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STRONG CONVERGENCE THEOREMS BY A
RELAXED EXTRAGRADIENT-LIKE

Lu-Chuan Ceng, Adrian Petruşel and Mu-Ming Wong*

Abstract. Very recently, Takahashi and Takahashi [S. Takahashi, W. Taka-
hashi, Strong convergence theorem for a generalized equilibrium problem and
a nonexpansive mapping in a Hilbert space, Nonlinear Analysis 69 (2008)
1025-1033] suggested and analyzed an iterative method for finding a common
element of the set of solutions of a generalized equilibrium problem and the
set of fixed points of a nonexpansive mapping in a Hilbert space. In this paper,
we introduce a general system of generalized equilibria with inverse-strongly
monotone mappings in a real Hilbert space. First, this system of generalized
equilibria is proven to be equivalent to a fixed point problem of nonexpansive
mapping. Second, by using the demi-closedness principle for nonexpansive
mappings, we prove that under quite mild conditions the iterative sequence
defined by the relaxed extragradient-like method converges strongly to a solu-
tion of this system of generalized equilibria. In addition, utilizing this result,
we provide some applications of the considered problem not just giving a pure
extension of existing mathematical problems.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
Let C be a nonempty closed convex subset of H . Recall that a mapping S : C → C

is called nonexpansive if

‖Sx− Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C.
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We denote by F (S) the set of fixed points of S and by PC the metric projection of
H onto C. A mapping A : C → H is called α-inverse-strongly monotone if there
exists a positive real number α > 0 such that

〈x− y, Ax− Ay〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C;

see, e.g., [1,4] for more details.
Very recently, Takahashi and Takahashi [17] introduced and considered the fol-

lowing generalized equilibrium problem: Find x∗ ∈ C such that

(1.1) F (x∗, y) + 〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C,

where F : C × C → R is a bifunction and A : C → H is a nonlinear mapping.
The set of such z ∈ C is denoted by EP , i.e.,

EP = {z ∈ C : F (z, y) + 〈Az, y − z〉 ≥ 0, ∀y ∈ C}.
If A ≡ 0, EP is denoted by EP (F ). If F ≡ 0, the problem (1.1) reduces to the
classical variational inequality, denoted by VI(A, C), is to find an x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C.

In this case, EP is also denoted by V I(C, A), i.e., the set of solutions of the
VI(A, C). The variational inequality has been widely studied in the literature; see,
e.g., [4-5,12-16,18,26-29] and the references therein. The problem (1.1) is very gen-
eral in the sense that it includes, as special cases, optimization problems, variational
inequalities, minimax problems, the Nash equilibrium problem in noncooperative
games and others; see, e.g., [23-24].

Recently, Tada and Takahashi [8], and Takahashi and Takahashi [9] considered
iterative methods for finding an element of EP (F )∩F (S). Subsequently, the main
Theorem 3.2 of Takahashi and Takahashi [9] is extended to develop several more
general results in [20-22].

Very recently, Moudafi [25] introduced an iterative method for finding an ele-
ment of EP ∩ F (S), where A : C → H is an inverse-strongly monotone mapping
and then proved a weak convergence theorem. Motivated by Moudafi [25], Taka-
hashi and Takahashi [17] introduced another iterative method for finding an element
of EP ∩ F (S), where A : C → H is also an inverse-strongly monotone mapping
and then obtained a strong convergence theorem.

Theorem 1.1 (cf. [17, Theorem 3.1]). Let C be a nonempty closed convex
subset of a real Hilbert space H and let F : C ×C → R be a bifunction satisfying
the following conditions:

(A1) F (x, x) = 0, ∀x ∈ C;
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(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;

(A3) limt→0+ F (tz + (1 − t)x, y) ≤ F (x, y), ∀x, y, z ∈ C;

(A4) for each x ∈ C, y �→ F (x, y) is convex and lower semicontinuous.
Let A : C → H be an α-inverse-strongly monotone mapping and let S :
C → C be a nonexpansive mapping such that F (S) ∩ EP �= ∅. Let u ∈ C
and x1 ∈ C and let {zn} ⊂ C and {xn} ⊂ C be sequences generated by


 F (zn, y) + 〈Axn, y − zn〉 +

1
λn

〈y − zn, zn − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn + (1 − βn)S[αnu + (1− αn)zn], ∀n ∈ N,

where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1] and {λn} ⊂ [0, 2α] satisfy

0 < c ≤ βn ≤ d < 1, 0 < a ≤ λn ≤ b < 2α,

lim
n→∞(λn − λn+1) = 0, lim

n→∞ αn = 0 and
∞∑

n=1

αn = ∞.

Then, {xn} converges strongly to z = PF (S)∩EP u.

On the other hand, in order to find an element of F (S)∩ V I(C, A), Takahashi
and Toyoda [13] introduced the following iterative scheme:

(1.2) xn+1 = αnxn + (1− αn)SPC(xn − λnAxn), ∀n ≥ 0,

where x0 = x ∈ C, {αn} ⊂ (0, 1) and {λn} ⊂ (0, 2α).
Furthermore, in order to solve the VI(A, C) in the Euclidean space Rn, Kor-

pelevich [3] introduced the following so-called extragradient method:

(1.3)




x0 = x ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), ∀n ≥ 0,

where λ ∈ (0, 1/k).
Recently, Nadezhkina and Takahashi [5] and Zeng and Yao [15] proposed some

iterative schemes for finding elements in F (S)∩V I(C, A) by combining (1.2) with
(1.3). Further, these iterative schemes are extended in Yao and Yao [14] to develop
a new iterative scheme for finding elements in F (S) ∩ V I(C, A).

