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KOTTWITZ-RAPOPORT STRATA IN THE SIEGEL MODULI SPACES

Chia-Fu Yu

Abstract. In this note we give a survey on results concerning the Siegel moduli

spaces with parahoric level structure and the Kottwitz-Rapoport stratification,

due to many people. We also report some aspects of KR strata in higher

dimensional cases, which are obtained jointly with U. Görtz.

1. INTRODUCTION

This is the note of the talk the author gave in the conference “Géométrie

arithmétique, représentations galoisiennes et formes modulaires” held in June of

2007, at Université Paris-Nord. The main purpose of this note is to introduce the

geometry of the reduction modulo p of some Siegel modular varieties with a small

level at p.

Siegel modular varieties and Siegel modular forms are vastly investigated in the

past decades. A lot of deep results and finer properties among automorphic forms,

Galois representations, and the cohomologies were obtained. There are still many

which are in progress. In this note we limit ourselves to the geometry of the special

fiber of the Siegel moduli spaces. Studying geometry of reduction modulo p of

Siegel moduli spaces with level at p is very fundamental on its own, as this is a

direct generalization of modular curves. Another main motivation of these works is

to hope for a more direct and explicit description of the Langlands correspondence

through the geometry, especially when the ramification of associated local Galois

representations occurs.

The following are the contents of this note.
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(1) We introduce the Siegel moduli spaces with parahoric level structure and the
Kottwitz-Rapoport (KR) stratification. For further information, the reader is

referred to Chai-Norman [1, 2], de Jong [4], Kottwitz-Rapoport [14], Görtz

[6], Ngô-Genestier [15], Haines [11, 12], Tilouine [17], the author [18], and

the references therein.

(2) We describe the supersingular locus of the Siegel 3-folds with parahoric struc-
tures of paramodular type and Klingen type. We describe how to characterize

the KR strata in the moduli spaces with Iwahori level structure using geometry.

For details, references are [19, 20].

(3) We give a description of the KR strata in the Siegel 3-folds with any parahoric
level structure, their relationship under the transition maps, and their relation

with p-rank strata.

(4) We report some results on the KR strata in higher dimensional cases. Those
include a numerical characterization for KR strata, a method that enables

us to reduce some geometric problems to that on p-rank zero strata, and a

description of the supersingular KR strata in the case of genus g = 3. This
is joint work with U. Görtz.

The proof of results in (3) and (4) will be given elsewhere.

2. MODULI SPACES

2.1. Moduli spaces with parahoric level structure

Let g ≥ 1 be an integer, p a rational prime, N ≥ 3 an integer with (p,N) = 1.
Choose ζN ∈ Q ⊂ C a primitive N th root of unity and fix an embedding Q ↪→
Qp. Put I := {0, 1, . . . , g}. Let AI be the moduli space over Fp parametrizing
equivalence classes of objects

(A0
α→ A1

α→ · · · α→ Ag, λ0, λg, η),

where

• each Ai is a g-dimensional abelian variety,
• α is an isogeny of degree p,
• λ0 and λg are principal polarizations on A0 and Ag, respectively, such that

(αg)∗λg = pλ0.

• η is a symplectic level-N structure on A0 w.r.t. ζN .

Put η0 := η, ηi := α∗ηi−1 for i = 1, . . . , g, and λi−1 := α∗λi for i = g, . . . , 2. Let
Ai := (Ai, λi, ηi). Then AI parametrizes equivalence classes of objects
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(A0
α→ A1

α→ · · · α→ Ag),

where A0 ∈ Ag,1,N , and for i 6= 0,

Ai ∈ A′
g,pg−i,N := {A ∈ Ag,pg−i,N | kerλ ⊂ A[p] }.

For any non-empty subset J = {i0, . . . , ir} ⊂ J , let AJ be the moduli space over
Fp parametrizing equivalence classes of objects

(Ai0
α→ Ai1

α→ · · · α→ Air ),

where Ai0 ∈ Ag,1,N if i0 = 0, and Aij ∈ A
′
g,pg−ij ,N

for others. The moduli space

AI is the Siegel moduli space (over Fp) with Iwahori level structure, while AJ is
the Siegel moduli space with parahoric level structure of type J .

For J1 ⊂ J2, let πJ1 ,J2 : AJ2 → AJ1 be the natural projection. The transition

morphism πJ1,J2 is proper and dominant. We have

Theorem 2.1.

(1) The ordinary locus Aord
J ⊂ AJ is dense

(2) AJ is equi-dimensional of dimension g(g+ 1)/2

(3) AJ is irreducible if |J | = 1, and for |J | ≥ 2, AJ has (k1 + 1) . . .(kr + 1)
irreducible components, where kj := ij − ij−1.

(1) See Ngô-Genestier [15] and the author [18]. (2) This follows from the

flatness of the integral model; see Görtz [6]. This also follows from (1). (3) See

[18]. The case |J | = 1 is also obtained in de Jong [3].

2.2. Some results of the Siegel 3-folds with Klingen or paramodular level

structure

When g = 2, we have the following diagram of transition maps:

(2.1) AI

zzuuuuuuuuu

$$IIIIIIIII

��
A{0,1}

$$HHH
HHH

HH
H

��

A{0,2}

zzvvvvv
vvv

v

$$HHH
HHHH

HH
A{1,2}

zzvvvvv
vv

vv

��
A{0} A{1} A{2}

Note that there is an involution θA : AI → AI which sends

(A0 → A1 → · · · → Ag, λ0, λg, η) 7→ (Atg → · · · → At0, λ
−1
g , λ−1

0 , λg∗ηg).
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Therefore, one may ignore the cases A{1,2} and A{2} as they are included as A{0,1}
and A{0}. We know that A{1} = A2,p,N is a 3-dimensional, irreducible variety with
isolated singularities. Let

Λ∗
2,p,N := {A ∈ A2,p,N ; kerλ = αp × αp }.

