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EXISTENCE OF SOLUTIONS TO THE FIRST-ORDER
NONLINEAR BOUNDARY VALUE PROBLEMS

Wei Ding* and Yepeng Xing

Abstract. This paper is concerned with periodic boundary value problems for
a kind of first order impulsive differential equations. Some new results related
to the existence of solutions are obtained by the ideas involve differential
inequalities and fixed point theorems.

1. INTRODUCTION

Impulsive differential equations have been becoming an important field because
many evolution processes are characterized by the fact that at certain moments of
time, they experience a change of state abruptly. For example, many biological
phenomena involving thresholds, bursting rhythm models in medicine and biology,
optimal control models in economics, pharmacokinetics and frequency modulated
systems. Readers can see [1-3] and the references therein for details.

Nowadays, impulsive equations coupled with boundary value conditions have
gained more attention for their widely practical background, such as science, en-
gineering, medical, and technology. The problems concentrate on existence for
solution, extreme solution, uniqueness, multiplicity of solution, periodic solution,
etc. There are many ways to solve this kind of problems. For instance, upper- and
lower- solutions coupled with monotone technique are efficient method to extreme
solution, [4-10]; Krasnoselskii fixed point theorem is often used to solve multiplicity
of solution, [11-14]; Coincidence degree theory is applied to obtain the existence
for periodic solutions, [15-17].
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As we know, the first-order partial differential equations is very important in
Physics, Chemistry, and other field. For example, chromatogram is a modern phys-
ical and chemical analysis. It can be describes as

∂u

∂t
+

∂

∂x
(

aiui

1 + u
) = 0,

where u = (u1, u2, · · · , un)T , ui denote the concentration of each component,
ai are the adsorption equilibrium constants of each component, and they satisfy
0 < a1 < a2 < · · · < an. In physics, there have the transport equation,

ut + cux = 0,

and one dimensional burgers equation,

ut +
1
2
u2 = 0.

The partial differential equations can be easily changed to ordinary differential
equations if the equations are linear ones, for example, by Fourier transform and
Separation of variables. And it is well known, many evolution processes do exhibit
impulsive effects. Motivated by the aforementioned, in this paper, we consider the
following systems

(1)

{
x′(t) = f(t, x(t)), t ∈ J, t �= tk;

�x(tk) = Ik(x(tk)), k = 1, 2, · · · , m,

with the boundary value condition

ax(0) + x(T ) = b.

Here f ∈ C(J × R, R), J = [0, T ], 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T ,
Ik ∈ C(R, R). ∆x(tk) = x(t+k ) − x(t−k ), k = 1, 2, · · · , m, a ∈ R, b ∈ R.

The tool we used is Schaefer fixed point theorem and the Nonlinear Alternative,
see [16,17]. For convenience, we introduce it first.

Theorem 1.1. Let X be a normed space with H : X → X a compact mapping.
If the set

S = {u ∈ X : u = λHu, for some λ ∈ [0, 1)}
is bounded, then H has at least one fixed point.

Theorem 1.2. Let T : B̄p → J be a compact map and let λ ∈ [0, 1]. If

x �= λTx, for all x ∈ ∂Bp and λ ∈ (0, 1),

then there exists at least one x ∈ Bp such that x = Tx.
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2. PREPARATIONS

The systems (1) is equivalent to the following problems with M ∈ R,

(2)

{
x′(t) + Mx(t) = f(t, x(t)) + Mx(t), t ∈ J, t �= tk;

�x(tk) = Ik(x(tk)), k = 1, 2, · · · , m,

with
ax(0) + x(T ) = b.

Following the equivalent relative, we claim that the solution of system (1) is
also the solution of system (2). Hence, we invert our problem to system (2).

Lemma 2.1. Assume aeMT + 1 �= 0, then x ∈ E is a solution of (2) if and
only if x ∈ E0 is a solution of the impulsive integral equation

(3)

x(t) =
∫ T

0
g1(t, s)[f(s, x(s)) + Mx(s)]ds

+
m∑

k=0

g1(t, tk)Ik(x(tk)) + g2(t), t ∈ J

where

g1(t, s) =
1

aeMT + 1

{
aeM (T+s−t), 0 ≤ s ≤ t ≤ T ;

−eM (s−t), 0 ≤ t < s ≤ T,
and g2(t) =

be−Mt

a + e−MT
.