Let C be a nonempty closed convex subset of a real Hilbert space H . let F, G :
C ×C → R be two bifunctions and let A, B : C → H be two nonlinear mappings.
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In this paper, we consider the following problem of finding (x∗, y∗) ∈ C × C such
that

(1.4)




F (x∗, x) + 〈Ay∗, x− x∗〉 +
1
λ
〈x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

G(y∗, y) + 〈Bx∗, y − y∗〉 +
1
µ
〈y∗ − x∗, y − y∗〉 ≥ 0, ∀y ∈ C,

which is called a general system of generalized equilibria where λ > 0 and µ > 0
are two constants.

Special Cases.

(1) If F = G and A = B, then problem (1.4) reduces to the following problem
of finding (x∗, y∗) ∈ C × C such that

(1.4)′




F (x∗, x) + 〈Ay∗, x− x∗〉 +
1
λ
〈x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

F (y∗, y) + 〈Ax∗, y − y∗〉 +
1
µ
〈y∗ − x∗, y − y∗〉 ≥ 0, ∀y ∈ C,

which is called a new system of generalized equilibria where λ > 0 and µ > 0
are two constants.

(2) If F = G, A = B, and x∗ = y∗, then problem (1.4) reduces to problem
(1.1).

(3) If F = G = 0, then problem (1.4) reduces to the following general system of
variational inequalities: Find (x∗, y∗) ∈ C × C such that

(1.5)

{ 〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈µBx∗ + y∗ − x∗, y − y∗〉 ≥ 0, ∀y ∈ C,

where λ > 0 and µ > 0 are two constants, which is introduced and considered
by Ceng, Wang and Yao [18];

(4) If A = B in (1.5), then problem (1.5) reduces to the following new system
of variational inequalities:

(1.6)

{ 〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈µAx∗ + y∗ − x∗, y − y∗〉 ≥ 0, ∀y ∈ C,

which is defined by Verma [26] (see also [27]);
(5) If x∗ = y∗ in (1.6), then problem (1.6) reduces to the classical variational

inequality.
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Very recently, motivated by the iterative methods in Korpelevich [3], Takahashi
and Toyoda [8], Nadezhkina and Takahashi [5], Zeng and Yao [15], and Yao and
Yao [14], Ceng, Wang and Yao [18] proposed a relaxed extragradient method for
finding solutions of problem (1.5), and derived a strong convergence theorem for
problem (1.5).

Theorem 1.2. (cf. [18, Theorem 3.1]). Let C be a nonempty closed convex
subset of a real Hilbert space H . Let the mappings A, B : C → H be α-inverse-
strongly monotone and β-inverse-strongly monotone, respectively. Let S : C → C

be a nonexpansive mapping such that F (S) ∩ Ω �= ∅. Suppose x 1 = u ∈ C and
{xn} is generated by

(1.7)

{
yn = PC(xn − µBxn),

xn+1 = αnu + βnxn + γnSPC(yn − λAyn),

where λ ∈ (0, 2α), µ ∈ (0, 2β), and {αn}, {βn}, {γn} are three sequences in
[0, 1] such that

(i) αn + βn + γn = 1, ∀n ≥ 1;
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then {xn} converges strongly to x̄ = PF (S)∩Ωu, and (x̄, ȳ) is a solution of
problem (1.5), where ȳ = PC(x̄ − µBx̄) and Ω is the set of fixed points of
the mapping G : C → C defined by

G(x) = PC [PC(x − µBx) − λAPC(x − µBx)], ∀x ∈ C.

Inspired by Korpelevich [3], Takahashi and Toyoda [8], Nadezhkina and Taka-
hashi [5], Takahashi and Takahashi [9, 17], Zeng and Yao [15], Yao and Yao [14],
and Ceng, Wang and Yao [18], we suggest and analyze a relaxed extragradient-
like method for finding solutions of problem (1.4). Let F, G : C × C → R be
two bifunctions and the mappings A, B : C → H be α-inverse-strongly monotone
and β-inverse-strongly monotone, respectively. Let S : C → C be a nonexpansive
mapping. Suppose x1 = u ∈ C and {xn} is generated by



G(yn, y) + 〈Bxn, y − yn〉 +
1
µ
〈yn − xn, y − yn〉 ≥ 0, ∀y ∈ C,

F (tn, z) + 〈Ayn, x− tn〉 +
1
λ
〈tn − yn, x − tn〉 ≥ 0, ∀x ∈ C,

xn+1 = αnu + βnxn + γnStn,

where λ ∈ (0, 2α], µ ∈ (0, 2β], and {αn}, {βn}, {γn} are three sequences in
[0, 1] such that αn + βn + γn = 1, ∀n ≥ 1. First, problem (1.4) is proven to be
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equivalent to a fixed point problem of nonexpansive mapping. Second, by using the
demi-closedness principle for nonexpansive mappings, we prove that under quite
mild conditions the iterative sequence {xn} converges strongly to some x̄ ∈ C and
(x̄, ȳ) is a solution of problem (1.4), where ȳ = PC(x̄−µBx̄). In addition, utilizing
this result, we provide some applications of the considered problem not just giving
a pure extension of existing mathematical problems.

