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IDENTIFICATION PROBLEMS FOR ISOTROPIC VISCOELASTIC
MATERIALS WITH LONG NONLINEAR MEMORY

Jinsoo Hwang and Shin-ichi Nakagiri

Abstract. This paper is concerned with the identification problems of un-
known parameters in viscoelastic materials with long nonlinear memory. The
unknown parameters are diffusion constants and kernels in nonlinear mem-
ory terms, and the identification of such parameters is studied by means of
quadratic optimal control theory due to Lions [10]. The existence of optimal
parameters is proved, and the necessary condition is established for distributive
and terminal values observation by using the transposition method.

1. INTRODUCTION

In this paper, we study the identification problems of unknown parameters in
viscoelastic materials with long nonlinear memory. The term of long memory is
represented by Volterra integro-differential equation. Let Ω be a domain in Rn

with smooth boundary Γ and let us denote Q = (0, T ) × Ω, Σ = (0, T ) × Γ for
T > 0. The general nonlinear vibrating equation of isotropic viscoelastic materials
occupying a domain Ω with long memory is given by

(1)
∂2y

∂t2
−div(g(∇y))+

∫ t

0
k(t−s)div(h(∇y(s, x)))ds = f(x, y,∇y, ∂y

∂t
) in Q,

where f , g and h are sufficiently smooth nonlinear functions. In the case of vi-
brating membrane the nonlinear functions g and h are given by g(x) = h(x) =

x√
1+|x|2 , x ∈ Rn. This type of nonlinear equations with memory is studied in

Dafermos and Nohel [3], Engler [5], Renardy, Hrusa and Nohel [14], Cavalcanti
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and Oquendo [2], Qin and Ni [13] and others mainly on the existence of global solu-
tions and their asymptotic behaviors. Various types of partially linearized equations
for (1) such as

(2)
∂2y

∂t2
− α∆y −

∫ t

0
k(t− s)∆y(s, x)ds = f(y) + g(

∂y

∂t
) in Q,

are proposed and studied in many references cited in [14].
In this paper we consider the following partially linearized Volterra integro-

differential equation with nonlinear kernel

(3)
∂2y

∂t2
− α∆y −

∫ t

0
k(t− s)div

( ∇y(s, x)√
1 + |∇y(s, x)|2

)
ds = f in Q,

under the Dirichlet boundary condition and the initial conditions

y = 0 on Σ,(4)

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) in Ω.(5)

The partially linearized equation (3) can be considered as vibrating models where
the derivation of y is sufficiently small in the instantaneous vibrations compared
with the memory effects.

Physically, the constant α > 0 and the integral kernel k(·) in (3) represent the
velocity of vibration and the fading rate of memory effects, respectively.

For the problem (3)-(5), it is proved in Hwang and Nakagiri [9] that the funda-
mental results on existence, uniqueness and regularity of weak and strong solutions
corresponding to the various data conditions on y0, y1 and f in [9].

Based on the fundamental results in [9], in this paper we study our problem
with strong solutions satisfying the problem (3)-(5) under stronger data conditions
to obtain our main results.

To formulate the identification problem, we replace α in (3) by α0+α2 for fixed
α0 > 0, and we introduce a new parameter q = (α, k(·)) of a pair of α and k(t). We
define the Banach space P of parameters q = (α, k(·)) by P = R×C1 [0, 1]. In our
situation α and k(·) are unknown parameters to be identified for the determination of
realistic dynamics of viscoelastic materials. For the related identification problems
for constant parameters, we refer to Ha and Nakagiri [8].

We emphasis that the identification problems of relaxation kernels depending
only on time are still little studied, in spite of their physical importance (cf. A.
Favaron and A. Lorenzi [6], A. Favini and A. Lorenzi [7] and A. Lorenzi and F.
Messina [12]). In the above references the uniqueness of kernels in identification
process was studied. However, in this paper we study the quadratic cost identifica-
tion problems for q = (α, k(·)) ∈ P in the framework of Lions [10] (cf. Ahmed
[1]).
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Now we introduce a cost functionals subject to (3)-(5) by

J(q) = ‖Cy(q)− zd‖2
M for q ∈ P ,(6)

where zd ∈M is the desired value, C is an observation operator from the solution
space to M and M is a Hilbert space of observation variables. Assume that an
admissible subset Pad of P is convex and closed. The parameter q∗ ∈ Pad satisfying

(7) inf
q∈Pad

J(q) = J(q∗)

is called an optimal parameter and y(q∗) is called the corresponding optimal state.
We study the existence and characterization problem of optimal parameters q∗ for
the cost (6). With the energy inequality for weak solutions we prove the continuity
of solutions y(q) in the parameter q, and the existence of an optimal parameter
q∗ is proved provided that the admissible set Pad is bounded and closed in P =
R × C1[0, 1]. Also we prove the Gâteaux differentiability of solution map which
is a map from the space of parameters to the space of weak solutions. Finally by
using the Gâteaux differentiability we establish the necessary condition of optimality
for the case of distributive and terminal values observations. In the description of
adjoint systems in the necessary condition, we utilized the transposition method to
define the adjoint state appropriately because of the lack of solvability of the formal
adjoint system.