Proposition 2.2.

(1) The singular locus Asing
{1} of A{1} is equal to Λ∗

2,p,N .

(2) When p > 2, if x ∈ Λ∗
2,p,N , then one has

A∧
{1},x ' k[[X1, X2, X3, X4]]/(X2X3 −X1X4).

Using the crystalline theory, one can show thatA∧
{1},x ' k[[X1, X2, X3, X4]]/(f)

with f ≡ X2X3 −X1X4 modulo (X1, X2, X3, X4)p. By change of variables, one
can eliminate the higher terms.

Note that the set Λ∗
2,p,N is used by Katsura-Oort [13] to construct the super-

singular locus S{0} of A2,1,N . We recall the construction as follows. For each

ξ ∈ Λ∗
2,p,N , let Sξ parametrize the isogenies (ϕ : A1 → A2) of degree p with

A1 = ξ. One has Sξ ' P1 and has a projection map pr2 : Sξ → S{0} which sends
(ϕ : A1 → A2) 7→ A2. One shows that

• The map
∐
x∈Λ∗

2,p,N
Sξ → S{0} is surjective, and there are p + 1 branches

passing through each superspecial point of S{0}.
• This induces an isomorphism

∐
x∈Λ∗

2,p,N
Sξ ' S̃{0}, where S̃{0} is the nor-

malization of S{0}.

In fact, if one considers the supersingular locus S{0,1} of A{0,1}, then the picture is

clearer. We have [19, Proposition 4.5]

(2.2) S{0,1} =


 ∐

ξ∈Λ∗
2,p,N

S ′
ξ


 ∪


 ∐

γ∈Λ2,1,N

S ′
γ


 ,

where

(2.3)
S ′
ξ = {(ϕ : A0 → A1) ∈ A{0,1} ;A1 = ξ } ' P1,

S ′
γ = {(ϕ : A0 → A1) ∈ A{0,1} ;A0 = γ } ' P1.

We call S ′
ξ a horizontal component of S{0,1}, and call S ′

γ a vertical component

of S{0,1}. If one has an isogeny ϕ : A0 → A1 of supersingular abelian surfaces,

then either A0 ∈ Λ2,1,N or A1 ∈ Λ∗
2,p,N . We have natural projections
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S{0}
pr0←−−−− S{0,1}

pr1−−−−→ S{1}.

The Katsura-Oort construction uses the projection pr0. Using the other projection
pr1, one gives a description of the supersingular locus S{1}; see [19, Theorem 4.7]
for more details.

3. LOCAL MODEL DIAGRAMS AND THE KR STRATIFICATION

3.1. Local models

Let V := Q2g
p , L0 := Z2g

p , and e1, . . . , e2g the standard basis. Let ψ be the

standard alternating pairing. One has

ψ =

(
0 Ĩg
−Ĩg 0

)
, Ĩg = anti-diag(1, . . . , 1).

Put Λ−i = Z2g
p for 0 ≤ i ≤ 2g. Let ψ0 be the standard alternating pairing on Λ0,

same as ψ on L0. Define, for each 1 ≤ i ≤ 2g, a map α : Λ−2g+i−1 → Λ−2g+i by

α(ei) = pei and α(ej) = ej if j 6= i. Let ψ−g on Λ−g be
1
p times the pull-back of

ψ0; it is a perfect pairing. We get a lattice chain

ΛI : Λ−g
α−−−−→ . . .

α−−−−→ Λ−1
α−−−−→ Λ0.

Denote by Mloc
I the local model associated to the lattice chain ΛI . It is a projective

scheme over Zp which parametrizes the objects (F−i)i∈I , where

• each F−i ⊂ Λ−i ⊗ OS is a locally free OS -submodule of rank g, locally a
direct summand,

• F0 and F−g are isotropic w.r.t. the pairings ψ0 and ψ−g, respectively, and

• α(F−i) ⊂ F−i+1 for all i ∈ I .

We write Mloc
I,Fp

for the reductionMloc
I ⊗ Fp modulo p.

3.2. Local model diagrams

Let ÃI be the moduli space over Fp parametrizing equivalence classes of objects
(A•, ξ), where A• ∈ AI and ξ : H1

DR(A•/S) ' ΛI ⊗ OS is an isomorphism of
chains which is compatible with α and preserves the polarizations up to scalars. We

have the local model diagram (see de Jong [4] and Rapoport-Zink [16]):

ÃI
ϕ

����
��

��
�� ψ

!!DD
DD

DD
DD

AI Mloc
I,Fp

,
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where ψ is the morphism that sends each object (A•, ξ) to the image ξ(ω•) of
the Hodge submodule ω• ⊂ H1

DR(A•), and ϕ is the morphism that forgets the

trivialization ξ.

Let GI be the group scheme over Zp representing the functor S 7→ Aut(ΛI ⊗
OS , [ψ0], [ψ−g]). This group acts on ÃI and Mloc

I from the left. One has that

• the morphism ψ is GI -equivalent, surjective and smooth, and
• the morphism ϕ : ÃI → AI is a GI -torsor.

We can also define the local modelMloc
J for each non-empty subset J ⊂ I , and

have the local model diagram between AJ , ÃJ and Mloc
J,Fp

as above.