2. PRELIMINARIES

Let H be a real Hilbert space and C be a nonempty closed convex subset of
H . Denote by I the identity mapping of H . We write xn ⇀ x to indicate that
the sequence {xn} converges weakly to x. xn → x implies that {xn} converges
strongly to x. For every point x ∈ H , there exists a unique nearest point of C,
denote by PCx, such that ‖x−PCx‖ ≤ ‖x−y‖ for all y ∈ C. Such a PC is called
the metric projection of H onto C. We know that PC is a firmly nonexpansive
mapping of H onto C, i.e.,

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H.

Obviously, this immediately implies that

‖(x − y) − (PCx − PCy)‖2 ≤ ‖x − y‖2 − ‖PCx − PCy‖2, ∀x, y ∈ H.

Recall that, PCx is characterized by the following properties: PCx ∈ C and

(2.1)
〈x − PCx, y − PCx〉 ≤ 0,

‖x − y‖2 ≥ ‖x − PCx‖2 + ‖PCx − y‖2,

for all x ∈ H and y ∈ C; see Goebel and Kirk [2] for more details.
Recall that, if S : C → C is nonexpansive, then the set F (S) of fixed points of

S is closed and convex. Moreover, if C is bounded, closed and convex, then F (S)
is nonempty. Notice also that, if S : C → C is nonexpansive, then A = I − S is
1
2 -inverse-strongly monotone; see [10] for more details.

We need the following propositions and lemmas for the proof of our main result.

Lemma 2.1. (see Osilike and Igbokwe [6]). Let (E, 〈·, ·〉) be an inner product
space. Then, for all x, y, z ∈ E and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x − y‖2

−αγ‖x − z‖2 − βγ‖y − z‖2.

Let C be a nonempty closed convex subset of H and let F : C × C → R be
a bifunction. We say that F satisfies (A1), (A2), (A3) and (A4) if there hold the
following:
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(A1) F (x, x) = 0, ∀x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;

(A3) limt→0+ F (tz + (1 − t)x, y) ≤ F (x, y), ∀x, y, z ∈ C;

(A4) for each x ∈ C, y �→ F (x, y) is convex and lower semicontinuous.

We know the following Lemmas 2.2 and 2.3; see, e.g., [23,28].

Lemma 2.2. (cf. [17, Lemma 2.2]). Let C be a nonempty closed convex subset
of H and let F be a bifunction from C ×C into R satisfying (A1), (A2), (A3) and
(A4). Then, for any r > 0 and x ∈ H , there exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, if T F
r x = {z ∈ C : F (z, y) + 1

r 〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, then the
following hold:

(1) TF
r is single-valued;

(2) TF
r is firmly nonexpansive, i.e.,

‖TF
r x − TF

r y‖2 ≤ 〈TF
r x − TF

r y, x− y〉, ∀x, y ∈ H ;

(3) F (TF
r ) = EP (F );

(4) EP (F ) is closed and convex.

Lemma 2.3. (cf. [17, Lemma 2.3]). Let C, H, F and T F
r x be as in Lemma

2.2. Then the following holds:

‖TF
s x − TF

t x‖2 ≤ s − t

s
〈TF

s x − TF
t x, TF

s x − x〉

for all s, t > 0 and x ∈ H .

Proposition 2.1. Let C be a nonempty closed convex subset of H , and let F
and G be two bifunctions from C ×C into R satisfying (A1), (A2), (A3) and (A4).
For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (1.4) if and only if x ∗ is a
fixed point of the mapping Γ : C → C defined by

Γ(x) = TF
λ [TG

µ (x − µBx) − λATG
µ (x − µBx)], ∀x ∈ C,

where y∗ = TG
µ (x∗ − µBx∗).
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Proof. Observe that


F (x∗, x) + 〈Ay∗, x− x∗〉+
1
λ
〈x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

G(y∗, y) + 〈Bx∗, y − y∗〉 +
1
µ
〈y∗ − x∗, y − y∗〉 ≥ 0, ∀y ∈ C

�{
x∗ = TF

λ (y∗ − λAy∗),

y∗ = TG
µ (x∗ − µBx∗)

�
x∗ = TF

λ [TG
µ (x∗ − µBx∗) − λATG

µ (x∗ − µBx∗)].

Corollary 2.1. (see [18, Lemma 2.1]). For given x∗, y∗ ∈ C, (x∗, y∗) is a
solution of problem (1.5) if and only if x ∗ is a fixed point of the mapping Φ : C → C

defined by

Φ(x) = PC [PC(x − µBx) − λAPC(x − µBx)], ∀x ∈ C,

where y∗ = PC(x∗ − µBx∗).

Proof. Putting F = G = 0 and utilizing Lemma 2.2, we deduce that T F
λ =

TG
µ = PC . Thus, from Proposition 2.1 we obtain the desired result.

Remark 2.1. In terms of the proof of Theorem 3.1, we know that if F, G :
C × C → R are two bifunctions satisfying (A1), (A2), (A3) and (A4), and the
mappings A, B : C → H are α-inverse-strongly monotone and β-inverse-strongly
monotone, respectively, then Γ : C → C is a nonexpansive mapping provided
λ ∈ (0, 2α] and µ ∈ (0, 2β].

Throughout this paper, the set of fixed points of the mapping Γ is denoted by
�.

