∗) is a solution of the optimal control problem (P).
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