3.3. The KR stratification

Consider the decomposition into GI -orbits:

Mloc
I,Fp

=
∐

x

Mloc
I,x, ÃI =

∐

x

ÃI,x.

Since ϕ is a GI -torsor, the stratification on ÃI descends to a stratification

AI =
∐

x∈AdmI(µ)

AI,x.

This is called the Kottwitz-Rapoport (KR) stratification. Here the index setAdmI(µ),
which is called the set of µ-admissible elements, is a finite subset of W̃ , the ex-

tended Weyl group for GSp2g, and µ = (1, . . . , 1, 0, . . . , 0) (with |µ| = g) is the

minuscule dominant coweight. One has

W̃ = X∗(T ) oW ⊂ A(R2g),

where T ⊂ GSp2g is the diagonal subgroup,W = W (GSp2g) the linearWeyl group,
and A(R2g) is the group of affine transformations on R2g. Let θ := (1, 2g)(2, 2g−
1) . . .(g, g+ 1). Then

W ' {σ ∈ S2g = W (GL2g) ; θσ = σθ }.

By definition,

AdmI(µ) = {x ∈ W̃ ; x ≤ tw(µ) for some w ∈ W }.

PermI(µ) = {x ∈ W̃ ⊂ A(R2g) ; 0 ≤ x(w′
i)− w′

i ≤ 1, ∀ 1 ≤ i ≤ 2g },

where w′
i = (0, . . . , 0, 1, . . . , 1) with |w′

i| = i, and ≤ is the Bruhat order on W̃ .
Kottwitz and Rapoport [14] have shown that AdmI(µ) = PermI(µ).
In fact, the set AdmI(µ) is contained in a smaller subset Waτ ⊂ W̃ , where
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• τ is the element that is less than µ and fixes the base alcove

a = {u ∈ R2g; u1+u2g = . . . ug+ug+1, 1+u1>u2g > . . .>ug+1>ug }, and

• Wa is the affine Weyl group, which is < s0, s1, . . . , sg >.

We can write down these elements explicitly:

si = (i, i+ 1)(2g + 1− i, 2g− i), i = 1, . . . , g− 1,

sg = (g, g+ 1), s0 = (−1, 0, . . . , 0, 1), (1, 2g),

τ = (0, . . . , 0, 1, . . . , 1), (1, g+ 1)(2, g+ 2) . . .(g, 2g).

We also have the following results

Proposition 3.3.

(1) Each stratum AI,x is smooth of pure dimension `(x).
(2) The p-rank function is constant on each KR stratum. Furthermore, one has

p−rank(x) =
1
2
#Fix(w),

where we write w = (ν, w) and Fix(w) := {i;w(i) = i}.

(1) This follows from the local model diagram and the dimensions of the strata

in the Mloc
I,Fp
; see Haines [11]. (2) See Ngô-Genestier [15].

3.4. Number of µ-admissible elements

We find the following formula in Haines [10, p.1272]:

Ng := #AdmI(µ, g) =
g∑

d=0

Ng−d
g ,

where Ng−d
g is the number of x with p-rank=g − d:

Ng−d
g =

(
g

d

)
2g−d

d∑

k=0

(
d

k

)
2kak .

Here a0 = 1 and for n ≥ 1, an := #{σ ∈ Sn ; σ(i) 6= i ∀ i }. One also has the

formula 1 +
∑n

k=1

(
n

k

)
ak = n!. From these, we get
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n 0 1 2 3 4

an 1 0 1 2 9

g = 2
p-rank 0 1 2 total

# 5 4 4 13

g = 3
p-rank 0 1 2 3 total

# 29 30 12 8 79

g = 4
p-rank 0 1 2 3 4 total

# 233 232 120 32 16 633

4. KR STRATA IN SIEGEL 3-FOLDS WITH PARAHORIC LEVEL STRUCTURE

4.1. The Iwahori case

The following are the elements (called KR-types) in the set Adm(µ) together
with the Bruhat order.

Put Admi(µ) := {x ∈ Adm(µ); p-rank(x) = i }. We have

Adm2(µ) = {s0s1s0τ, s1s0s2τ, s2s1s2τ, s0s2s1τ},

Adm1(µ) = {s0s1τ, s1s2τ, s2s1τ, s1s0τ},

Adm0(µ) = {τ, s1τ, s0τ, s2τ, s0s2τ}.

(4.1)

For each 0 ≤ f ≤ 2, let AfI ⊂ AI (resp. A
≤f
I ⊂ AI ) be the subvariety consisting

of objects with p-rank f (resp. p-rank less or equal to f ). We conclude (see [20])

• The p-rank stratum A1
I ⊂ A

≤1
I is not dense. This implies that p-rank strata

do not form a stratification on AI .
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• The supersingular locus SI ⊂ AI consists of one-dimensional components
and two-dimensional components. This rules out the possibility of equi-

dimensionality of p-rank strata.

• The morphism SI → S{0} is not finite. This limits the method of using p-adic
monodromy to conclude an irreducibility result for p-rank strata in AI ; see
[20] for more details.

4.2. Geometric characterization for KR strata

Let a = (A0 → A1 → A2) ∈ AI (k). One wants to determine the KR-type
KR(a) of a in Adm(µ). Let (M2 → M1 → M0) be the chain of de Rham
cohomology groups, and let ωi ⊂M i be the Hodge filtration. Put

(4.2) G0 := ker(A0 → A1), G1 := ker(A1 → A2).

From the Dieudonné theory, we have

(4.3) ωi/α(ωi+1) = LieGi∗, M i/ωi + α(M i+1) = Lie(GDi ).

Define

(4.4) σi(a) := dimωi/α(ωi+1), σ′i(a) := dimM i/ωi + α(M i+1).