Proof. Suppose that x(t) is a solution of (2). Setting u(t) = eMtx(t), then

(4) u′(t) = eMt[f(t, x(t)) + Mx(t)].

Integrating (4) from 0 to t1, it follows

u(t1)− u(0) =
∫ t1

0
eMs[f(s, x(s)) + Mx(s)]ds.

Again integrating (4) from t1 to t, where t ∈ (t1, t2], then

u(t) = u(t+1 ) +
∫ t

t1

eMs[f(s, x(s)) + Mx(s)]ds

= u(t1) +
∫ t

t1

eMs[f(s, x(s)) + Mx(s)]ds + eMt1I1(x(t1))

= u(0) +
∫ t

0
eMs[f(s, x(s)) + Mx(s)]ds + eMt1I1(x(t1)).

Repeating the above procession, for t ∈ J , we have
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u(t) = u(0) +
∫ t

0

eMs[f(s, x(s)) + Mx(s)]ds +
∑

0<tk<t

eMtkIk(x(tk)).

Note that u(0) = x(0), thus

eMtx(t) = x(0) +
∫ t

0

eMs[f(s, x(s)) + Mx(s)]ds +
∑

0<tk<t

eMtkIkx(tk)).

In view of that x(T ) = b − ax(0), we have

eMT (b − ax(0)) = eMTx(T )

= x(0) +
∫ T

0
eMs[f(s, x(s)) + Mx(s)]ds +

∑
0<tk<T

eMtkIk(x(tk)).

then

x(0) =

−beMT +
∫ T
0 eMs[f(s, x(s)) + Mx(s)]ds +

∑
0<tk<T

eMtkIk(x(tk))

−(1 + aeMT )
.

Then
x(t)

= e−Mt

{−beMT +
∫ T

0
eMs[f(s, x(s)) + Mx(s)]ds +

∑
0<tk<T

eMtkIk(x(tk))

−(1 + aeMT )

+
∫ t

0

eMs[f(s, x(s)) + Mx(s) +
∑

0<tk<t

eMtkIk(x(tk))

}

=
be−Mt

a + e−MT
+

∑
0≤tk<T

eM(tk−t)Ik(x(tk))−(1+aeMT )
∑

0<tk<t

eM(tk−t)Ik(x(tk))

−(1+aeMT )

+

∫ T

0

eM(s−t)[f(s, x(s))+Mx(s)]ds−(1+aeMT )
∫ t

0

eM(s−t)[f(s, x(s))+Mx(s)]ds

−(1+aeMT )

=
be−Mt

a + e−MT
+

a
∑

0≤tk<t

eM(T+tk−t)Ik(x(tk)) −
∑

t≤tk<T

eM(tk−t)Ik(x(tk))

1 + aeMT

+
a

∫ t

0

eM(T+s−t)[f(s, x(s)) + Mx(s)]ds−
∫ T

t

eM(s−t)[f(s, x(s)) + Mx(s)]ds

1 + aeMT

=
∫ T

0

g1(t, s)[f(s, x(s)) + Mx(s)]ds +
m∑

k=1

g1(t, tk)Ik(x(tk)) + g2(t), t ∈ J.
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i.e., x(t) is also the solution of (3).
On the other hand, assume x(t) is a solution of (3). Differentail on (3), we have

x′(t) + Mx(t) = f(t, x(t)) + Mx(t), t ∈ Jk.

Noting that

g1(0, s) =
−eMs

aeMT + 1
, g2(0) =

beMT

aeMT + 1
,

g1(T, s) =
aeMs

aeMT + 1
, g2(T ) =

b

aeMT + 1
,

then by direct calculus, we can verify that x(t) is a solution of (2). This completes
the proof.

Consider (2) with M = 0, the following corollary to Lemma 2.1 is obtained.