2. VISCOELASTIC EQUATIONS WITH LONG MEMORY

We consider the following Dirichlet boundary value problem for the viscoelastic
equations with long nonlinear memory:

(2.1)




∂2y

∂t2
− α∆y −

∫ t

0
k(t− s)div

( ∇y(s, x)√
1 + |∇y(s, x)|2

)
ds = f in Q,

y = 0 on Σ,

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) in Ω,

where α > 0, k is a scalar kernel function, f is a external forcing term and y0, y1 are
given initial functions. We shall give the notations used throughout this paper. The
scalar product and norm on [L2(Ω)]n are also denoted by (φ, ψ) and |φ|. Then the
scalar product (φ, ψ)H1

0(Ω) and the norm ‖φ‖ of H1
0 (Ω) are given by (∇φ,∇ψ) and

‖φ‖ = (∇φ,∇φ)
1
2 , respectively. Let D(∆) = H2(Ω)∩H1

0(Ω). The scalar product
and norm on D(∆) are denoted by (φ, ψ)D(∆) = (∆φ,∆ψ) and ‖φ‖D(∆) = |∆φ|,
respectively. The duality pairing betweenH1

0 (Ω) and H−1(Ω) is denoted by 〈φ, ψ〉.
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Related to the nonlinear term in (2.1), we define the function G : Rn → Rn by
G(x) =

x√
1 + |x|2 , x ∈ Rn. Then it is easily verified that

(2.2) |G(x)−G(y)| ≤ 2|x− y|, ∀x, y ∈ Rn.

The nonlinear operator G(∇·) : H1
0 (Ω) → [L2(Ω)]n is defined by

(2.3) G(∇φ)(x) =
∇φ(x)√

1 + |∇φ(x)|2 , a.e. x ∈ Ω, ∀φ ∈ H1
0 (Ω).

By the definition of G(∇·) in (2.3), we have the following useful property onG(∇·):
(2.4) |G(∇φ)| ≤ |∇φ|, |G(∇φ)−G(∇ψ)| ≤ 2|∇φ−∇ψ|, ∀φ, ψ ∈ H1

0 (Ω).

The solution space W (0, T ) for weak solutions of (2.1) is defined by

W (0, T ) = {g|g ∈ L2(0, T ;H1
0(Ω)), g′∈L2(0, T ;L2(Ω)), g′′∈L2(0, T ;H−1(Ω))}

endowed with the norm

‖g‖W (0,T ) =
(
‖g‖2

L2(0,T ;H1
0(Ω)) + ‖g′‖2

L2(0,T ;L2(Ω)) + ‖g′′‖2
L2(0,T ;H−1(Ω))

) 1
2
,

where g′ and g′′ denote the first and second order distributive derivatives of g.

Definition 2.1. A function y is said to be a weak solution of (2.1) if y ∈
W (0, T ) and y satisfies

(2.5)




〈y′′(·), φ〉+α(∇y(·),∇φ)+
∫ ·

0
k(· − s)(G(∇y(·)),∇φ)ds=(f(·), φ)

for all φ ∈ H 1
0 (Ω) in the sense of D ′(0, T ),

y(0) = y0 ∈ H1
0 (Ω), y′(0) = y1 ∈ L2(Ω).

The following theorem proved in Hwang and Nakagiri [9] gives the fundamental
results on existence, uniqueness and regularity of weak solutions of (2.1).

Theorem 2.1. Assume that k(·) ∈ C1[0, T ] and

(2.6) y0 ∈ H1
0 (Ω), y1 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω)).

Then the problem (2.1) has a unique weak solution y ∈W (0, T )∩C([0, T ];H 1
0(Ω))∩

C1([0, T ];L2(Ω)). Moreover, y has the following estimate

|∇y(t)|2 + |y′(t)|2 ≤ C(‖y0‖2 + |y1|2 + ‖f‖2
L2(0,T ;L2(Ω))), ∀t ∈ [0, T ],

where C is a constant depending only on α and ‖k‖C1[0,T ].
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Remark 2.1. If G(∇·) in (2.3) is replaced by a linear bounded operator
G̃(∇·) : H1

0 (Ω) → [L2(Ω)]n, then Theorem 2.1 still holds for this G̃ (cf. Dautray
and Lions [4, p.660]).

Next we introduce the solution space W̃ (0, T ) for strong solutions of (2.1)
defined by

W̃ (0, T ) = {g|g ∈ L2(0, T ;D(∆)), g′ ∈ L2(0, T ;H1
0(Ω)), g′′ ∈ L2(0, T ;L2(Ω))}.

Definition 2.2. A function y is said to be a strong solution of (2.1) if y ∈
W̃ (0, T ), div G(∇y) ∈ L2(0, T ;L2(Ω)) and y satisfies

(2.7)




y′′(t)−α∆y(t)−
∫ t

0
k(t−s)div G(∇y(s))ds=f(t), a.e. t ∈ [0, T ],

y(0) = y0 ∈ D(∆), y′(0) = y1 ∈ H1
0 (Ω).

The next theorem on the well-posedness for strong solutions of (2.1) is also
proved in Hwang and Nakagiri [9].

Theorem 2.2. Assume that k(·) ∈ C1[0, T ] and

(2.8) y0 ∈ D(∆), y1 ∈ H1
0 (Ω), f ∈ H1(0, T ;L2(Ω)).

Then the problem (2.1) has a unique strong solution y ∈ W̃ (0, T ) which satisfies

y ∈ C([0, T ];D(∆))∩ C1([0, T ];H1
0(Ω)) ∩ C2([0, T ];L2(Ω))

and the estimates

|∆y(t)|2 + |∇y′(t)|2 + |y′′(t)|2

≤ C(‖y0‖2
D(∆) + ‖y1‖2 + ‖f‖2

H1(0,T ;L2(Ω))), ∀t ∈ [0, T ],(2.9)

where C is a constant depending only on α and ‖k‖C1[0,T ].

3. IDENTIFICATION PROBLEMS

In this section we study the identification problems for the following viscoelastic
system with nonlinear memory

(3.1)




∂2y

∂t2
−(α0+α2)∆y−

∫ t

0
k(t− s)div

( ∇y(s, x)√
1+|∇y(s, x)|2

)
ds = f in Q,

y = 0 on Σ,

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) in Ω,
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where α0 > 0, y0 ∈ D(∆), y1 ∈ H1
0 (Ω) and f ∈ H1(0, T ;L2(Ω)) are fixed, and

α ∈ R, k(·) ∈ C1[0, T ]. In (3.1) the diffusion parameter α and the fading rate k(·)
are unknown parameters which should be identified. To study the identification of
parameters α and k(·) in (3.1), we introduce the Banach space P of parameters
q = (α, k(·)) by

(3.2) P = R× C1[0, T ]

The norm of P is defined by

‖(α, k(·))‖P = |α| + ‖k(·)‖C1[0,T ] for (α, k(·)) ∈ P .