Clearly, the invariants (σi, σ′i), i = 0, 1, characterize the KR-types inAdm1(µ)∪
Adm2(µ) because if (G0, G1) 6= (αp, αp) then the group ker(A0 → A2) is deter-
mined by (G0, G1), which is determined by (σi, σ′i).

Here is the correspondence:

p-rank(a) 2 2 2 2 1 1 1 1

(σ0(a), σ′
0(a)) (0, 1) (0, 1) (1, 0) (1, 0) (0, 1) (1, 0) (1, 1) (1, 1)

(σ1(a), σ′
1(a)) (0, 1) (1, 0) (0, 1) (1, 0) (1, 1) (1, 1) (1, 0) (0, 1)

KR(a) s0s1s0τ s0s2s1τ s1s0s2τ s2s1s2τ s0s1τ s1s2τ s2s1τ s1s0τ

Note that when the point a is supersingular the invariant (σi(a), σ′i(a)) is (1, 1)
for i = 0, 1, but there are 5 such KR strata. We define a new invariant:

σ02(a) := ω0/α
2(ω2), σ′02(a) := dimM0/ω0 + α2(M2),

where α2 : M2 →M0 is the composition. We get

p-rank(a) 0 0 0 0

(σ0(a), σ′0(a)) (1, 1) (1, 1) (1, 1) (1, 1)
(σ1(a), σ′1(a)) (1, 1) (1, 1) (1, 1) (1, 1)

(σ02(a), σ′02(a)) (1, 1) (1, 2) (2, 1) (2, 2)
KR(a) s0s2τ s0τ s2τ s1τ , τ
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Note that unlike the invariants (σi, σ′i), the invariant (σ02, σ
′
02) does not deter-

mine the isomorphism classes of finite subgroups ker(A0 → A2); the latter has
finer information than the invariant (σ02, σ

′
02). Now it remains to distinguish s1τ

and τ . For this, we study the supersingular locus SI of AI .
Suppose that a = (A0 → A1 → A2) ∈ As1τ , that is, (σ02(a), σ′02(a)) = (2, 2).

Then from the description of SI (see [20]), one shows that

a ∈ Aτ ⇐⇒ A1 ∈ Λ∗
2,p,N .

Let A0 be any superspecial point, A0 → A1 an isogeny of degree p, andM1 ⊂M0

their Dieudonné modules. Then we have

A1 ∈ Λ∗
2,p,N ⇐⇒ In M0 = M0/pM0, 〈M1, VM1〉 = 0.

Translating this property in terms of chains of de Rham cohomology groups, we

have

Lemma 4.1. Let a = (A•) ∈ As1τ and M• the chain of de Rham cohomology

groups. Then KR(a) = τ ⇐⇒ 〈α(M1), α(ω1)〉0 = 0.

This completes the geometric characterization of KR strata.

4.3. KR strata under the transition maps

Recall that we have

AI =
∐

x∈AdmI(µ)

AI,x, AdmI(µ) ⊂ Waτ, Wa =< s0, . . . , sg >,

AJ =
∐

x∈AdmJ(µ)

AJ,x, AdmJ(µ) ⊂ WJ\W̃/WJ ,

where AdmJ(µ) is the image of AdmI(µ) in WJ\Waτ/WJ ⊂ WJ\W̃/WJ and

WJ =< si | i 6∈ J >, a finite group. In the situation where the genus g = 2, we
consider the cases J = {0, 1, 2}, {0, 1}, {0, 2}, {1}, or {0} as mentioned before.

For x ∈ AdmI(µ), let

[x]J = {y ∈ AdmI(µ) | [y] = [x] in WJ\Waτ/WJ }.

Let A[x]J be the corresponding KR stratum in AJ , regarding [x]J as an element in
WJ\W̃/WJ .

(1) J = {0, 1} (Klingen level) and WJ =< s2 >. Using τs2 = s0τ , we com-

pute that
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[τ ]J = {τ, s2τ, s0τ, s02τ }, dim=1,

[s1τ ]J = {s1τ, s10τ, s21τ }, dim=2,

[s12τ ]J = {s12τ, s120τ, s212τ }, dim=3,

[s01τ ]J = {s01τ, s010τ, s201τ }, dim=3.

We have

Theorem 4.2.

(i) There are 2 ordinary irreducible components; they are (properly) contained
in A[s01τ ]J and A[s12τ ]J respectively.

(ii) There are 3 p-rank one irreducible components; they are (properly) contained
in A[s1τ ]J , A[s01τ ]J and A[s12τ ]J respectively.

(iii) The closure A[s1τ ]J is a smooth surface, which is the intersection of A[s01τ ]J

and A[s12τ ]J .

(iv) The stratum A[τ ]J consists of “horizontal” components of the supersingular

locus SJ (see (2.3)).
(v) The intersection SJ ∩ A[s1τ ]J consists of open “vertical” components of SJ

(see (2.3)).

(vi) The union A[s01τ ]J ∪ A[s12τ ]J is the smooth locus of AJ .

Question. Is π{0},J : A[s1τ ]J → A
non−ord
{0} the blow-up of Anon−ord

{0} at the

singular (superspecial) points? We expect it has the affirmative answer.

(2) J = {0, 2} (Siegel parahoric level) and WJ =< s1 >. Using τs1 = s1τ ,

we compute that

[τ ]J = {τ, s1τ }, dim=0, H2 = αp × αp,

[s2τ ]J = {s2τ, s12τ, s21τ }, dim=2, H2(η) = µp × αp,

[s0τ ]J = {s0τ, s10τ, s01τ }, dim=2, H2(η) = Z/p× αp,

[s02τ ]J = {s02τ, s201τ, s120τ }, dim=3, H2(η) = Z/p× µp,

[s212τ ]J = {s212τ }, dim=3, H2 = µp × µp,

[s010τ ]J = {s010 }, dim=3, H2 = Z/p× Z/p.

