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SOME NEW CHARACTERIZATIONS OF BLOCH SPACES

Songxiao Li and Hasi Wulan

Abstract. In this paper we obtain some new characterizations for Bloch spaces
on the unit ball of C™. These characterizations are new even in the unit disk.

1. INTRODUCTION

Let B be the open unit ball of C™ and H(B) the class of all holomorphic
functions on B. When n = 1, B is the open unit disk in the complex plane and we
will denote it by D. Let Aut(B) be the group of all biholomorphic self maps of
B. 1t is well known that Aut(B) is generated by the unitary operators on C" and
the involutions ¢, of the form

(2) a— Pyz—5,Q42
Z g
@a 1 _ <2:7 a> 9

where s, = (1— |a|?)!/2, P, is the orthogonal projection into the space spanned by
a € B, ie., Pz=1242 102 = (a,a), Pz =0and Q, = I — P, (see [11, 17]).

|a|2 '

For f € C(B), the invariant gradient Vf is defined by (%f)(z) =V(fo
©.)(0), where Vf(z) = (0f/0z,...,0f/0z,) is the complex gradient of f.
For f € H(B), let Rf denote the radial derivative of f, that is, Rf(z) =
Z?:l zj%(z)-

Let dv be the normalized Lebesgue measure of B and dA(z) = (1—|z|?) 7" tdv(z).
Then d\(z) is a Mobius invariant measure, which means that for any ¢ € Aut(B)
and f € LY(B),

/B F(2)dA(2) = /B f o h(2)dA(2).
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When n = 1, dv is the normalized Lebesgue measure of D and we will denote it
by dA.

Suppose 0 < p < oo, recall that the Bergman space AP consists of those
functions f € H(B) for which

1117 = /B F(2)Pdu(z) < .

The Bloch space B, introduced by Timoney (see [13, 14]), is the space of all
f € H(B) such that || f|| g = sup,cp Qf(2) < oo, where

Qf(z) = sup [(VF(z), @) feH(B), z€ B.
weCn\ {0} , [ntl A=zl +/{w ) ’
2 ((ERE

It is well known that f € B if and only if (see, e.g. [17])

sup(1 — |2[*) [V f(2)] < o0
zeB
if and only if sup,.5(1 — |2|?) [Rf(2)| < co. We denote by B(D) the Bloch space
in the unit disk.
For f € H(B), Nowak proved that f € B if and only if (see [6])

CN1/201  1n2)1/2 |f(z) — f(w)]
@) fffg(l |2[7) /(1 = w]%) = Poe—suQua =
zFw

Recently, Ren and Tu proved that f € B if and only if (see [10])

@ sup, (1~ 12P)2(1— Jwf?) 2 w .

In [4], we proved that f € B if and only if

@) ziz%u — )21 = fw[2)12. W =

These characterizations can be seen as derivative-free characterizations of Bloch
spaces on the unit ball. See [1-8, 10, 13-15, 17] for more characterizations of the
Bloch space in the unit ball.

In this paper, we add some other derivative-free characterizations for Bloch
spaces in the unit ball of C™, which can be seen as continuation work of [3, 4].

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other. The notation A < B means that there is a
positive constant C' such that B/C' < A < CB.
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2. PRELIMINARIES

In this section, we collect some known results and technical results that will be
needed in the proof of our main result. We begin with the following estimate (see

[12]).

Lemmal. Let -1 <t <oocands > 0. If ¢ > 0, then there is a finite constant
C such that

A 1 e
@ G (o )
C

<—+——, forall weB.
= - lwPy b

Lemma 2. ([9]). Suppose p > 0,0 <a<p+2and f € H(B). Then f € AP
if and only if

©) 1(f) = /B £l (2)2du(z) < oo,

Moreover, the quantities || f||*,, and | f(0)|?+I(f) are comparable for f € H(B).

Lemma 3. ([7]). Let 0 < p < oo. A holomorphic function f is in the Bloch
space B if and only if

(6) sup [|f o pq — f(a)]la» < o0.
a€B

Lemma 4. Assume that f € H(B), 0 <p < o0, -1 < g< 00, 0< s < 0
such that p + s > n. Then for all a € B, the following inequality holds.