Since the data in (3.1) satisfy (2.8), we know by Theorem 2.2 that (3.1) admits a
unique strong solution y ∈ W̃ (0, T ). The reason why we study our problems with
strong solution is summarized as follows.

As we will show later, our approach rely on the optimal control theory due
to Lions [10]. Therefore, it is necessary to establish the existence and necessary
conditions for optimal parameters. When we prove the necessary conditions for
optimal parameters we need to take variation on the set P into the solution space.
Especially, in taking variation for the unknown parameter α which appears as the
coefficient of ∆y term, we will have a forcing term involving ∆y term which has to
belong to the space L2(0, T ;L2(Ω)), i.e., y must belong to L2(0, T ;D(∆)). Since
the space L2(0, T ;L2(Ω)) is the forcing function’s space in Theorem 2.1, we can
obtain our related results in W (0, T ).

Thus we can introduce the solution map q → y(q) : P → W (0, T ). We note
that the topology of W (0, T ) is natural to study the identification problems. We
attach a cost functional subject to (3.1) by the quadratic cost

J(q) = ‖Cy(q) − zd‖2
M for q ∈ P ,(3.3)

where zd ∈ M is the desired value, C ∈ L(W (0, T ),M) is an observer and
M is a Hilbert space of observation variables. Assume that an admissible set
Pad = P1

ad ×P2
ad ⊂ P is nonempty, closed and convex. The identification problem

is formulated as the minimization problem for (3.1) subject to the cost (3.3), and
we shall solve the following two problems. That is

(i) Find an element q∗ ∈ Pad satisfying

(3.4) inf
q∈Pad

J(q) = J(q∗).

(ii) Deduce necessary conditions on q∗ = (α∗, k∗(·)).
We shall call such the q∗ the optimal parameter and y(q∗) the corresponding optimal
state.
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3.1. Existence of optimal parameters
The strong continuity of the map q → y(q) : P → W (0, T ) is crucial to solve

the problems i) and ii). In this subsection we shall solve i) under the conditions
that P1

ad is compact in R and P2
ad is bounded and closed in C1[0, T ].

Theorem 3.1. The map q → y(q) : P → W (0, T ) is continuous. That is,
y(qm) → y(q) in W (0, T ) as qm = (αm, km(·)) → q = (α, k(·)) in R×C1[0, 1].

Proof. Suppose that qm = (αm, km(·)) → q = (α, k(·)) in P , i.e., αm → α

in R and km(·) → k(·) in C1[0, T ]. Since the imbedding C1[0, T ] ↪→ L1(0, T )
is compact, there exists a subsequence of {km} written again by {km} such that
km(·) → k(·) in L1(0, T ). Let ym = y(qm) be the weak solutions of (3.1) with
α = αm and k(·) = km(·). We denote by z = y(q) the weak solution y of (3.1) for
notational convenience. We put ym − z = φm, then φm satisfies

(3.5)




∂2φm

∂t2
− (α0 + α2)∆φm

−
∫ t

0
k(t− s)div

(
G(∇ym(s, x))−G(∇z(s, x))

)
ds

= (α2
m−α2)∆ym+

∫ t

0
(km(t−s)−k(t−s))div G(∇ym(s, x))ds in Q,

φm = 0 on Σ,

φm(0, x) = 0,
∂φm

∂t
(0, x) = 0 in Ω

in the weak sense. In what follows, we will omit the variables s and/or x in the
representation y(s, x) such as y(s) or more simply as y whenever no confusion.
Also we use the convolution operation ∗ defined by f ∗ g(t) =

∫ t
0 f(t− s)g(s)ds.

Now we put

(3.6) (α2
m − α2)∆ym + (km − k) ∗ div G(∇ym) = Fm.

By Theorem 2.2 and Remark 2.2 the functions Fm ∈ L2(0, T ;L2(Ω)) and are
uniformly bounded in L2(0, T ;L2(Ω)). We shall derive the estimations on φm. By
multiplying φ′m(t) to the weak form of the equation in (3.5) we have

(3.7)
(φ′′m(t), φ′m(t)) + (α0 + α2)(∇φm(t),∇φ′m(t))

+(k ∗ (G(∇φm)(t)−G(∇z)) (t),∇φ′m(t)) = (Fm(t), φ′m(t)).

We set β = α0+α2 and Gm = G(∇ym)−G(∇z) for simplicity. Since k ∈ C1[0, T ],
we have
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(k ∗ Gm(t),∇φ′m(t)) =
d

dt
(k ∗ Gm(t),∇φm(t))

−k(0)(Gm(t),∇φm(t)) − (k′ ∗ Gm(t),∇φm(t)).

Then wee see that (3.7) is rewritten as

(3.8)
1
2
d

dt

[
β(∇φm(t),∇φm(t)) + |φ′m(t)|2 + 2(k ∗ Gm(t),∇φm(t))

]

= (Fm(t), φ′m(t)) + k(0)(Gm(t),∇φm(t)) + (k′ ∗ Gm(t),∇φm(t)).