Proposition 2.2. (see Suzuki [7]). Let {xn} and {yn} be bounded sequences in
a Banach space X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0
and lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) ≤ 0. Then, limn→∞ ‖yn−xn‖ = 0.

Lemma 2.4. (cf. [11, Lemma 2.1]). Assume that {an} is a sequence of
nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn, ∀n ≥ 1,
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where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn/γn ≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.5 (Goebel and Kirk [2]) (Demi-closedness Principle). Assume that
T is a nonexpansive self-mapping of a nonempty closed convex subset C of a
real Hilbert space H . If T has a fixed point, then I − T is demi-closed; that is,
whenever {xn} is a sequence in C converging weakly to some x ∈ C (for short,
xn ⇀ x ∈ C), and the sequence {(I − T )xn} converges strongly to some y (for
short, (I − T )xn → y), it follows that (I − T )x = y.

The following lemma is an immediate consequence of the inner product prop-
erties.

Lemma 2.6. In a real Hilbert space H , there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

3. MAIN RESULTS

We are now in a position to prove the main result of this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H and let F, G : C × C → R be two bifunctions satisfying (A1), (A2),
(A3) and (A4). Let the mappings A, B : C → H be α-inverse-strongly monotone
and β-inverse-strongly monotone, respectively. Let S : C → C be a nonexpansive
mapping such that F (S) ∩� �= ∅. Suppose x1 = u ∈ C and {xn} is generated by

(3.1)

{
yn = TG

µ (xn − µBxn),

xn+1 = αnu + βnxn + γnSTF
λ (yn − λAyn),

where λ ∈ (0, 2α], µ ∈ (0, 2β], and {αn}, {βn}, {γn} are three sequences in [0, 1]
such that

(i) αn + βn + γn = 1, ∀n ≥ 1;
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then {xn} converges strongly to x̄ = PF (S)∩�u and (x̄, ȳ) is a solution of
problem (1.4), where ȳ = T G

µ (x̄− µBx̄).
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Proof. First, on account of (iii), there exist an integer n0 ≥ 1 and some
[a, b] ⊂ (0, 1) such that βn ∈ [a, b] for all n ≥ n0. Without loss of generality, we
may assume that there exists some [a, b] ⊂ (0, 1) such that βn ∈ [a, b] for all n ≥ 1.

Let x∗ ∈ F (S) ∩ �. Then x∗ = Sx∗ and

x∗ = TF
λ [TG

µ (x∗ − µBx∗) − λATG
µ (x∗ − µBx∗)].

Put y∗ = TG
µ (x∗ − µBx∗) and tn = TF

λ (yn − λAyn). Then x∗ = TF
λ (y∗ − λAy∗)

and
xn+1 = αnu + βnxn + γnStn.

Observe that

(3.2)

‖(I − λA)yn − (I − λA)y∗‖2

= ‖yn − y∗‖2 − 2λ〈yn − y∗, Ayn − Ay∗〉 + λ2‖Ayn − Ay∗‖2

≤ ‖yn − y∗‖2 + λ(λ − 2α)‖Ayn − Ay∗‖2

≤ ‖yn − y∗‖2,

and similarly,

(3.3)
‖(I−µB)xn−(I−µB)x∗‖2 ≤ ‖xn−x∗‖2+µ(µ−2β)‖Bxn−Bx∗‖2

≤ ‖xn − x∗‖2.

Hence, utilizing Lemma 2.2 we have from (3.2) and (3.3)

(3.4)

‖tn − x∗‖ = ‖TF
λ (yn − λAyn) − TF

λ (y∗ − λAy∗)‖
≤ ‖(yn − λAyn) − (y∗ − λAy∗)‖
≤ ‖yn − y∗‖
= ‖TG

µ (xn − µBxn) − TG
µ (x∗ − µBx∗)‖

≤ ‖(xn − µBxn) − (x∗ − µBx∗)‖
≤ ‖xn − x∗‖

which implies that

‖xn+1 − x∗‖ = ‖αnu + βnxn + γnStn − x∗‖
≤ αn‖u − x∗‖ + βn‖xn − x∗‖ + γn‖tn − x∗‖
≤ αn‖u − x∗‖ + (1− αn)‖xn − x∗‖
≤ max{‖u − x∗‖, ‖x1 − x∗‖}
= ‖u − x∗‖.
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Thus, {xn} is bounded. Consequently, the sequences {tn}, {yn}, {Stn}, {Ayn} and
{Bxn} are also bounded. Also, utilizing Lemma 2.2 we have

(3.5)

‖tn+1 − tn‖ = ‖TF
λ (yn+1 − λAyn+1) − TF

λ (yn − λAyn)‖
≤ ‖(yn+1 − λAyn+1) − (yn − λAyn)‖
≤ ‖yn+1 − yn‖
= ‖TG

µ (xn+1 − µBxn+1)− TG
µ (xn − µBxn)‖

≤ ‖(xn+1 − µBxn+1) − (xn − µBxn)‖
≤ ‖xn+1 − xn‖.

Let xn+1 = (1− βn)zn + βnxn. Then, we obtain

(3.6)

zn+1 − zn =
αn+1u + γn+1Stn+1

1 − βn+1
− αnu + γnStn

1− βn

=
(

αn+1

1 − βn+1
− αn

1 − βn

)
u +

γn+1

1 − βn+1
(Stn+1 − Stn)

+
(

γn+1

1 − βn+1
− γn

1 − βn

)
Stn.