[ 15G) = FOPQ = P10 = o) Prdut)
¢ < € [ RIGPA - PP~ o) o).
Proof. The case s=0 is well known (see [17]). Now we assume that s >0. If
the right side in (7) is infinite, then the result is obvious.
Now we assume that the right side in (7) is finite. For a fixed » € (0,1), let
E(a,r)={z € B: |pa(z)| < r}. From [6] or [17] we see that

®) A=) = (1 =) = (1= (a,2)[" < | E(a, )]
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when z € E(a,r). By the subharmonicity and (8) we have (see [17])

IRf(a)[P(1— |af?)P+e
C

2P(1 — z2p+q v(z
< B oy IO IRy ()
C(l—r)s P S|2)Pta(1 — N3 du(
T [ RIGPO= R0~ e )
< Goreme [ IRIGIP = BP0 o) Prdets).

Therefore

sup [Rf(@)"(1 = la |ypratnd

< sup / REGIPA — 2271 — |ga(2))dv(2) < oo,
a€EB

from which and exercise 7.7 of [17] we see that K(f) = sup,cp|f(a)P(1 —
la|?)7t" L < co. Therefore, for a € B, from Theorem 2.16 of [17] and Lemma 1
we get

/ 5 - FO)P(1 - \z\2>q<1—m< )yed(z)

B a,\ /‘ (a, §8/pp
-y (L P

R :
ctu-laPy [ T i)

7

= |e)dv(2)

e oy [ TOZIOP G pyreresgy s

B 1= (a, 2)[>*P

< C/B\Rf(Z)\p(l— |2[)PI(1 — |a(2)]?)*dv(2)

(1 — |z|?)pFats—a—n-1

oK -la)* | S i)
< 0 [ RIDPQ= PP - pu(a)P)do),

as desired. -
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Lemma 5. Assume that f € H(B),0<p <oo, -1 <g<o0,0<t<p+2n,
0 < s < oo such that p+ s > n. Then for a € B,

[UOIOTG oy g pyrants

e /B RFP(L = [22PH(1 — | pa(2)[2)dv(2)
< 0 [ R P~ a2 (),

Proof. It is elementary to shown that there exists a constant C' (independent of
f) such that

/, Wu ~ sP)1av() <€ [ 1) = FOP - |2,

This together with Theorem 2.16 of [17] show that
@ [LETORG - gy <o [ meopa-lspriae).

Taking g(z) = %, then
_IRF(2)(1 — (a, 2))*/P + 25/p(f(2) — f(0)) (1 — (a, 2))**/" a, )

‘Rg(z)‘ ‘1 _ <a7 z>‘4s/p

Applying ¢ to the inequality (9) and from Lemma 4 we obtain

/ WO P [gal2)P)du(2)

FR=f©@ _ _of”
—(1- ‘a‘z)s/ (1=(a,2)) %77

B |2t

_ (1 _ ‘a‘2)s/B ‘g(z) — g(o)‘p(l o \2\2)q+8dv(z)

|2l

< C(1 - \a\Z)S/B [Rg()P(1 = [T du(2)

(1= [T dv(2)

< C/B\Rf(z)\p(l— |2|2)PH(1 — |pa(2)]?)3dv(2)

vo [ MO G ppriaa - i)
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< O [ IRIGIPO- 2P0~ a2 do(a)
+CAJﬂw—fmwu—quﬂ—w4@mmw@
sc{égnfuM%1—\A%“ﬂu—w@A@mexw,

as desired. The second inequality follows from the following well-known inequality
(see [17]) N
(L= [zPIRF () < (1= [)VF(2)] < [VF(2)].

This completes the proof of the lemma. |

3. MAIN RESULTS AND PROOFS
In this section, we give our main results and proofs.

Theorem 1. Assume that f € H(B), 0 < p,c < oo and 0 < ¢ < co. Then
f € B if and only if
2\t 1— 2\¢
( [2[7)°( — |a]*)° ,

@0 g )~ FOP o G ) <o

Proof. Assume that (10) holds. It follows from [17] and (8) that there exists a
constant C' such that

(1= [al?)PIV£(a)l?