Here H2(η) means ker(A0,η → A2,η) for a generic point η of this KR stratum.
We have
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Theorem 4.3.

(i) There are 3 ordinary irreducible components. Two areA[s212τ ]J andA[s010τ ]J ,

and the other is properly contained in the stratum A[s02τ ]J .

(ii) There are 2 p-rank one irreducible components. They are properly contained
in A[s0τ ]J and A[s2τ ]J , respectively.

(iii) The supersingular locus SJ has pure dimension 2. It is contained in the
3-dimensional closure A[s02τ ]J .

(iv) The zero dimensional stratum A[τ ]J consists of points (A0
F→ A

(p)
0 ), where

A0 is superspecial.

(v) The union A[s212τ ]J ∪ A[s010τ ]J ∪ A[s02τ ]J is the smooth locus of AJ .

In fact, in the module space AI with Iwahori level structure, we have

SI = As021τ ∩ As102τ .

These two components are mapped, through the transition map πJ,I , onto the com-

ponent A[s02τ ]J .

(3) J = {1} (paramodular level) and WJ =< s0, s2 >. Using τs0 = s2τ and

τs2 = s0τ , we compute that

[τ ]J = {τ, s0τ, s2τ, s02τ }, dim=0,

[s1τ ]J = { the rest }, dim=3.

We have

Theorem 4.4.

(i) There is 1 ordinary irreducible component.

(ii) There is 1 p-rank one irreducible component.

(iii) The supersingular locus has pure dimension 1. Each component is isomorphic
to P1. The intersection SJ ∩ A[s1τ ]J is the smooth locus of SJ .

(iv) The zero dimensional stratum A[τ ]J is the singular locus of AJ , also the
singular locus of SJ , which is equal to the set Λ∗

2,p,N .

(v) The stratum A[s1τ ]J is the smooth locus.

(4) J = {0} (smooth base) and WJ =< s1, s2 >. We compute that [τ ]J is
everything. The whole moduli space A{0} is a single KR stratum.
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5. SOME ASPECTS IN HIGHER DIMENSIONAL CASES (JOINT WITH ULRICH GÖRTZ)

In this section we will restrict ourselves to the Iwahori level case, but for higher

genus.

5.1. Numerical characterization

Let a = (A0 → · · · → Ag) ∈ AI(k). Let

M• : M−g →M−g+1 → · · · →M0, V M• : VM−g → VM−g+1 → · · · → VM0.

be the associated chain of Dieudonné modules. Then we have

KR(a) = inv(M•, VM•) ∈ Iw\GSp2g(L)/Iw ' W̃ ,

where L = FracW (k), Iw is the standard Iwahori open compact subgroup (whose

reduction mod p is the Borel subgroup B4 of upper triangular matrices in GSp2g),

and W̃ is the extended Weyl group of GSp2g.

Another way to think about KR types is as follows. Let

M• : M−g →M−g+1 → · · · →M0

be the chain of de Rham cohomology groups, together with Hodge filtrations. We

ignore the F and V structures, and just consider the isomorphism classes of these

chains of vector spaces over k, together with Hodge filtration as subspaces. Then

the isomorphism classes give rise to the KR types.

Just as flag varieties, on the one hand, we have a group-theoretic description for

the cell decomposition (coming from the Bruhat decomposition). On the other hand,

we use the incidence relation to construct the Schubert cells. The latter description

is used to compute the Chow rings of flag varieties in the intersection theory.

Definition. Let a = (A0 → · · · → Ag) ∈ AI(k) and let M−g → M−g+1 →
· · · →M0 be the chain of de Rham cohomologies with Hodge filtration ω−i ⊂M−i.

Let αi,j : M−j →M−i be the composition for 0 ≤ i < j ≤ g. Define

σij(a) := dimω−i/αij(ω−j), σ′ij(a) := dimM−i/ω−i + αij(M−j).

For 0 ≤ i, j ≤ g, define

dij(a) := dimα0i(ω−i) + α0j(M−j)⊥.

Clearly, the function

σ : a 7→ (σij(a), σ′ij(a), dij(a))
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is constant on each KR stratum. This particularly implies that the function

p− rank(a) =
g−1∑

i=0

2− σi,i+1(a)− σ′i,i+1(a)

is constant on each KR stratum. Conversely, we prove (see [8]).

Theorem 5.1. The KR strata are distinguished by the invariant σ. That is, if

x 6= x′ ∈ Adm(µ), then σ(AI,x) 6= σ(AI,x′).

5.2. The shuffle construction

The goal is to reduce geometric problems on KR strata Ax to those on KR strata
with p-rank zero and on KR strata of moduli spaces of lower genus g.

Observation. An Iwahori level structure on (A, λ) is a flag of finite group
schemes

H• : 0 ⊂ H1 ⊂ · · · ⊂ Hg ⊂ A[p]

satisfying certain conditions. This structure is defined through the p-torsion sub-

group (A[p], λ) with polarization.
Let BT1

h,I be the set of isomorphism classes of (G, λ,H•) over k, where

• (G, λ) is a principally polarized BT1 of height 2h,

• H• : H1 ⊂ · · · ⊂ Hh ⊂ G a flag of finite flat group schemes such that

< λ(Hh), Hh >= 0 (Note that λ : G→ GD).