Combining (3.5) with (3.6) we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖

≤ | αn+1

1 − βn+1
− αn

1 − βn
|‖u‖+

γn+1

1 − βn+1
‖xn+1 − xn‖

+| γn+1

1− βn+1
− γn

1− βn
|‖Stn‖ − ‖xn+1 − xn‖

≤ | αn+1

1 − βn+1
− αn

1 − βn
|(‖u‖+ ‖Stn‖).

This implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, utilizing Proposition 2.2 we get ‖zn − xn‖ → 0 as n → ∞. Consequently,

(3.7) lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1− βn)‖zn − xn‖ = 0.

From (3.5) and (3.7) it follows that ‖tn+1 − tn‖ → 0 and ‖yn+1 − yn‖ → 0 as
n → ∞.
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Since
xn+1 − xn = αn(u − xn) + γn(Stn − xn),

this together with (ii) and (3.7) implies that ‖xn − Stn‖ → 0 as n → ∞. Since
x∗ ∈ F (S) ∩ �, from Lemma 2.1 and (3.4) we obtain

‖xn+1 − x∗‖2

= ‖αnu + βnxn + γnStn − x∗‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

= αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖TF
λ (yn − λAyn)− TF

λ (y∗ − λAy∗)‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn‖(yn − λAyn)− (y∗ − λAy∗)‖2

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn[‖yn − y∗‖2

+λ(λ − 2α)‖Ayn − Ay∗‖2]

≤ αn‖u − x∗‖2 + βn‖xn − x∗‖2 + γn[‖xn − x∗‖2

+λ(λ − 2α)‖Ayn − Ay∗‖2]

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 + γnλ(λ − 2α)‖Ayn − Ay∗‖2,

and

‖xn+1 − x∗‖2

= ‖αnu + βnxn + γnStn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖yn − y∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖(xn − µBxn) − (x∗ − µBx∗)‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn[‖xn − x∗‖2

+µ(µ − 2β)‖Bxn − Bx∗‖2]

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 + γnµ(µ − 2β)‖Bxn − Bx∗‖2.

Therefore, we have

(3.8)

−γnλ(λ− 2α)‖Ayn − Ay∗‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖u−x∗‖2+(‖xn−x∗‖+‖xn+1−x∗‖)(‖xn−x∗‖−‖xn+1 − x∗‖)
≤ αn‖u − x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖,
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and

(3.9)

−γnµ(µ − 2β)‖Bxn − Bx∗‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖u−x∗‖2 + (‖xn−x∗‖+‖xn+1−x∗‖)(‖xn−x∗‖−‖xn+1−x∗‖)
≤ αn‖u − x∗‖2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖,

Since αn → 0 and ‖xn − xn+1‖ → 0 as n → ∞, from (3.8) and (3.9) we derive

lim
n→∞ ‖Ayn − Ay∗‖ = 0 and lim

n→∞ ‖Bxn − Bx∗‖ = 0.

Utilizing Lemma 2.2, we have

‖yn − y∗‖2 = ‖TG
µ (xn − µBxn)− TG

µ (x∗ − µBx∗)‖2

≤ 〈(xn − µBxn) − (x∗ − µBx∗), yn − y∗〉

=
1
2
[‖(xn − µBxn) − (x∗ − µBx∗)‖2 + ‖yn − y∗‖2

−‖(xn − µBxn) − (x∗ − µBx∗) − (yn − y∗)‖2]

≤ 1
2
[‖xn − x∗‖2 + ‖yn − y∗‖2

−‖(xn − yn) − µ(Bxn − Bx∗) − (x∗ − y∗)‖2]

=
1
2
[‖xn − x∗‖2 + ‖yn − y∗‖2 − ‖(xn − yn) − (x∗ − y∗)‖2

+2µ〈(xn − yn) − (x∗ − y∗), Bxn − Bx∗〉 − µ2‖Bxn − Bx∗‖2].

So, we obtain

‖yn − y∗‖2 ≤ ‖xn − x∗‖2 − ‖(xn − yn) − (x∗ − y∗)‖2

+2µ〈(xn − yn) − (x∗ − y∗), Bxn − Bx∗〉 − µ2‖Bxn − Bx∗‖2.

Hence

‖xn+1 − x∗‖2 = ‖αnu + βnxn + γnStn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖yn − y∗‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − γn‖(xn − yn) − (x∗ − y∗)‖2

+2γnµ〈(xn−yn)−(x∗−y∗), Bxn−Bx∗〉−γnµ2‖Bxn−Bx∗‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − γn‖(xn − yn) − (x∗ − y∗)‖2

+2γnµ‖(xn − yn) − (x∗ − y∗)‖‖Bxn − Bx∗‖,
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which implies that

(3.10)

γn‖(xn − yn) − (x∗ − y∗)‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+2γnµ‖(xn − yn) − (x∗ − y∗)‖‖Bxn − Bx∗‖
≤ αn‖u − x∗‖2 + 2γnµ‖(xn − yn) − (x∗ − y∗)‖‖Bxn − Bx∗‖

+‖xn − xn+1‖(‖xn − x∗‖ − ‖xn+1 − x∗‖).
Since αn → 0, ‖xn − xn+1‖ → 0 and ‖Bxn −Bx∗‖ → 0 as n → ∞, from (3.10)
we get ‖(xn − yn) − (x∗ − y∗)‖ → 0 as n → ∞.