¢ Pdv(z
sajwmﬁéwywwﬂMd<>
(11) p (L= [2)"(1 = |a[>)*
< C (o) ‘f(Z) - ( )‘ ‘1 — <z,a>\”+1+t+c d’l}(Z)
1— 12|21 = |al?)c
< C/ ‘f (‘1_‘ <L7)a§‘n+1‘+t‘+2 dv(z),

from which we see that f € 5.
Conversely, assume that f € B. It follows from the Cauchy-Schwarz inequality
and the inequality ‘af | < |V f] that there exists a constant C' such that

=101 =| [ G| <| [ w0

1
< Clflale| [ gt < Ol lstos
o 1—]zt]

1
1— 1z
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From the Mobius invariant property of the Bloch space, we have

|[f o a(2) = f(a)| < C[|f © pallslog < C|/fll5log

1 1
1—z] 1— 1z

Making the change of variables z — ¢, (z) we obtain

(12) |f(a) = f(2)| < C|f]|slog m'

By the last inequality and Lemma 1, it gives
( — 21— Jal*)*
wp [, 1562 T (a0

aeB
1— 2% 1 p
= Ol gt =1t /B =G e (B T )

< Ol < oo

This completes the proof of the theorem. ]

Remark 1. Sett =0,c=n+1 in Theorem 1. We get that f € B if and only
if
@ s [ 176 - F@PO - gl AG) < .
ac€B
which is equivalent to Lemma 3. Hence Theorem 1 can be seen as a generalization
of Lemma 3.

Theorem 2. Assume that f € H(B), 0 < p,c < oo, 0 < t < oo such that
t+c<p+n—1. Then f € Bif and only if

—Z2t _a2c
@ sw [ 1) - fap B g <o,

a€eBJB ‘a - Paz - SaQaz‘n—’—l—’_H—c

Proof. Suppose that (14) holds. Since

1 1
15 < z,a € B
o 1= (eoa)] = Ja— Par — 5aQucl’
it follows from Theorem 1 that f € B.
Conversely, suppose that f € B. Making the change of variables z — ¢,(2)
and using the following equalities (see [17])

(-l | 1-aP
i ap P el = oy

1 —|pa(2)* =
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we obtain

1 —|a|?)¢(1 —|2?)t
K= [ 1) f<a>\pw S )

(1= lal®)°(1 = |pa(2) )71

— p

C/ | f (pa(2 (a)l 2| T — (ga(2), a>‘n+1+t+cd)‘(z)
_c \f o <Pa fowa(0)[ (1—|2[»)'dv(2)

= ‘n—l—l—f—t—f—c 11— (2, a) [ 2EFnD—(nflHi+e)

It is elementary to check that there exists a positive constant C(independent of f)
such that

k<o [ Moe tonOrU Y,

11— (z, a)[2(t+nt D)= (n+1+t+0)

1= la oz 2\t+n+1
= @ [ e - st

Making the change of variables z — ¢, (z) again, we get

— |z 2\t —la 2\¢
k<o f e wﬂll | <C‘L’)z§‘1n+1‘+j+2 (),

Then the result follows from Theorem 1. ]

dA(2).

Theorem 3. Assumethat f € H(B),0<¢g<oo,0<p<oocandp—gq > —2.
Then f € B if and only if

6 sup / FFF(2) — F@)P~9(1 = |pal2) ) dA(2) < o0

Proof. From Lemmas 2 and 3, we see that f € B if and only if

w0 > sup [ [fga(2)) = F@PITS 0 pul2) ()
ac
" aen / [F(2al2)) = F@PIVF(al2)) |71 = [ dA(2).
Making the change of variable z — ¢,(z), we get the desired result. ]

Remark 2. Taking ¢ = p in Theorem 3, we obtain that f € B if and only if

(17) sup / T F(2)P(1 — [a(2) [ 1dA(2) < oo
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Taking ¢ = 0 in (16), we get (13). Hence Theorem 3 can also be seen as a
generalization of Lemma 3.

The following Theorem was first proved in [3], here we give a different proof
for the completeness.