Corollary 2.2. x ∈ E is a solution of (1) if and only if y ∈ E 0 is a solution
of the impulsive integral equation

x(t) =
∫ T

0
g(t, s)f(s, x(s))ds +

m∑
k=0

g(t, tk)Ik(x(tk)) +
b

1 + a
, t ∈ J

where

g(t, s) =
1

a + 1

{
a, 0 ≤ s ≤ t ≤ T ;

−1, 0 ≤ t < s ≤ T.

Denote a operator A, A∗ : PC(J; Rn → PC(J; Rn) as

Ax(t) =
∫ T

0

g1(t, s)[f(s, x(s))− Mx(s)]ds +
m∑

k=0

g1(t, tk)Ik(x(tk)) + g2(t),

and

A∗x(t) =
∫ T

0

g(t, s)f(s, x(s))ds +
m∑

k=0

g(t, tk)Ik(x(tk)) +
b

1 + a
, t ∈ J

then we can immediately get the following results.

Lemma 2.3. Suppose g1, g, g2 are defined as above two proposition. Then

(1) If A has a fixed point x∗, it is also a solution to (2). Moreover, it is also a
solution of (1).

(2) If A∗ has a fixed point x∗∗, it is also a solution to the systems (1).
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With the continuity of f and Ik, k = 1, 2, · · · , m on J , we have the following
Lemma, or readers can see Lemma 3.2 in [18].

Lemma 2.4. If operators A, A∗ are defined as above, then they are both compact
maps.

3. MAIN RESULTS

Now, we are in the position to establish some new existence results for systems
(1).

Denote
ā = max{| 1

a+1 |, | a
a+1|, a �= −1}; a∗

= max{| aeMT

aeMT +1
|, | aeMT

aeMT +1
|, aeMT �= −1}.

Theorem 3.1. Assume that |a| ≤ 1. If there exist non-negative constants
α, K, β, L such that

(4) ‖f(t, x)‖ ≤ 2α〈x, f(t, x)〉+ K, (t, x) ∈ Jk × Rn,

(5) ‖Ik(x)‖ ≤ β‖x‖ + L, for all x ∈ Rn, k = 1, 2, · · · , m,

(6) 1 − āmβ > 0,

then the systems (1) has at least one solution.

Proof. In order to use Theorem 1.1, we need to the set S is bounded. That is
to show all potential solutions to

(7) x = λA∗x, λ ∈ [0, 1]

are bounded a priori, with the bound being independent of λ.
Let x(t) be a solution to (7), obviously, x(t) is also a solution to

x′ = λf(t, x), t ∈ Jk,

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, · · · , m,

ax(0) + x(T ) = b.

Then for each t ∈ [0, T ],

‖x(t)‖ = λ‖A∗x‖
= ‖

∫ T

0
λg(t, s)f(s, x(s))ds +

m∑
k=0

λg(t, tk)Ik(x(tk)) +
λb

1 + a
‖
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≤
∫ T

0

g(t, s)‖λf(s, x(s))‖ds +
m∑

k=0

λg(t, tk)‖Ik(x(tk))‖+
λb

1 + a

≤ ā

∫ T

0

[2α〈x, λf(t, x)〉+ K]ds + ā
m∑

k=0

λ[β‖x(tk)‖+ L] + | λb

1 + a
|

=
∫ T

0
ā[αx, x′ + K]ds +

m∑
k=0

ā[β‖x(tk)‖+ L] + | λb

1 + a
|

= ā[α(‖x(T )‖2 − ‖x(0)‖2) + KT + β

m∑
k=0

‖x(tk)‖ + L] + | b

1 + a
|

≤ ā{[α(|b|+ (|a| − 1)‖x(0)‖2] + KT + β

m∑
k=0

‖x(tk)‖ + L} + | b

1 + a
|.

By taking

sup
t∈J

‖x(t)‖ ≤ ā(α|b|+ KT + L) + | b
1+a |

1− āmβ
,

we see that all the conditions in Theorem 1.1 are hold, thus system (1) has at least
one solution.

Similarly, we get Theorem 3.2.