Now, utilizing Lemma 2.6 and the firm nonexpansivity of TF
λ we have

(3.11)

‖(yn − tn) + (x∗ − y∗)‖2

= ‖yn − λAyn − (y∗ − λAy∗) − [TF
λ (yn − λAyn)

−TF
λ (y∗ − λAy∗)] + λ(Ayn − Ay∗)‖2

≤ ‖yn − λAyn − (y∗ − λAy∗)−[TF
λ (yn − λAyn) − TF

λ (y∗ − λAy∗)]‖2

+2λ〈Ayn − Ay∗, (yn − tn) + (x∗ − y∗)〉
≤ ‖yn−λAyn−(y∗−λAy∗)‖2−‖TF

λ (yn−λAyn)−TF
λ (y∗−λAy∗)‖2

+2λ‖Ayn − Ay∗‖‖(yn − tn) + (x∗ − y∗)‖
≤ ‖yn−λAyn−(y∗−λAy∗)‖2−‖STF

λ (yn−λAyn)−STF
λ (y∗−λAy∗)‖2

+2λ‖Ayn − Ay∗‖‖(yn − tn) + (x∗ − y∗)‖
= ‖yn − λAyn − (y∗ − λAy∗)‖2 − ‖Stn − Sx∗‖2

+2λ‖Ayn − Ay∗‖‖(yn − tn) + (x∗ − y∗)‖
≤ ‖yn − λAyn − (y∗ − λAy∗) − (Stn − x∗)‖

×(‖yn − λAyn − (y∗ − λAy∗)‖ + ‖Stn − x∗‖)
+2λ‖Ayn − Ay∗‖‖(yn − tn) + (x∗ − y∗)‖

= ‖xn − Stn + x∗ − y∗ − (xn − yn)− λ(Ayn − Ay∗)‖
×(‖yn − λAyn − (y∗ − λAy∗)‖ + ‖Stn − x∗‖)
+2λ‖Ayn − Ay∗‖‖(yn − tn) + (x∗ − y∗)‖.

Since ‖Stn − xn‖ → 0, ‖(xn − yn) − (x∗ − y∗)‖ → 0 and ‖Ayn − Ay∗‖ → 0, it
follows from (3.11) that ‖(yn − tn) + (x∗ − y∗)‖ → 0 as n → ∞. Also, observe
that

‖Stn − tn‖ ≤ ‖Stn − xn‖+ ‖(xn − yn) − (x∗ − y∗)‖+ ‖(yn − tn) + (x∗ − y∗)‖.
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Thus, we get ‖Stn − tn‖ → 0 as n → ∞.
Next, let us show that

lim sup
n→∞

〈u− x̄, xn − x̄〉 ≤ 0,

where x̄ = PF (S)∩�u.
Indeed, since {tn} and {Stn} are two bounded sequences in C, we can choose

a subsequence {tni} of {tn} such that tni ⇀ z ∈ C and

lim sup
n→∞

〈u − x̄, Stn − x̄〉 = lim
i→∞

〈u − x̄, Stni − x̄〉.

Since limn→∞ ‖Stn − tn‖ = 0, we obtain , Stni ⇀ z as i → ∞. Now we claim
that z ∈ F (S) ∩ �. First by Lemma 2.5 it is easy to see that z ∈ F (S). Second,
utilizing Lemma 2.2 we have for all x, y ∈ C

‖Γ(x) − Γ(y)‖2 = ‖TF
λ [TG

µ (x − µBx) − λATG
µ (x− µBx)]

−TF
λ [TG

µ (y − µBy) − λATG
µ (y − µBy)]‖2

≤ ‖TG
µ (x − µBx) − λATG

µ (x − µBx)

−[TG
µ (y − µBy) − λATG

µ (y − µBy)]‖2

= ‖TG
µ (x − µBx) − TG

µ (y − µBy)

−λ(ATG
µ (x − µBx) − ATG

µ (y − µBy))‖2

≤ ‖TG
µ (x − µBx) − TG

µ (y − µBy)‖2

+λ(λ − 2α)‖ATG
µ (x − µBx) − ATG

µ (y − µBy)‖2

≤ ‖TG
µ (x − µBx) − TG

µ (y − µBy)‖2

≤ ‖x − µBx − (y − µBy)‖2

≤ ‖x − y‖2 + µ(µ − 2β)‖Bx − By‖2

≤ ‖x − y‖2.

This shows that Γ : C → C is nonexpansive. Since ‖Stn−tn‖ → 0, ‖Stn−xn‖ →
0 and

‖tn − xn‖ ≤ ‖Stn − tn‖ + ‖Stn − xn‖,
we conclude that ‖tn − xn‖ → 0 as n → ∞. Furthermore, note that

‖tn − Γ(tn)‖ = ‖TF
λ [TG

µ (xn − µBxn) − λATG
µ (xn − µBxn)]− Γ(tn)‖

= ‖Γ(xn) − Γ(tn)‖
≤ ‖xn − tn‖.
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Thus lim supn→∞ ‖tn − Γ(tn)‖ = 0. According to Lemma 2.5 we obtain z ∈ �.
Therefore there holds z ∈ F (S) ∩ �.

On the other hand, it follows from (2.1) that

(3.12)

lim sup
n→∞

〈u − x̄, xn − x̄〉 = lim sup
n→∞

〈u − x̄, Stn − x̄〉

= lim
i→∞

〈u − x̄, Stni − x̄〉

= 〈u − x̄, z − x̄〉
≤ 0.