Let ε > 0 be a positive real number. We set k0 = ‖k‖C[0,T ] and k1 = ‖k′‖C[0,T ].
By (2.4) and Schwarz inequality, we have |Gm(t)| ≤ 2|∇ym −∇z| = 2|∇φm| and

(3.9)

∣∣∣(2k ∗ Gm(t),∇φm(t))
∣∣∣ ≤ 2k0|∇φm(t)|

∫ t

0

|∇φm(s)|ds

≤ ε|∇φm(t)|2 + c(ε)
∫ t

0

|∇φm(s)|2ds

for some c(ε) > 0. Also we have by Schwarz inequality that

(3.10)




∣∣∣
∫ t

0
2k(0)(Gm,∇φm)ds

∣∣∣ ≤ 2k0

∫ t

0
|∇φm|2ds,

∣∣∣
∫ t

0
(2k′ ∗ Gm,∇φm)ds

∣∣∣≤2k1

(∫ t

0
|∇φm|ds

)2

≤2k1T

∫ t

0
|∇φm|2ds,

∣∣∣
∫ t

0
2(Fm, φ

′
m)ds

∣∣∣ ≤ ‖Fm‖2
L2(0,T ;L2(Ω)) +

∫ t

0
|φ′m|2ds.

By integrating (3.8) on [0, t] and using the estimates (3.9), (3.10) and 0 initial
conditions on φm, we can obtain the following inequality

(3.11)
|φ′m(t)|2 + β|∇φm(t)|2 ≤ ε|∇φm(t)|2 + ‖Fm‖2

L2(0,T ;L2(Ω))

+ (2k0 + c(ε) + 2k1T )
∫ t

0

|∇φm|2ds+
∫ t

0

|φ′m|2ds.

By choosing ε = β
2 in (3.11), we can find a K > 0 such that

(3.12) |φ′m(t)|2+ |∇φm(t)|2 ≤ K‖Fm‖2
L2(0,T ;L2(Ω)) +K

∫ t

0
(|φ′m|2 + |∇φm|2)ds.

Thus by applying the Bellman-Gronwall’s inequality, we have from (3.12) that

(3.13) |∇φm(t)|2 + |φ′m(t)|2 ≤ C‖Fm‖2
L2(0,T ;L2(Ω)), ∀t ∈ [0, T ]



Identification Problems for Viscoelastic Materials with Long Memory 2391

for some C > 0. Since

(3.14)
‖Fm‖L2(0,T ;L2(Ω)) ≤ |α2

m − α2|‖∆ym‖L2(0,T ;L2(Ω))

+ ‖km − k‖L1(0,T )‖divG(∇ym)‖L2(0,T ;L2(Ω))

and {∆ym} and {divG(∇ym)} are in L2(0, T ;L2(Ω)) by Theorem 2.2, we see that
‖Fm‖L2(0,T ;L2(Ω)) → 0 as m → ∞ by qm → q in P . Therefore, it follows from
(3.13) that we can assert that

(3.15) (ym(t), y′m(t)) → (z(t), z′(t)) strongly in H1
0 (Ω)×L2(Ω), ∀t ∈ [0, T ]

Since ym and z are strong solutions, we can verify by (3.15) via (2.7) that

y′′m → z′′ strongly in L2(0, T ;H−1(Ω)).

Therefore
ym → z strongly in W (0, T ).

This implies that y(qm) → y(q) strongly in W (0, T ) as qm → q in P . This proves
Theorem 3.1.

The following existence theorem of an optimal parameter q∗ = (α∗, k∗(·)) over
the admissible set Pad follows from Theorem 3.2.

Theorem 3.2. Let Pad = P1
ad × P2

ad. If P1
ad is compact in R and P 2

ad is
bounded and closed in C 1[0, T ], then there exists at least one optimal parameter
q∗ = (α∗, k∗(·)) ∈ Pad for the cost (3.3).

Proof. Let {qn = (αn, kn(·))} be the minimizing sequence such that limn→∞
J(qn) = infq∈Pad

J(q). Since P1
ad is compact and P2

ad is bounded and closed in
C1[0, T ], we can find a subsequence {qnl

} = {(αnl
, knl

(·))} of {qn} and q∗ =
(α∗, k∗(·)) ∈ Pad such that αnl

→ α∗ ∈ P1
ad in R and k(·)nl

→ k∗(·) ∈ P2
ad in

L1(0, T ) as l → ∞. Then by Theorem 3.1 and the lower semi-continuity of costs,
the limit q∗ = (α∗, k∗(·)) is shown to be an optimal parameter.

3.2. Gâteaux differentiability of solution map
In the proof of necessary conditions to solve the problem ii) we utilize the

Gâteaux differential of y(q) with respect to q ∈ P . Thus it needs to estimate
quotients zλ = (y(qλ) − y(q∗))/λ in the space W (0, T ), where qλ = q∗ + λ(q −
q∗), λ ∈ [−1, 1], λ �= 0 and q, q∗ ∈ P . We set yλ = y(qλ) and y∗ = y(q∗) for
simplicity.

Let us begin to prove the Gâteaux differentiability of the solution map q → y(q)
of P into W (0, T ).
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Theorem 3.3. The map q → y(q) of P into W (0, T ) is Gâteaux differentiable.
That is, for fixed q = (α, k(·)) and q∗ = (α∗, k∗(·)) the Gâteaux derivative z =
Dy(q∗)(q − q∗) of y(q) at q = q∗ in the direction q − q∗ exists in W (0, T ) and it
is a unique weak solution of the following problem

(3.16)




∂2z

∂t2
− (α0 + α∗2)∆z

−
∫ t

0

k∗(t− s)div
{ ∇z(s, x)√

1 + |∇y∗(s, x)|2

−∇y∗(s, x) · ∇z(s, x)
(1 + |∇y∗(s, x)|2) 3

2

∇y∗(s, x)
}
ds

= 2α∗(α− α∗)∆y∗ + (k − k∗) ∗ div G(∇y∗) in Q,

z = 0 on Σ,

z(0, x) = 0,
∂z

∂t
(0, x) = 0 in Ω.