We may formulate BT1
h,I as a category of groupoids with objects as above. But

let us regard it simply as a set for simplicity. Clearly, we have a surjective map

BT1
h,I

KR−→ AdmI(µ).

For two integers s ≥ 1 and t ≥ 1 with s + t = g, denote by Sh(s, t) the set of
maps

ϕ : {0, 1, . . . , g} → {0, 1, . . . , s}

such that

ϕ(0) = 0, ϕ(g) = s, and ϕ(i) ≤ ϕ(i+ 1) ≤ ϕ(i) + 1, ∀ i = 0, . . . , g− 1.

It is called the set of shuffle maps of s letters and t letters.

For example, let ϕ ∈ Sh(4, 3), we use ϕ to shuffle 123 into 1234 as follows.
Suppose

ϕ : 0 1 1 2 2 3 4 4.



Kottwitz-Rapoport Strata in the Siegel Moduli Spaces 2357

We underline the repeated numbers, remove them, and replace by 123:

ϕ : 0 1 1 2 2 3 4 3.

For ϕ ∈ sh(s, t), define ϕ′ : {0, 1, . . . , g} → {0, 1, . . . , t}, called the comple-
ment of ϕ, as follows.

ϕ′(0) = 0, ϕ′(i+ 1) + ϕ(i+ 1) = ϕ′(i) + ϕ(i) + 1, ∀ i = 0, . . . , g− 1.

With information above, we construct a map

shϕ : BT1
s,I × BT1

t,I → BT1
g,I

by (
(G, λ,H•), (G′λ′,H

′
•)
)
7→ (G× G′, λ× λ′, ϕ(H•, H

′
•)),

where

ϕ(H•, H
′
•) : K1 ⊂ K2 ⊂ · · · ⊂ Kg ⊂ G× G′, Ki = Hϕ(i) ×Hϕ′(i).

The shuffle map shϕ descends to the set AdmI(µ):

BT1
s,I × BT1

t,I

shϕ−−−−→ BT1
g,Iy(KR,KR)

yKR

AdmI(µ, s)×AdmI(µ, t)
shϕ−−−−→ AdmI(µ, g).

In general, the map shϕ is not injective. But we have

• The restriction shϕ : Adm0
I(µ, g − f) × Admf

I (µ, f) → Admf
I (µ, g) is in-

jective.

•
Admf

I (µ, g) =
∐

ϕ∈Sh(g−f,f)

shϕ(Adm0
I(µ, g − f)× Admf

I (µ, f)).

These follow easily from the canonical decomposition G = Get,m ⊕Gloc,loc.

For any x1 ∈ AdmI(µ, s), x2 ∈ AdmI(µ, t) and ϕ ∈ Sh(s, t), we get a shuffle
morphism

shϕ : As,x1 ×At,x2 → Ag,x,

where x = shϕ(x1, x2). This produces various subvarieties in a KR stratum Ag,x
which may give enough information about what we want to know on Ag,x. For
example, let x be any element say in Admf

I (µ, g). Then there exist a unique
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x1 ∈ Adm0
I(µ, g − f), x2 ∈ Admf

I (µ, f), and ϕ ∈ Sh(g − f, f) such that x =
shϕ(x1, x2). So we have a morphism

shϕ : Ag−f,x1 × Af,x2 → Ag,x.

Geometric information on Ag,x, for example possible Newton polygons, can be read
from those on Ag−f,x.

5.3. Admissible elements: g=3 and p-rank zero

We list all 29 µ-admissible elements with p-rank zero in the extended Weyl

group W̃ = X∗(T ) oW (GSp6). Below

τ = (0, 0, 0, 1, 1, 1), (14)(25)(36), s0 = (−1, 0, 0, 0, 0, 1), (16),

s1 = (12)(56), s1 = (23)(45) and s3 = (34).

Write si1i2 ...ir for the element si1si2 · · ·sir in the affine Weyl group Wa.

KR (ν, w) ∈ X∗(T ) oW KR (ν, w) ∈ X∗(T ) oW

(1) τ (0,0,0,1,1,1), (14)(25)(36) (16) s310τ (0,0,1,0,1,1), (132645)

(2)s0τ (0,0,0,1,1,1), (1463)(25) (17) s120τ (0,0,0,1,1,1), (16)(2453)

(3)s1τ (0,0,0,1,1,1), (142635) (18) s320τ (0,0,1,0,1,1), (154623)

(4)s2τ (0,0,0,1,1,1), (153624) (19) s230τ (0,1,0,1,0,1), (124653)

(5)s3τ (0,0,1,0,1,1), (1364)(25) (20) s201τ (0,0,0,1,1,1), (1562)(34)

(6)s10τ (0,0,0,1,1,1), (145)(263) (21) s301τ (0,0,1,0,1,1), (135642)

(7) s20τ (0,0,0,1,1,1), (153)(246) (22) s121τ (0,0,0,1,1,1), (16)(25)(34)

(8)s30τ (0,0,1,0,1,1), (13)(25)(46) (23) s231τ (0,1,0,1,0,1), (1265)(34)

(9)s01τ (0,0,0,1,1,1), (142)(356) (24) s312τ (0,0,1,0,1,1), (16)(2354)

(10)s21τ (0,0,0,1,1,1), (15)(26)(34) (25) s323τ (0,1,1,0,0,1), (123654)

(11)s31τ (0,0,1,0,1,1), (135)(264) (26) s3010τ (0,0,1,0,1,1), (132)(456)

(12)s12τ (0,0,0,1,1,1), (16)(24)(35) (27) s3120τ (0,0,1,0,1,1), (16)(23)(45)