Hence we have

‖xn+1 − x̄‖2 = 〈αnu + βnxn + γnStn − x̄, xn+1 − x̄〉
= αn〈u− x̄, xn+1 − x̄〉 + βn〈xn − x̄, xn+1 − x̄〉

+γn〈Stn − x̄, xn+1 − x̄〉

≤ 1
2
βn(‖xn − x̄‖2 + ‖xn+1 − x̄‖2) + αn〈u − x̄, xn+1 − x̄〉

+
1
2
γn(‖tn − x̄‖2 + ‖xn+1 − x̄‖2)

≤ 1
2
(1− αn)(‖xn − x̄‖2 + ‖xn+1 − x̄‖2) + αn〈u − x̄, xn+1 − x̄〉,

which implies that

‖xn+1 − x̄‖2 ≤ (1 − αn)‖xn − x̄‖2 + 2αn〈u − x̄, xn+1 − x̄〉.

Consequently, according to (3.12) and Lemma 2.4, we deduce that {xn} converges
strongly to x̄. This completes the proof.

Example 3.1. Let H = R and C = [−π/2, π/2]. Define the mappings
S : C → C, A, B : C → H and F, G : C × C → R as follows:

S(x) = sin x, A(x) = x − (sinx)/2, B(x) = x − (sinx)/3,

F (x, y) = −x2 + y2 and G(x, y) = −|x| + |y|,
for all x, y ∈ C. Then it is clear that S is nonexpansive, A is 2/9-inverse-strongly
monotone and B is 3/8-inverse-strongly monotone. In this case we have F (S)∩� =
{0}. In terms of Theorem 3.1, we choose the parameters λ, µ. Then the sequence
{xn} generated from x1 = u ∈ C by the iterative scheme (3.1) converges to
0 = PF (S)∩�u and (x̄, ȳ) = (0, 0) is a solution of problem (1.4), where ȳ =
TG

µ (x̄− µBx̄).
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Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H and let F : C × C → R be a bifunction satisfying (A1), (A2), (A3)
and (A4). Let A : C → H be an α-inverse-strongly monotone mapping and
let S : C → C be a nonexpansive mapping such that F (S) ∩ � �= ∅. Suppose
x1 = u ∈ C and {xn} is generated by{

yn = TF
µ (xn − µAxn),

xn+1 = αnu + βnxn + γnSTF
λ (yn − λAyn),

where λ, µ ∈ (0, 2α], and {αn}, {βn}, {γn} are three sequences in [0, 1] such that

(i) αn + βn + γn = 1, ∀n ≥ 1;
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converges strongly to x̄ = PF (S)∩�u and (x̄, ȳ) is a solution of
problem (1.4)′, where ȳ = TF

µ (x̄ − µAx̄).

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H and let F, G : C ×C → R be two bifunctions satisfying (A1), (A2), (A3)
and (A4). Let the mappings A, B : C → H be α-inverse-strongly monotone and
β-inverse-strongly monotone, respectively, such that � �= ∅. Suppose x 1 = u ∈ C

and {xn} is generated by{
yn = TG

µ (xn − µBxn),

xn+1 = αnu + βnxn + γnTF
λ (yn − λAyn),

where λ ∈ (0, 2α], µ ∈ (0, 2β], and {αn}, {βn}, {γn} are three sequences in [0, 1]
such that

(i) αn + βn + γn = 1, ∀n ≥ 1;
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converges strongly to x̄ = P�u and (x̄, ȳ) is a solution of problem
(1.4), where ȳ = TG

µ (x̄ − µBx̄).

Recall that a mapping T : C → C is called strictly pseudocontractive if there
exists some k with 0 ≤ k < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x − (I − T )y‖2, ∀x, y ∈ C.



1706 Lu-Chuan Ceng, Adrian Petruşel and Mu-Ming Wong

For recent convergence result for strictly pseudocontractive mappings, we refer to
Zeng, Wong and Yao [19]. Put A = I − T . Then we have

‖(I − A)x − (I − A)y‖2 ≤ ‖x− y‖2 + k‖Ax − Ay‖2.

On the other hand,

‖(I − A)x − (I − A)y‖2 = ‖x − y‖2 + ‖Ax − Ay‖2 − 2〈x − y, Ax− Ay〉.
Hence we have

〈x − y, Ax− Ay〉 ≥ 1 − k

2
‖Ax − Ay‖2.

Consequently, if T : C → C is a strictly pseudocontractive mapping with constant
k, then the mapping A = I − T is (1− k)/2-inverse-strongly monotone.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert
space H and let F, G : C × C → R be two bifunctions satisfying (A1), (A2), (A3)
and (A4). Let the mappings A, B : C → H be 1−k

2 -inverse-strongly monotone
and 1−l

2 -inverse-strongly monotone, respectively, where A = I − T, B = I − V ,
and T, V : C → C are strictly pseudocontractive with constant k and strictly
pseudocontractive with constant l, respectively. Let S : C → C be a nonexpansive
mapping such that F (S) ∩� �= ∅. Suppose x1 = u ∈ C and {xn} is generated by

(3.13)

{
yn = TG

µ ((1 − µ)xn + µV xn),

xn+1 = αnu + βnxn + γnSTF
λ ((1− λ)yn + λTyn),

where λ ∈ (0, 1− k], µ ∈ (0, 1− l], and {αn}, {βn}, {γn} are three sequences in
[0, 1] such that

(i) αn + βn + γn = 1, ∀n ≥ 1;
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converges strongly to x̄ = PF (S)∩�u and (x̄, ȳ) is a solution of problem
(1.4), where ȳ = TG

µ ((1− µ)x̄ + µV x̄).