Proof. For fixed q and q∗ we set qλ = (αλ, kλ(·)) = q∗ + λ(q − q∗). We
recall the simplified notations yλ = y(qλ) and y∗ = y(q∗) corresponding to given
parameters qλ and q∗, respectively. Then qλ ∈ P and |qλ − q∗| = |λ||q − q∗| → 0
as λ→ 0. Hence by Theorem 3.1 we have

(3.17) lim
λ→0

yλ = y∗ in C([0, T ];H1
0(Ω)).

We set zλ = λ−1(yλ − y∗), λ �= 0. Then zλ solves the following problem in the
weak sense:

(3.18)




∂2zλ
∂t2

− (α0 + α∗2)∆zλ −
∫ t

0
kλ(t− s)

1
λ

div
(
G(∇yλ) −G(∇y∗)

)
ds

= (2α∗(α− α∗) + λ(α− α∗)2)∆yλ + (k − k∗) ∗ div G(∇y∗) in Q,

zλ = 0 on Σ,

zλ(0, x) = 0,
∂zλ
∂t

(0, x) = 0 in Ω.

We put

Fλ = (2α∗(α− α∗) + λ(α− α∗)2)∆yλ + (k − k∗) ∗ div G(∇y∗).
Then by Theorem 2.2, we see that Fλ ∈ L2(0, T ;L2(Ω)) and {Fλ}λ∈[−1,1] is in
L2(0, T ;L2(Ω)). We set β∗ = α0 + α∗2 and

Gλ =
1
λ

(G(∇yλ) −G(∇y∗))
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for simplicity. Then as in the proof of Theorem 3.1, we can deduce that for each
t ∈ [0, T ], zλ(t) satisfies

(3.19)

β∗|∇zλ(t)|2 + |z′λ(t)|2

= −2
∫ t

0
(k′λ ∗ Gλ,∇zλ)ds+ 2(kλ ∗ Gλ(t),∇zλ(t))

− 2
∫ t

0

(kλ(0)Gλ,∇zλ)ds+ 2
∫ t

0

(Fλ, z
′
λ)ds.

The kernel terms of (3.19) can be estimated as

|Gλ(t)| =
∣∣∣G(∇yλ(t)) −G(∇y∗(t))

λ

∣∣∣ ≤ 2|∇zλ(t)|.(3.20)

Then we can see that (3.19), (3.20) imply

(3.21) |∇zλ(t)|2 + |z′λ(t)|2 ≤ K

∫ t

0
(|∇zλ|2 + |z′λ|2)ds+K‖Fλ‖2

L2(0,T ;L2(Ω))

for some K > 0. Hence by applying the Gronwall’s inequality to (3.21), we have

(3.22) |∇zλ(t)|2 + |z′λ(t)|2 ≤ K1‖Fλ‖2
L2(0,T ;L2(Ω)) ≤ K2

2 <∞,

for some K1 > 0 and some K2 > 0 independent of λ. Therefore there exist a
z ∈W (0, T ) and a sequence {λk} ⊂ (−1, 1) tending to 0 such that

(3.23)




zλk
→ z weakly star in L∞(0, T ;H1

0(Ω)) as k → ∞,

z′λk
→ z′ weakly star in L∞(0, T ;L2(Ω)) as k → ∞,

z(0) = 0, z′(0) = 0.

Let us prove that

kλk
∗ Gλk

→ k∗ ∗ div
{ ∇z√

1 + |∇y∗|2 − ∇y∗ · ∇z(
1 + |∇y∗|2) 3

2

∇y∗
}

weakly in L2(0, T ;H−1(Ω)).(3.24)

For all φ ∈ L2(0, T ;H1
0(Ω)) we have

(3.25)
∫ T

0
(kλk

∗Gλk
,∇φ)dt =

∫ T

0
((kλk

−k∗)∗Gλk
,∇φ)dt+

∫ T

0
(k∗∗Gλk

,∇φ)dt.

Since kλk
− k∗ = λk(k− k∗), the first term of the right hand side of (3.25) can be

written as

(3.26)
∫ T

0
((k − k∗) ∗

(
G(∇yλk

) −G(∇y∗)
)
,∇φ)dt.
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We can easily verify that (3.26) can be bounded by

‖k − k∗‖C[0,T ]‖∇yλk
−∇y∗‖L2(0,T ;L2(Ω))‖∇φ‖L2(0,T ;L2(Ω))

which tends to 0 as λk → 0. For simplicity of calculations, we introduce K(∇·) :
H1

0 (Ω) → L∞(Ω) by

[K(∇φ)] (x) =
1√

1 + |∇φ(x)|2 , a.e. x ∈ Ω, ∀φ ∈ H1
0 (Ω).

Then clearly ‖K(∇φ)‖L∞(Ω) ≤ 1 for all φ ∈ H1
0 (Ω) and

(3.27) |K(∇φ)−K(∇ϕ)| ≤ |∇ψ −∇ϕ|, ∀ψ, ϕ ∈ H1
0 (Ω).

The function Gλk
is decomposed as

(3.28)

Gλk

=
1
λk

(K(∇yλk
)∇yλk

−K(∇y∗)∇y∗))

= K(∇yλk
)∇zλk

+
1
λk

(K(∇yλk
) −K(∇y∗))∇y∗

= K(∇y∗)∇z+K(∇y∗)(∇zλk
−∇z)+(K(∇yλk

)−K(∇y∗))∇zλk

+
1
λk

(K(∇yλk
) −K(∇y∗))∇y∗

≡ K(∇y∗)∇z + G1
λk

+ G2
λk

+ G3
λk
.