Theorem 3.2. Assume that |a| ≥ 1. If there exist non-negative constants
α, K, β, L such that

‖f(t, x)‖ ≤ −2α〈x, f(t, x)〉+ K, (t, x) ∈ Jk × Rn,

and (5),(6)hold, then the systems (1) has at least one solution.

Corollary 3.3. Let b = 0, Ik = 0, k = 1, 2, · · · , m, then Theorem 3.1. reduces
to Theorem 2.2. in [19].

Corollary 3.4. Let b = 0, Ik = 0, k = 1, 2, · · · , m, then Theorem 3.2. reduces
to Theorem 2.3. in [19].

Let a = 1, b = 0, then system (1) reduces to anti-periodic boundary value
problems(ABVP),

(9)

{
x′(t) = f(t, x(t)), t ∈ J, t �= tk;

�x(tk) = Ik(x(tk)), k = 1, 2, · · · , m,

with the boundary value condition

x(0) = −x(T ).
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And for problem (9), we have the following corollaries.

Theorem 3.5. Assume that |a| ≤ 1. If there exist non-negative constants
α, K, β, L such that

(10) ‖f(t, x)− x‖ ≤ 2α〈x, f(t, x)〉+ K, (t, x) ∈ Jk × Rn,

(11) ‖Ik(x)‖ ≤ β‖x‖ + L, for all x ∈ Rn, k = 1, 2, · · · , m,

and

(12) 1 − a∗mβ > 0,

then the systems (1) has at least one solution.

Proof. Choose M = −1 in Lemma 2.1, then the solution of (2) with M = −1
is equivalent to

x(t) =
∫ T

0
g11(t, s)[f(s, x(s))− x(s)]ds+

m∑
k=0

g11(t, tk)Ik(x(tk))+ g12(t), t ∈ J,

where

g11(t, s) =
1

ae−T +1

{
ae−(T+s−t), 0 ≤ s ≤ t ≤ T ;

−e−(s−t), 0 ≤ t < s ≤ T,
and g12(t) =

bet

a + eT
.

Let
Bp = {x ∈ C([0, T ]; Rn)| max

t∈[0,T ]
‖x(t)‖ < P},

P = ḡ1[2α|b|+ KT + β

m∑
k=0

‖x(tk)‖ + L] + ḡ2 + 1.

We show that A : B̄P → C([0, T ]); Rn) satisfies

x �= λAx, for all x ∈ ∂BP and all λ ∈ (0, 1).

Note that x = λAx is equivalent to the family of

x′ − x = λ[f(t, x)− x], t ∈ Jk,

∆x(tk) = λIk(x(tk)), t = tk, k = 1, 2, · · · , m,

ax(0) + x(T ) = b.
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All solutions to x = λAx must satisfy

‖x(t)‖ = λ‖Ax‖
= ‖

∫ T

0
λg11(t, s)[f(s, x(s))−x(s)]ds+

m∑
k=0

λg11(t, tk)Ik(x(tk)) + λg12‖∫ T

0

g11(t, s)‖λ[f(s, x(s))− x(s)]‖ds +
m∑

k=0

λg11(t, tk)‖Ik(x(tk))‖ + λ‖g12‖

≤ ḡ1

∫ T

0

[2α〈x, λf(t, x)〉+ K]ds + ā

m∑
k=0

λ[β‖x(tk)‖ + L] + ḡ2

=
∫ T

0
ḡ1[2α〈x, x′〉 + K]ds +

m∑
k=0

ā[β‖x(tk)‖ + L] + ḡ2

= ḡ1[2α(‖x(T )‖2 − ‖x(0)‖2) + KT + β

m∑
k=0

‖x(tk)‖ + L] + ḡ2

≤ ḡ1[2α(‖x(T )‖2 − a‖x(0)‖2) + KT + β

m∑
k=0

‖x(tk)‖ + L] + ḡ2

≤ ḡ1[2α|b|+ KT + β

m∑
k=0

‖x(tk)‖+ L] + ḡ2

< P.

Combine Lemma 2.4 with Theorem 1.2, system (1) has at least one solution.
Similarly, we get Theorem 3.7.