(13)s32τ (0,0,1,0,1,1), (154)(236) (28) s3230τ (0,1,1,0,0,1), (123)(465)

(14) s23τ (0,1,0,1,0,1), (124)(365) (29) s2301τ (0,1,0,1,0,1), (12)(34)(56)

(15)s010τ (0,0,0,1,1,1), (145632)

The partial (Bruhat) order on this finite set is expressed as follows. Two ele-

ments x and y have relation x < y in the Bruhat order if and only if there is a chain

with x = x0 → x1 → · · · → xn = y.
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(1) τ → s0τ , s1τ , s2τ , s3τ (16) s310τ → s3010τ , s3120τ

(2) s0τ → s10τ , s20τ , s30τ , s01τ (17) s120τ → s3120τ

(3) s1τ → s10τ , s01τ , s21τ , s31τ , s12τ (18) s320τ → s3120τ , s3230τ

(4) s2τ → s20τ , s21τ , s12τ , s32τ , s23τ (19) s230τ → s3230τ , s2301τ

(5) s3τ → s30τ , s31τ , s32τ , s23τ (20) s201τ → s2301τ

(6) s10τ → s010τ , s310τ , s120τ (21) s301τ → s3010τ , s2301τ

(7) s20τ → s120τ , s320τ , s230τ , s201τ (22) s121τ (max.)

(8) s30τ → s310τ , s320τ , s230τ , s301τ (23) s231τ → s2301τ

(9) s01τ → s010τ , s201τ , s301τ (24) s312τ → s3120τ

(10) s21τ → s201τ , s121τ , s231τ (25) s323τ → s3230τ

(11) s31τ → s310τ , s301τ , s231τ , s312τ (26) s3010τ (max.)

(12) s12τ → s120τ , s121τ , s312τ (27) s3120τ (max.)

(13) s32τ → s320τ , s312τ , s323τ (28) s3230τ (max.)

(14) s23τ → s230τ , s231τ , s323τ (29) s2301τ (max.)

(15) s010τ → s3010τ

The following table indicates the possible Newton polygons occurring in each

KR stratum. The symbol A represents the supersingular Newton polygon; the sym-

bol B represents the Newton polygon with slopes 1
3 and

2
3 . Let NP denote the set

of the Newton polygons of points in the KR stratum.

KR NP KR NP KR NP

(1) τ A (11) s31τ B (21) s301τ A,B

(2) s0τ A (12) s12τ A (22) s121τ A

(3) s1τ A (13) s32τ B (23) s231τ A,B

(4) s2τ A (14) s23τ B (24) s312τ A,B

(5) s3τ A (15) s010τ A,B (25) s323τ A,B

(6) s10τ B (16) s310τ A,B (26) s3010τ A,B

(7) s20τ B (17) s120τ A,B (27) s3120τ A,B

(8) s30τ A (18) s320τ A,B (28) s3230τ A,B

(9) s01τ B (19) s230τ A,B (29) s2301τ A,B

(10) s21τ A (20) s201τ A,B

5.4. Numerical invariants for g = 3
The following is the result of computation of the invariants (σij , σ′ij) and dij.

Recall these invariants. Let s = (A0 → · · · → Ag) be a point in AI(k). Let
(M−g

α→ M−g+1 . . . ,
α→ M0) be the associated chain of de Rham cohomologies.

For 0 ≤ i < j ≤ g, write αij : M−j →M−i for the composition. Define

σij(s) := dimω−i/αij(ω−j), σ′ij(s) := dimM−i/(ω−i + αij(M−j)).
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For 1 ≤ i, j ≤ g − 1, define

dij(s) = dimα0i(ω−i) + α0j(M−j)⊥.

Given an element x ∈ Adm(µ), we use the expression x = (ν, w) to compute
the lattice (L′•) with tΛ′

−i ⊂ L−i ⊂ Λ′
−i. Then we use this lattice to compute

the invariants (σij , σ′ij) and dij . We first compute the invariants (σij , σ′ij) for each
(p-rank zero µ-admissible) element x.

KR (σ02, σ
′
02) (σ13, σ

′
13) (σ03, σ

′
03) KR (σ02, σ

′
02) (σ13, σ

′
13) (σ03, σ

′
03)

(1) τ (2,2) (2,2) (3,3) (16) s310τ (2,2) (1,2) (2,2)

(2) s0τ (2,2) (2,2) (2,3) (17) s120τ (2,2) (1,2) (2,3)

(3) s1τ (2,2) (2,2) (3,3) (18) s320τ (2,2) (2,1) (2,2)

(4) s2τ (2,2) (2,2) (3,3) (19) s230τ (2,1) (2,2) (2,2)

(5) s3τ (2,2) (2,2) (3,2) (20) s201τ (1,2) (2,2) (2,3)

(6) s10τ (2,2) (1,2) (2,3) (21) s301τ (1,2) (2,2) (2,2)

(7) s20τ (2,2) (2,2) (2,3) (22) s121τ (2,2) (2,2) (3,3)

(8) s30τ (2,2) (2,2) (2,2) (23) s231τ (2,1) (2,2) (3,2)

(9) s01τ (1,2) (2,2) (2,3) (24) s312τ (2,2) (2,1) (3,2)

(10) s21τ (2,2) (2,2) (3,3) (25) s323τ (2,1) (2,1) (3,1)

(11) s31τ (2,2) (2,2) (3,2) (26) s3010τ (1,2) (1,2) (1,2)

(12) s12τ (2,2) (2,2) (3,3) (27) s3120τ (2,2) (1,1) (2,2)

(13) s32τ (2,2) (2,1) (3,2) (28) s3230τ (2,1) (2,1) (2,1)

(14) s23τ (2,1) (2,2) (3,2) (29) s2301τ (1,1) (2,2) (2,2)

(15) s010τ (1,2) (1,2) (1,3)

In the following two tables some KR strata are already distinguished by the

invariants (σij , σ′ij).