By (3.23), we have

(3.29)
∫ T

0
(k∗ ∗ G1

λk
,∇φ)dt→ 0

as λk → 0. By (3.27) and
∣∣∣((K(∇yλk

) −K(∇y∗)
)
∇zλk

,∇φ)
∣∣∣ ≤ 2K2|∇φ| ∈ L1(0, T )(3.30)

by (3.22), it follows by applying Lebesgue dominated convergence theorem that

(3.31)
∫ T

0
(k∗ ∗ G2

λk
,∇φ)dt→ 0

as λk → 0. We shall prove

(3.32)
∫ T

0
(k∗ ∗ G3

λk
,∇φ)dt→ −

∫ T

0
(k∗ ∗ (K(∇y∗)3∇y∗ · ∇z)∇y∗,∇φ)dt
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as λk → 0. To prove (3.32) we will employ the following simplified notation

Hi(φ, ψ)=
φxi +ψxi√

1+|∇φ|2
√

1+|∇ψ|2(
√

1+|∇φ|2+
√

1+|∇ψ|2) ,(3.33)

where φ, ψ ∈ H1
0 (Ω). Here we remark that the symbol | · | in (3.33) denotes the

absolute value of Rn. Then we can verify by direct calculations that

(3.34) |Hi(φ, ψ)−Hi(φ, φ)| ≤ C1|φxi − ψxi |,

where C1 is some positive constant. Using the above notation, we have the following
representation

(3.35)
∫ T

0
(k∗ ∗ G3

λk
,∇φ)dt = −

n∑
i=1

∫ T

0

(
k∗ ∗ (zλkxiHi(yλk

, y∗)∇y∗),∇φ
)
dt.

The i-the term of the right hand side of (3.35) can be rewritten as

(3.36)

−
∫ T

0

(
k∗ ∗ ((zλkxi − zxi)Hi(yλk

, y∗)∇y∗),∇φ
)
dt

−
∫ T

0

(
k∗ ∗ (zxi(Hi(yλk

, y∗)−Hi(y∗, y∗))∇y∗),∇φ
)
dt

−
∫ T

0

(
k∗ ∗ (zxiHi(y∗, y∗)∇y∗),∇φ

)
dt.

By (3.23) the first term of (3.36) tends to 0. The inequality (3.34) together with
(3.17) implies that

(3.37) |Hi(yλk
, y∗) −Hi(y∗, y∗)| → 0 a.e. in Q

as k → ∞. Moreover

(3.38) |zxi(Hi(yλk
, y∗) −Hi(y∗, y∗))∇y∗ · ∇φ| ≤ c|∇z||∇φ| ∈ L1(Q).

Hence from (3.37) and (3.38) the second term of (3.36) tends to 0. Thus (3.32)
is proved. From (3.25) and (3.32) the convergence (3.24) follows. Therefore it is
verified that by routine treatments as in Dautray and Lions [4], z is a unique weak
solution satisfying (3.16). Next, it remains to show the strong convergence of {zλ}
in W (0, T ). The integral terms in (3.18) and (3.16) are rewritten as

(3.39)
∫ t

0
k∗(t−s)div

(
K(∇yλ)∇zλ

)
ds−

n∑
i=1

(
k∗∗div

(
zλxiHi(yλ, y

∗)∇y∗
))

(t),
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(3.40)
∫ t

0

k∗(t−s)div
(
K(∇y∗)∇zλ

)
ds−

n∑
i=1

(
k∗∗div

(
zxiHi(y∗, y∗)∇y∗

))
(t),

respectively. Now we set the forcing term in (3.16) by

(3.41) F = 2α∗(α− α∗)∆y∗ + (k − k∗) ∗ div G(∇y∗).
If we put

δλ = −
n∑

i=1

k∗ ∗ div
(
zxi(Hi(yλ, y

∗) −Hi(y∗, y∗))∇y∗
)
,(3.42)

ελ = Fλ − F, ηλ = δλ + ελ,(3.43)

then we can assert that δλ, ελ → 0 in H1(0, T ;H−1(Ω)) as λ → 0. Subtracting
(3.18) from (3.16) and using the above notations (3.42) and (3.43), we see that the
difference and we put φλ = zλ − z satisfies

(3.44)




∂2

∂t2
φλ − (α0 + α∗2)∆φλ

−
∫ t

0
k∗(t− s)div

(
∇zλK(∇yλ)−∇zK(∇y∗)

)
ds

+
n∑

i=1

k∗ ∗ div(φλxiHi(yλ, y
∗)∇y∗) = ηλ in Q,

φλ = 0 on Σ,

φλ(0, x) = 0,
∂

∂t
φλ(0, x) = 0 in Ω,

in the weak sense. To estimate φλ, we utilize the energy equality for (3.44) as in
the proof of (3.13). Then φλ satisfies

(3.45)

|φ′λ(t)|2 + β∗|∇φλ(t)|2 = −2
∫ t

0

〈η′λ, φλ〉ds+ 2〈ηλ(t), φλ(t)〉
+ 2(k∗ ∗

(
∇zλK(∇yλ) −∇zK(∇y∗)

)
(t),∇φλ(t))

− 2
∫ t

0
k(0)(∇zλK(∇yλ) −∇zK(∇y∗),∇φλ)ds

− 2
∫ t

0
(k∗′ ∗

(
∇zλK(∇yλ)−∇zK(∇y∗)

)
,∇φλ)ds

− 2
∑n

i=1(k
∗ ∗

(
φλxiHi(yλ, y

∗)∇y∗
)
(t),∇φλ(t))

+ 2
∑n

i=1

∫ t

0
k∗(0)(φλxiHi(yλ, y

∗)∇y∗),∇φλ)ds

+ 2
∑n

i=1

∫ t

0
(k∗′ ∗

(
φλxiHi(yλ, y

∗)∇y∗
)
,∇φλ)ds.
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The left hand side of (3.45) is rewritten as

(3.46)

4∑
i=1

Ψi
λ(t) + 2(k∗ ∗ (∇φλK(∇yλ))(t),∇φλ(t))

− 2
∫ t

0
k(0)(∇φλK(∇yλ),∇φλ)ds

− 2
∫ t

0
(k∗′ ∗

(
∇φλK(∇yλ)

