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THE CROSSED PRODUCT VON NEUMANN ALGEBRAS ASSOCIATED
WITH SL2(R)

Wenming Wu* and Wei Yuan

Abstract. Let A be the abelian von Neumann subalgebra {Mf : f ∈
L∞(H, µr)} of B(L2(H, µr)), where H is the upper half plane and the mea-
sure dµr = dxdy/y2−r. For any integers r > 1, the linear fractional action
of SL2(R) on H induces a continuous action α of SL2(R) on A. It is shown
that the crossed product R(A, α) of A under the action α of SL2(R) is *-
isomorphic to B(L2(P, 2dxdy/y3−2r))⊗LK, where SL2(R) = PK is the
Iwasawa decomposition of SL2(R). Thus R(A, α) is of type I.

1. INTRODUCTION

The 2-order real special linear group SL2(R) = {g ∈ GL2(R) : det(g) = 1}
with the unit e is a connected Lie group and a unimodular group. The set {±e}
is the unique normal subgroup of SL2(R). By means of the representations of
the Lie algebra corresponding to the group SL2(R), Bargmann[1] has classified all
irreducible unitary representations of PSL2(R) = SL2(R)/{±e}.

Let H be the upper half complex plane {z = x + iy : y > 0}. For g =(
a b
c d

)
∈ SL2(R), define the linear fractional action(Möbius transformation) of

g on H as following:

gz =
az + b

cz + d
.

Note that g and −g have the same action.
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For any r � 0, let L2(H, dxdy/y2−r) be the Hilbert space consisting of the
square integrable functions on H with respect to the measure dxdy/y2−r. The set
Hr

a of all analytic functions on H forms a closed subspace of L2(H, dxdy/y2−r).
When r = 0, dµ = dxdy/y2 is called the hyperbolic measure on H and Hr

a = {0}.
Moreover, the measure µ is invariant under the linear fractional action of the group
SL2(R). For any g ∈ SL2(R), we define the operator Ug by

(Ugf)(z) = f(g−1z),

where f ∈ L2(H, dxdy/y2). Then the mapping g → Ug is a continuous unitary
representation of SL2(R) on the Hilbert space L2(H, dxdy/y2).

For any function f ∈ L∞(H, dxdy/y2), we can define the bounded linear opera-
torMf acting on L2(H, dxdy/y2) as (Mfψ)(h) = f(h)ψ(h), ψ ∈ L2(H, dxdy/y2).
All such operators form a maximal abelian *-subalgebra(MASA) A0 = {Mf : f ∈
L∞(H, dxdy/y2)} of B(L2(H, dxdy/y2))[2]. Then αg(T ) = UgTU

∗
g induces a

continuous action α of the group SL2(R) on the MASA A0. By using of the tech-
niques of induced representation in [5], we have shown that the crossed product von
Neumann algebra R(A0, α) of A0 under the action α of SL2(R) is of type I[7].

When r > 1, Hr
a is nonzero. For g =

(
a b
c d

)
∈ SL2(R), choose a normal

branch of a − cz such that arg(a − cz) takes its values in the interval (−π, π].
Using this branch for (a − cz)r = erln(a−cz) , we define the representation πr of
SL2(R) on the Hilbert space L2(H, dxdy/y2−r) as following:

(πr(g)f)(z) = (a− cz)−rf(g−1z).

Then πr is a projective unitary representation of SL2(R). In particular, πr|Hr
a

is also
a projective unitary representation of SL2(R)[4]. When r > 1 is an integer, πr|Hr

a

is an irreducible unitary representation of SL2(R) which is a discrete series repre-
sentation. Furthermore, πr is also a unitary representation of SL2(R) on the Hilbert
space L2(H, µr). Now, for any g ∈ SL2(R) and any operator T in the MASA
A = {Mf : f ∈ L∞(H, µr)} of B(L2(H, dxdy/y2−r)), αg(T ) = πr(g)Tπr(g)∗ is
a continuous action α of SL2(R) on A. However, the action α is not the induced
action, thus we have to modify the techniques in [5] to get the similar result in [7].
Let R(A, α) be the von Neumann algebra crossed product of A under the action α
of SL2(R). We will discuss the structure and properties of R(A, α) in this paper.