Theorem 4. Assume that f € H(B) and 0 < p < co. Then f € B if and only
if
w)|P

(18) Sup/ / 1= () ‘Q(n—l—l)(l — |@a(w) ) dv(2)dv(w) < co.

ac€B

Proof. Suppose that f € B. Making the change of variables, from (12) and
Lemma 1 we have

Sup/ / \1—z<)z wJ;P(nfl (1= [pa(w)[*)"" dv(2)dv(w)

a€B
sup [ (1= () P dv(w) [ ‘ﬂi){wffﬁﬁfndvu)

acEB

< Cllffsup / (1~ | pa(w)[?)" do(w)

B

1 P
/ 11— (2, w)[2(n+1) < 1_‘ Pulz )‘2> dv(z)
< Cllflfssup /B (1~ [pa(w) Py A (w)

IN

A

< C!!f!!%/B(l = |w]?)"dA(w) < co.

Conversely, suppose that (18) holds. From [16] we see that f € B if and only
if

@) swp [ VIEPA BP0 = )P AE) < o0
From the proof of Theorem 1 we see that there exists a constant C' such that

C
— |w|?)P WP < —r——— z) — f(w)Pdv(z
(= IV < e [ 176) = )P,

(1= w219 ) (1~ fgalw)
S z) — f(w)[P(1 — w)|?)" M du(z
© T M= PO = o))

S C ‘f(z)_f(w)‘p(l_ \apa(w)\Q)”Hdv(z).

E(w,r) ‘1 - <Z, w>‘n+1
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Therefore,

[ = PO~ o)) A w
<c /B /E NG f(w)\PW(l  loa () o)A )
- C/ /EW () = Pl <z,i)>‘2<n+1><1 — pa(w) )" du(z)do(w)
= C/ / 11— (zw) mfl (1 = [pa(w) )" dv(2)dv(w).

From the last inequality and (19), we see that f € I3, as desired. [ |

Theorem 5. Assume that f € H(B) and 2 < p < co. Then f € B if and only
if

(20) sup IR (1~ ) B () (w) < .
B |lw—

ac€B SwQ 2‘2(n+1

Proof. Suppose that (20) holds. Then the result follows from Theorem 4 and
(15).

Conversely, suppose that f € B. Making the change of variables of z — ¢, (2)
and similarly to the proof of Theorem 2 we obtain

~ ()l
m= [ ] e (1~ [ipalw) P)" (=) dv(w)

Q'w ‘2(n+1

= [ (= lpaw) P ot e AU

b loulz \2<n+1 [N

f )p 1— w ) )n+1
= /B(l— la(w)|?)" M dv(w / | ‘2(n+1 11— <§‘0u(1( ), ‘(Pﬂg(nj‘q) dA(2)

— [ 0= lewpr o [ “”w‘z‘l?,;ﬁf(w)‘ dv(2).

It is elementary to show that there exists a positive constant C'(independent of f)
such that

— w)|?)" A (w z)) — f(w)|Pdv(z).
MSC/B(l |pa(w)]7)" " dA( )/B\f(ww( ) = f(w)[Pdv(2)
From Lemma 3 we get

M<C / (1= lea(w) Y™ dAw) sup £ 0 oy = Fw)a

<c / ~ W) aAw) sup [ o — F(w)0 < o
S
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as desired. This completes the proof of the theorem. ]

Remark 3. Whenn =1 and 2 < p < oo, then f € B(D) if and only if

@ sw/ [ %(1—\wa(w)\2)2dA(2)dA(w)<OO-

aeDJD JD

Theorem 6. Assume that f € H(B) and 0 < p < co. Then f € B if and only
if

O 1 () )
(22) 332// \1_ o w) \z<n+1><1 lea(2)[?)
(1 — [pa(w)|?)*F dv(z)dv(w) < oo.

Proof. Assume that (22) holds. For a fixed » € (0,1), when z € E(w,r), it
holds

(23) ‘1_<zva’>‘x‘1_<w7a>‘v

for any a € B (see [17]). Hence, from the proof of Theorem 4 we have
(1= [V f (w) (1~ pq(w)[)"

cof  @=fw)

B(ws) [1= (2, w)[P

n+1

(1= [w )" (1= [pa(w) ) (1-pa(2)) > du(2).

Therefore
[a-rupy \Vf( (L = paw) ) dA ()
w)‘p n+l n+1
= C/ /E(wr (z,w) ‘2(n+1)(1—\%(z)\2)__2*—_ X (1—\<pa(w)\2)ldv( )dv(w)

: C/ / 11— (z,w) \2(nf1)(1 — [ea(2)[)"F (1 = pa(w)?) " dv(2)dv(w).