(σ03, σ
′
03) (1,2) (2,1) (2,2) (2,2) (1,3) (3,1)

(σ02, σ
′
02) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1)

(σ13, σ
′
13) (1,2) (2,1) (1,1) (2,2) (1,2) (2,1)

KR (26) s3010τ (28) s3230τ (27) s3120τ (29) s2301τ (15) s010τ (25) s323τ

(σ03, σ
′
03) (2,2) (2,2) (2,2) (2,2) (2,2)

(σ02, σ
′
02) (1,2) (2,1) (2,2) (2,2) (2,2)

(σ13, σ
′
13) (2,2) (2,2) (2,1) (1,2) (2,2)

KR (21) s301τ (19) s230τ (18) s320τ (16) s310τ (8) s30τ

The following two tables are given by the invariants (σ03, σ
′
03) = (2, 3) and

(σ03, σ
′
03) = (3, 2), respectively. There are two classes in the each set of classes

with invariants (σij , σ′ij) constant. They are distinguished by the invariant d12 in

the first table (resp. by the invariant d21 in the second table). Notice that each
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pair of classes has the inclusion relation. In the first table, every smaller element is

obtained by dropping s2 from the bigger element. In the second table, every smaller

element is obtained by dropping s1 from the bigger element.

(σ03, σ
′
03) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3)

(σ02, σ
′
02) (1,2) (1,2) (2,2) (2,2) (2,2) (2,2)

(σ13, σ
′
13) (2,2) (2,2) (1,2) (1,2) (2,2) (2,2)

d12 2 3 2 3 2 3

KR (9)s01τ (20) s201τ (6) s10τ (17) s120τ (2) s0τ (7) s20τ

(σ03, σ
′
03) (3,2) (3,2) (3,2) (3,2) (3,2) (3,2)

(σ02, σ
′
02) (2,1) (2,1) (2,2) (2,2) (2,2) (2,2)

(σ13, σ
′
13) (2,2) (2,2) (2,1) (2,1) (2,2) (2,2)

d21 1 2 1 2 1 2

KR (14) s23τ (23) s231τ (13) s32τ (24) s312τ (5) s3τ (11) s31τ

The following is the table for supersingular KR strata (see Subsection for

detailed descriptions). Note that (σ03, σ
′
03) = (3, 3) implies (σ02, σ

′
02) = (2, 2) and

(σ13, σ
′
13) = (2, 2). Therefore, there is no need to list them.

(σ03, σ
′
03) (3,3) (3,3) (3,3) (3,3) (3,3) (3,3)

d12 2 2 3 3 3 3

d21 1 2 1 2 2 2

d11 2 3 3

d22 3 2 3

KR (1) τ (3) s1τ (4) s2τ (10) s21τ (12) s12τ (22) s121τ

5.5. Supersingular KR strata

A KR stratum Ax is called supersingular if it is contained in the supersingular
locus SI . The following are all supersingular KR-types in AdmI(µ):

{τ, s1τ, s2τ, s12τ, s21τ, s121τ, s0τ, s3τ, s03τ } = W{0,3}τ ∪W{1,2}τ.

Note that the union of all supersingular KR strata is properly contained in the

supersingular locus SI .
Let Λ3,1,N ⊂ A3,1,N denote the set of superspecial points in A3,1,N .

Theorem 5.2.

(a) (Case: x ∈ W{0,3}τ ). Let Λ3,1,N be the set of superspecial principally

polarized abelian 3-folds with a level-N structure over Fp. Then
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(1) The closure As121τ has |Λ3,1,N | irreducible components, and each irreducible
component is isomorphic to

GL3 /B4 = {(a, b) ∈ P2 ×P2 | a · b = 0 } =: X ⊂ P2 × P2,

where B4 ⊂ GL3 is the Borel subgroup of upper triangular matrices.

(2) The closure As21τ has |Λ3,1,N| irreducible components, and each irreducible
component is isomorphic to { (a, b) ∈ X | b · b(p) = 0 }.

(3) The closure As12τ has |Λ3,1,N| irreducible components, and each irreducible
component is isomorphic to { (a, b) ∈ X | a · a(p) = 0 }.

(4) The closure As1τ has |Λ3,1,N | irreducible components, and each irreducible
component is isomorphic to

FP2 ∩X = { (a, a(p)) | a · a(p) = 0 }.

(5) The closure As2τ has |Λ3,1,N | irreducible components, and each irreducible
component is isomorphic to

VP2 ∩X = { (b(p), b) | b · b(p) = 0 }.

(6) |Aτ | = |Λ3,1,N | · |U(3)(Fp)/B0(Fp)|, where B0 is a Borel subgroup over Fp.

(b) (Case: x ∈ W{1,2}τ ). Let J = {1, 2}, and ΛJ := πJ,I(Aτ ), where πJ,I :
AI → AJ is the natural projection.

(1) The closure As30τ has |ΛJ | irreducible components, and each irreducible
component is isomorphic to P1 ×P1.

(2) The closure As3τ has |ΛJ | irreducible components, and each irreducible
component is isomorphic to P1.

(3) The closure As0τ has |ΛJ | irreducible components, and each irreducible
component is isomorphic to P1.

(4) |Aτ | = |ΛJ | · (p2 + 1).
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