Theorem 3.4. Assume that |a| ≥ 1. If there exist non-negative constants
α, K, β, L such that

‖f(t, x) + x‖ ≤ −2α〈x, f(t, x)〉+ K, (t, x) ∈ Jk × Rn,

and (11), (12) hold, then the systems (1) has at least one solution.

Let a = 1, b = 0, then (1) becomes the so-called periodic boundary value
problem(PBVP),

(14)

{
x′(t) = f(t, x(t)), t ∈ J, t �= tk;

�x(tk) = Ik(x(tk)), k = 1, 2, · · · , m,

with the boundary value condition

x(0) = x(T ).

which has been studied in [20]. Since (14) is a special case of (1), our result are
more generalized, the main results in [20] are our following corollary.
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Corollary 3.8. If there exist non-negative constants α, K, β, L, such that
inequalities (10), (11) or (14), (15) hold, and

1 − mβ > 0,

then (14) has at least one solution.

4. EXAMPLES

In this section, we shall give some examples to highlight the above results.

Example 4.1. Consider the following ABVPs,

(15)




x′(t) = t([x(t)]3 + 1), t ∈ [0, 1], t �= t1;

�x(t1) =
1
3
(x(t1));

with the boundary value condition

x(0) = −x(T ).

Choose α = 1
2 , K = 3, β = 1

3 , and L = 0, then one see that all of the conditions of
Corollary 3.5. hold, so (15) has at least one solution.

Example 4.2. ([10]). Consider the following PBVPs,

(16)




x′(t) = x3(t) + x(t) + 1, t ∈ [0, 10], t �= t1;

�x(t1) =
1
2
(x(t1));

with the boundary value condition

x(0) = x(10).

By Corollary 3.8. hold, we can also verify that (16) has at least one solution.

Example 4.3. Consider the following BVPs,

(17)




x′(t) =
1
2
x(t) + 1, t ∈ [0,

1
3
], t �= 1

5
;

�x( 1
5 ) =

1
2
;

with the boundary value condition
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1
2
x(0) + x(

1
3
) = 3.

Here f(t, x) = 1
2x(t) + 1, Ik = 1

2 , a = 1
2 , m = 1, so that 1̄ = 2

3 .

Choose α = 1
2 , K = 2, we have

2α〈x, f(t, x)〉+ K = x2 + 2x + 2 = (x +
3
4
)2 +

7
16

+
1
2
x + 1

=
1
2
x + 1 = f(t, x).

Then let β = 1
3 , L = 0, we have

β‖x‖+ L =
1
3
‖x‖ + 1 ≥ 1

2
= Ik,

and
1 − āmβ = 1 − 21

33
=

7
9

> 0,

thus all the conditions in Theorem 3.1. hold, so (17) has at least one solution.

Example 4.4. Consider the following BVPs,

(18)




x′(t) = −x3(t) +
1
2
x(t), t ∈ [0, 1], t �= 1

5
;

�x
(1

5

)
=

1
2
;

with the boundary value condition

2x(0) + x(1) = 5.

Here f(t, x) = −x3(t) + 1
2x(t), Ik = 1

2 , a = 2, m = 1, so that 1̄ = 2
3 , and

|f(t, x) + x| = | − x3(t) + 3
2 | ≤ |x3(t)| + 3

2 |x(t)|.
Choose α = 1, K = 3, we have

−2α〈x, f(t, x)〉+ 3 −
(
|x3(t)|+ 3

2
|x(t)|

)

= 2αx4 − αx + 3 −
(
|x3(t)| + 3

2
|x(t)|

)

=
(

x2 − 1
2
x(t) − 3

2

)2

+ x4 +
7
4
x2 +

1
4
≥ 0,

so
−2α〈x, f(t, x)〉+ 3 ≥ |x3(t)| + 3

2
|x(t)| ≥ |f(t, x) + x|.
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Still let β = 1
3 , L = 0, we have

β‖x‖ + L =
1
3
‖x‖+ 1 ≥ 1

2
= Ik,

and
1 − āmβ = 1 − 21

33
=

7
9

> 0,

thus all the conditions in Theorem 3.7. hold, so (18) has at least one solution.
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