It follows from (19) and (22) that f € B.
Conversely, suppose that f € B. From Theorem 3 we see that f € B if and
only if

sup / ¥ F(2)P(L — | pal2) 2 dA(2) < o0

aceBJB
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Making the change of variables z — ¢,(z), we see that f € B if and only if

@) s / 9/ 0 a) (=) Pdv(z) = sup / 19 £ (=) Pdv(z) < 0.

aceBJB
We clalm that for any g € AP,

vo [ Al e ) et
< ¢ [laPane) = [ Ry < .

In fact, using Lemma 1 we obtain

ntl ntl
re // \1— 2 w) \2<n+1>(1“2‘2) > (1= |w]?) ™2 do(z)dv(w)
ntl ntl
// \1— 2 w) \2<n+1>(1“2‘2) (1= wf’)"2 dv(2)dv(w)

2y

< C/ \g(z)\p(l—\z\Z)"—Qﬂdv(z)/ \1(52%\2(%1 do(w)
+C/ lg(w)[P(1 — w]?) ™% do / \1—_22‘) ‘2(n+l)dv(z)

<c /B l9(2) Pdv(z) + C /B lg(w)Pdv(w) < C /B l9(2) Pdo(z).

For f € B and a € B, we have that f o ¢, — f(a) € AP. It follows from (24)
and (25) that

Sup// |fowa(z) = fopa(w)P
(26) a€B \1 — (2, w) \2(”“)

(1— |2 ) ( — w[?)™ dv( )dv(w) < oo.
Making the change of variables z — ¢, (2), w — @q

(25)

w) and using the following

equality
(1 = J@a(2) ) (1 = |pa(w)]?) 2
=1- w\Z )
1~ (¢al2), plw))P el
we see that (26) is equivalent to (22). The proof is completed. ]

Theorem 7. Assume that f € H(B) and max{2, 251} < p < co. Then f € B
if and only if

f(w)[P
(27) aEB// lw — P z—stsz(n—H
(1= |pa(2)[2) T (1 — |pa(w)[2) T dv(2)dv(w) < co.
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Proof. Suppose that (27) holds. Then by Theorem 6 and (15) we see that f € B.
Conversely, suppose that f € B. By Lemma 5 and the condition max{2, ”T‘l} <
p < oo, We obtain

e

n

(1~ lpa(z >\ ﬁ(l—\ pa(w)|?) T dv(z)dv(w)
/ / flw)?
|Pu \2<n+1 \1 (w, 2) 20 +1)
m

(1= lpa(2)) (1 = Jga(w) )3 do(2)dv(w)

// |f © puw(u ‘UP(MS%(O)\

(28) (1~ [a(pu(u)?) T do(u) (1 — [ @a(w)[?)
<cf [19ropur
(1~ pa(u(w) )5 dv(u) (1 — | pa(w) )
<cf [1Frora-leep
(1~ [pa(2)2) "3 M) (1~ fpa(w)?)

<c /B FFEP— a2 dA(z) x I

" dA(w)

" dA(w)

" dA(w)

Here

1= s [ (= el ) )

a,2éBJB (z)‘Q) 2

Making the change of variables w — ¢.(u) and using the fact that |¢,(w)| =
low(2)| we have

" dA(u).

I = sup 1-— \u\2)n+1(1 — ‘@a(@z(u))‘Q)

1
a,zeB/B (1- \%(a)\?)"—gﬂ(

From the exercises 1.24 of [17] we see that [, (. (u))| = |¢y.(a)(w)]. It follows
from Theorem 1.12 of [17] that
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En dv(u)

1
I = sup / (1= ¢ z(a)(u)‘Q)
azeB )5 (1—[p.(a)? >—at :
(1= |ul®)
29 = su / dv(u
( ) a,zepB ‘1 ’LL SOZ )>‘n+1 ( )

o [
wehs S 1= {u, w) 71

dv(u) < oo.

Combining (28) with (29), the result follows from Theorem 3. ]

Remark 4. When n=1 and 2 < p < oo, from Theorem 7 we see that f € B(D)
if and only if

@) sup [ [ D=L G o o)) (1 = n(w) A A (w) < .

aceD JD
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