)
,∇φλ)ds

− 2
n∑

i=1

(k∗ ∗ (φλxiHi(yλ, y
∗)∇y∗)(t),∇φλ(t))

+ 2
n∑

i=1

∫ t

0
k∗(0)(φλxiHi(yλ, y

∗)∇y∗,∇φλ)ds

+ 2
n∑

i=1

∫ t

0

(k∗′ ∗
(
φλxiHi(yλ, y

∗)∇y∗
)
,∇φλ)ds,

where

Ψ1
λ(t) = −2

∫ t

0
〈η′λ, φλ〉ds+ 2〈ηλ(t), φλ(t)〉,

Ψ2
λ(t) = 2(k∗ ∗

(
∇zK(∇yλ) −∇zK(∇y∗)

)
(t),∇φλ(t)),

Ψ3
λ(t) = −2

∫ t

0
(k∗(0)(∇zK(∇yλ) −∇zK(∇y∗),∇φλ)ds,

Ψ4
λ(t) = −2

∫ t

0
(k∗′ ∗

(
∇zK(∇yλ)−∇zK(∇y∗)

)
,∇φλ)ds.

We put

Sλ(t) =
4∑

i=1

|Ψi
λ(t)|.

Now we use the same symbol Hi(ψ, φ) for ψ, φ ∈ H1
0 (Ω) by the L∞(Ω) function

given by [
Hi(ψ, φ)

]
(x) = Hi(ψ(x), φ(x)) a.e. x ∈ Ω.

Then, in the above sense we have

(3.47)
∣∣∣(φλxi(t)Hi(yλ, y

∗)∇y∗(t),∇φλ(t))
∣∣∣ ≤ c|∇φλ(t)|2, ∀t ∈ [0, T ],

where c > 0. Therefore, by (3.46) and (3.47), we can deduce from (3.45) the
following inequality

|φ′λ(t)|2 + |∇φλ(t)|2 ≤ C1Sλ(t) +C2

∫ t

0
|∇φλ|2ds,(3.48)
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where C1 and C2 are some positive constants. Hence by the Bellman-Gronwall’s
inequality, it follows that

|φ′λ(t)|2 + |∇φλ(t)|2 ≤ C1Sλ(t) +C1C2 exp(C2T )
∫ t

0

Sλ(s)ds.(3.49)

By (3.23), we can find a sequence {λk} ⊂ (−1, 1) tending to 0 such that

Sλk
(t) → 0 as λk → 0,(3.50)

|Sλk
(t)| ≤ C <∞ ∀t ∈ [0, T ].(3.51)

Therefore the inequality (3.49) together with (3.50) and (3.51) implies

(3.52) (φλk
(t), φ′λk

(t)) → 0 strongly in H1
0 (Ω)× L2(Ω).

With (3.44) and (3.52) we have zλk
→ z in W (0, T ), so that by the uniqueness of

weak solutions

(3.53) zλ → z strongly in W (0, T )

as λ→ 0. This completes the proof.

Theorem 3.3 implies that the cost J(q) is Gâteaux differentiable at q∗ in the
direction q − q∗ and the optimality condition is rewritten by

(3.54) (Cy(q∗) − zd, Cz)M ≥ 0, ∀q ∈ Pad,

where z = Dy(q∗)(q − q∗) and zd ∈M .
We shall consider the following case of distributive and terminal values obser-

vations. That is, we set M = L2(0, T ;L2(Ω))×L2(Ω), Cy(q) = (y(q), y(q;T )) ∈
L2(0, T ;L2(Ω))× L2(Ω) for q ∈ P , and the cost is given by

(3.55) J(q) = ‖y(q)− z1
d‖2

L2(0,T ;L2(Ω)) + |y(q; T )− z2
d |2, q ∈ Pad,

where z1
d ∈ L2(0, T ;L2(Ω)) and z2

d ∈ L2(Ω).
To give necessary conditions on the above observation, we need to construct a

suitable adjoint system. However, in the representation of formal adjoint system the
well-posedness cannot be verified by the integral kernel part of it and the presence
of L2(0, T ;H−1(Ω))-valued forcing terms. Thus we will use transposition method
due to Lions and Magenes [11] to avoid these difficulties.

3.3. Transposition and necessary conditions
Let g ∈ L2(0, T ;L2(Ω)). Then by Remark 2.1 via Theorem 2.1, we have a

unique weak solution φ ∈W (0, T )∩ C([0, T ];H 1
0(Ω)) ∩C1([0, T ];L2(Ω)) of
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(3.56)




∂2ψ

∂t2
− (α0 + α∗2)∆ψ

−
∫ t

0
k∗(t− s)div

{ ∇ψ(s, x)√
1 + |∇y∗(s, x)|2

−∇y∗(s, x) · ∇ψ(s, x)(
1 + |∇y∗(s, x)|2) 3

2

∇y∗(s, x)
}
ds = g in Q,

ψ = 0 on Σ,

ψ(0, x) = 0,
∂ψ

∂t
(0, x) = 0 in Ω.

Therefore we can define the space

X ≡ {ψ|ψ satisfies (3.56) with g ∈ L2(0, T ;L2(Ω))}.
It is seen in Theorem 2.1 thatX ⊂W (0, T )∩C([0, T ];H1

0(Ω))∩C1([0, T ];L2(Ω)).
We give a inner product (·, ·)X on X by (ψ1, ψ2)X = (g1, g2)L2(0,T ;L2(Ω)), where
ψ1, ψ2 are the weak solutions of (3.56) for given g = g1, g2 ∈ L2(0, T ;L2(Ω)),
respectively. We can see that (X, (·, ·)X) is a Hilbert space. Also the map

Θ : ψ → ψ′′ − (α0 + α∗2)∆ψ

−
∫ t

0
k∗(t− s)div

{ ∇ψ√
1 + |∇y∗|2 − ∇y∗ · ∇ψ(

1 + |∇y∗|2) 3
2

∇y∗
}
ds

of X onto L2(0, T ;L2(Ω)) is an isomorphism. Hence for each continuous linear
functional L : X → R, there exists uniquely a p = pL ∈ L2(0, T ;L2(Ω)) such that

∫ T

0
(p(t),Θψ(t))dt= L(ψ), ∀ψ ∈ X.(3.57)

For h ∈ L1(0, T ;H−1(Ω)), p0 ∈ L2(Ω) and p1 ∈ H−1(Ω), let us define the
functional L = L(h, p0, p1) by

(3.58) L(ψ) =
∫ T

0
〈h(t), ψ(t)〉dt+ 〈p1, ψ(T )〉 − (p0, ψ

′(T )).