Proof. Since A = I − T, B = I − V, λ ∈ (0, 1− k] and µ ∈ (0, 1 − l], we
have

TF
λ (yn − λAyn) = TF

λ ((1− λ)yn + λTyn),

TG
µ (xn − µBxn) = TG

µ ((1− µ)xn + µV xn).

Thus the iterative schemes (3.1) and (3.13) are equivalent. Therefore, the conclusion
follows immediately from Theorem 3.1.
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4. APPLICATIONS

Using Theorem 3.1, we prove two results in a real Hilbert space.

Theorem 4.1. Let H be a real Hilbert space and let F : H × H → R be a
bifunction satisfying (A1), (A2), (A3) and (A4). Let A : H → H be an α-inverse-
strongly monotone mapping and let S : H → H be a nonexpansive mapping such
that F (S) ∩ � �= ∅. Suppose x1 = u ∈ H and {xn} is generated by

(4.1)

{
yn = TF

λ (xn − λAxn),

xn+1 = αnu + βnxn + γnSTF
λ (yn − λAyn),

where λ ∈ (0, 2α), and {αn}, {βn}, {γn} are three sequences in [0, 1] such that
(i) αn + βn + γn = 1, ∀n ≥ 1;
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converges strongly to x̄ = PF (S)∩�u and (x̄, ȳ) is a solution of problem
(1.4)′ with C = H , where ȳ = T F

λ (x̄ − λAx̄). In particular, if F = 0, then
x̄ = PF (S)∩A−10u.

Proof. We have λ = µ, C = H, G = F, B = A, and

Γ(x) = TF
λ [TF

λ (x − λAx)− λATF
λ (x− λAx)], ∀x ∈ H.

In this case, (3.1) reduces to (4.1). Hence, utilizing Theorem 3.1 we know that {xn}
converges strongly to x̄ = PF (S)∩�u and (x̄, ȳ) is a solution of problem (1.4)′ with
C = H , where ȳ = TF

λ (x̄ − λAx̄).
Furthermore, whenever F = 0, it is easy to see that A−10 = � and T F

λ =
PH = I . In this case, there holds the following:

problem (1.4)′ ⇔ problem (1.6) ⇔ VI(A, H).

Indeed, it is sufficient to show that problem (1.6) ⇒ VI(A, H). Suppose that
there is (x∗, y∗) ∈ H × H such that


〈Ay∗, x − x∗〉+

1
λ
〈x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ H,

〈Ax∗, y − y∗〉+
1
λ
〈y∗ − x∗, y − y∗〉 ≥ 0, ∀y ∈ H.

Then we have {
x∗ = PH(y∗ − λAy∗),

y∗ = PH(x∗ − λAx∗);
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that is,

(4.2)

{
x∗ = y∗ − λAy∗,

y∗ = x∗ − λAx∗.

We claim that x∗ = y∗. Otherwise, from (4.2) it follows that Ax∗ �= 0, Ay∗ �= 0
and Ax∗ + Ay∗ = 0. Again from (4.2) we obtain

‖x∗ − y∗‖2 = ‖y∗ − x∗ − λ(Ay∗ − Ax∗)‖2

≤ ‖y∗ − x∗‖2 + λ(λ− 2α)‖Ay∗ − Ax∗‖2

< ‖y∗ − x∗‖2,

which hence leads to a contradiction. This shows that x∗ = y∗. Thus, problem
(1.6) ⇒ VI(A, H). By Theorem 3.1, we obtain the desired result.

Theorem 4.2. Let H be a real Hilbert space and let F : H × H → R be a
bifunction satisfying (A1), (A2), (A3) and (A4). Let A : H → H be an α-inverse-
strongly monotone mapping and let B : H → 2 H be a maximal monotone mapping
such that B−10 ∩ � �= ∅. Let JB

r be the resolvent of B for each r > 0. Suppose
x1 = u ∈ H and {xn} is generated by

(4.3)

{
yn = TF

λ (xn − λAxn),

xn+1 = αnu + βnxn + γnJB
r TF

λ (yn − λAyn),

where λ ∈ (0, 2α), and {αn}, {βn}, {γn} are three sequences in [0, 1] such that
(i) αn + βn + γn = 1, ∀n ≥ 1;
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converges strongly to x̄ = PB−10∩�u and (x̄, ȳ) is a solution of problem
(1.4)′ with C = H , where ȳ = T F

λ (x̄ − λAx̄). In particular, if F = 0, then
x̄ = PA−10∩B−10u.

Proof. We have F (JB
r ) = B−10. Putting S = JB

r , by Theorem 4.1 we know
that {xn} converges strongly to x̄ = PB−10∩�u and (x̄, ȳ) is a solution of problem
(1.4)′ with C = H , where ȳ = T F

λ (x̄ − λAx̄). In particular, if F = 0, we obtain
that T F

λ = PH = I . Therefore, A−10 = � and hence x̄ = PA−10∩B−10u.
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Department of Applied Mathematics,
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