Then this L is linear on X . Next we shall show the boundedness of L. It is easily
checked from the fact ψ ∈ X ⊂ C([0, T ];H1

0(Ω)) ∩ C1([0, T ];L2(Ω)) that

|L(ψ)| ≤ (‖h‖L1(0,T ;H−1(Ω)) + ‖p1‖H−1(Ω) + |p0|)
×(‖ψ‖C([0,T ];H1

0(Ω)) + |∇ψ(T )|+ |ψ′(T )|).
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Proposition 3.1. For h ∈ L1(0, T ;H−1(Ω)), p0 ∈ L2(Ω) and p1 ∈ H−1(Ω),
there is a unique solution p ∈ L 2(0, T ;L2(Ω)) such that



∫ T

0
(p(t),Θψ(t))dt

=
∫ T

0

〈h(t), ψ(t)〉dt+ 〈p1, ψ(T )〉 − (p0, ψ
′(T )), ∀ψ ∈ X.

It is verified that the optimality condition for the cost J(q) in (3.55) is written
as

(3.59)
∫ T

0

(y(q∗; t)− z1
d(t), z(t))dt+ (y(q∗; T )− z2

d , z(T )) ≥ 0, ∀q ∈ Pad,

where q∗ is the optimal parameter for (3.55) and z is the solution of (3.16). Hence
by Proposition 3.1, there exist a unique p ∈ L2(0, T ;L2(Ω)) satisfying

(3.60)




∫ T

0
(p(t),Θψ(t))dt

=
∫ T

0
(y(q∗; t) − z1

d(t), ψ(t))dt− (y(q∗; T )− z2
d, ψ(T )),

∀ψ such that Θψ ∈ L2(0, T ;L2(Ω)),

ψ ∈W (0, T ) ∩C([0, T ];H1
0(Ω)), ψ(0) = 0, ψ′(0) = 0.

In fact the Gâteaux derivative ψ = z = Dy(q∗)(q− q∗) belongs to X ⊂W (0, T )∩
C([0, T ];H1

0(Ω)) and

(3.61) Θψ = G(q − q∗) ∈ L2(0, T ;L2(Ω)),

where

(3.62) G(q − q∗) = 2α∗(α− α∗)∆y∗ + (k − k∗) ∗ div G(∇y∗).
If we take ψ = z = Dy(q∗)(q − q∗) in (3.60), then we have

(y(q∗) − z1
d , z)L2(0,T ;L2(Ω)) + (y(q∗; T )− z2

d, z(T ))

=
∫ T

0
(y(q∗; t) − z1

d(t), z(t))dt− (y(q∗; T )− z2
d), z(T ))

=
∫ T

0
(p(t),Θψ(t))dt =

∫ T

0
(p(t), G(q− q∗; t)) dt.

Therefore we conclude that the optimality condition (3.59) is equivalent to∫ T

0
(p(t), G(q− q∗; t))dt ≥ 0, ∀q ∈ Pad.

Hence, we have the following theorem on necessary conditions.
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Theorem 3.4. The optimal parameter q∗ for the cost (3.55) is characterized by
the two states y = y(q∗), p = p(q∗) of the following system


∂2y

∂t2
− (α0 + α∗2)∆y −

∫ t

0

k∗(t− s)div
( ∇y(s, x)√

1 + |∇y(s, x)|2
)
ds = f in Q,

y = 0 on Σ,

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) in Ω,




∫
Q
p

[
∂2ψ

∂t2
− (α0 + α∗2)∆ψ

−
∫ t

0
k∗(t− s)div

{ ∇ψ√
1 + |∇y∗|2 − ∇y∗ · ∇ψ(

1 + |∇y∗|2) 3
2

∇y∗
}
ds


 dxdt

=
∫

Q
(y(q∗)− z1

d)ψdxdt+
∫

Ω
(y(q∗; T )− z2

d)ψ(T )dx,

∀ψ such that

∂2ψ

∂t2
− (α0 + α∗2)∆ψ

−
∫ t

0
k∗(t−s)div

{ ∇ψ(s, x)√
1+|∇y∗(s, x)|2−

∇y∗(s, x) ·∇ψ(s, x)(
1+|∇y∗(s, x)|2) 3

2

∇y∗
}
ds∈L2(Q),

ψ = 0 on Σ,

ψ(0, x) = 0,
∂ψ

∂t
(0, x) = 0 in Ω,

and one inequality∫
Q
p [2α∗(α− α∗)∆y + (k − k∗) ∗ div G(∇y)]dxdt ≥ 0,

∀q = (α, k(·)) ∈ Pad.

Remark 3.1 The adjoint state p in Theorem 3.4 satisfies formally


∂2p

∂t2
− (α0 + α∗2)∆p

−
∫ T

t
k∗(s− t)div

( ∇p(s, x)√
1 + |∇y(t, x)|2 −∇y(t, x)∇y(t, x) · ∇p(s, x)

(1 + |∇y(t, x)|2) 3
2

)
ds

= y(t, x)− z1
d(t, x) in Q,

p = 0 on Σ,

p(T, x) = 0,
∂p

∂t
(T, x) = −(y(T, x)− z2

d(x)) in Ω.
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