The paper is organized as follows. In the following section, we will recall the
construction of the von Neumann algebra crossed product and some properties of
it and discuss the generators and the properties of the group SL2(R) and analysis
the measures on the subgroups of SL2(R) and the continuous action α of SL2(R)
on the MASA A. In the last section, we will use the modified techniques in [5]
to discuss the structure of the crossed product von Neumann algebra R(A, α) and
show that R(A, α) is of type I.
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2. PRELIMINARIES

Supposing that M is a von Neumann algebra acting on the Hilbert space H, G
is a locally compact group with unit e and α is a continuous action of G on M
with respect to the weak-operator topology. Fixing a left Haar measure µ on G,
L2(G, µ) or L2(G) is the Hilbert space consisting of the square integrable complex
functions on G. The mapping g → Lg is the left regular representation of G.

Without special remarking, we will identify the Hilbert space L2(G,H) with
H ⊗ L2(G, µ). With A ∈ M and g in G, we define the operators π(A) and λ(g)
acting on the Hilbert space L2(G,H) by

(π(A)f)(h) = αh−1(A)f(h)

and
λ(g) = I ⊗ Lg,

where f ∈ L2(G,H), h ∈ G. In fact, π is a faithful normal representation of M
on the Hilbert space L2(G,H) and λ is a continuous unitary representation of G.
A straightforward calculation shows that λ(g)π(A)λ(g)∗ = π(αg(A)).

Definition 2.1. With notations as above, we denote by R(M, α) the von Neu-
mann subalgebra of B(L2(G,H)) that is generated by the operators π(M) and
λ(G). We refer to R(M, α) as the crossed product of M under the action α of G.

Actually, R(M, α) is the weak-operator topological closure of the linear span-
ning of {π(A)λ(g), A ∈ M, g ∈ G}. Furthermore, R(M, α) ⊂ M⊗B(L2(G))[6].
Let g → Rg be the right regular representation of the group G. If there is a contin-
uous unitary representation g → Ug of G on H such that αg(A) = UgAU

∗
g for any

A ∈ M and g ∈ G, then we have R(M, α)
′
= {A′ ⊗ I, Ug ⊗ Rg : A

′ ∈ M′
, g ∈

G}′′[6].
Supposing that M and N are von Neumann algebras, α and β are continuous

actions of the group G on them respectively and σ is a *-isomorphism from M onto
N such that σ(αg(A)) = βg(σ(A)) for any A ∈ M and g ∈ G. Then we have
R(M, α) ∼= R(N , β)[6].

Now let us recall the basic properties of the group SL2(R). Every element of

SL2(R) can be uniquely decomposed into the product of the elements
(

1 x

0 1

)
,(

y 0
0 y−1

)
and

(
cos θ sin θ
− sin θ cos θ

)
[3], where x ∈ R, y > 0 and θ ∈ [0, 2π].

Let P be the subgroup {
(

1 x

0 1

)(
y 0
0 y−1

)
: y > 0, x ∈ R} and K be{(

cos θ sin θ
− sin θ cos θ

)
: θ ∈ [0, 2π]

}
of SL2(R) respectively. Then SL2(R) has
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the decomposition PK(Iwasawa decomposition)[3]. Scaling to a constant, the left
Haar measure of the locally compact subgroup P is dxdy/y3 and its right Haar
measure is dxdy/y. The subgroup K is an abelian compact group and cdθ is its
Haar measure.

From the Iwasawa decomposition, the subgroup P can be identified with the
left quotient space Γ = SL2(R)/K by the following bijection:

τ : p �→ [p].

The measure 2dxdy/y3 on P induces a SL2(R)-invariant measure ν on Γ. Then
the measure dµ = 2dxdydθ/y3 is a left Haar measure of SL2(R). Therefore,
L2(SL2(R), µ) ∼= L2(P, 2dxdy/y3) ⊗ L2(K, dθ). This result doesn’t hold for the
measure 2dxdy/y3−2r on the subgroup P . Fortunately, we have the following
similar result. Let ϕ be the function on SL2(R) which is defined by

ϕ

((
1 x
0 1

)(
y 0
0 y−1

)(
cos θ sin θ
− sin θ cos θ

))
= y.

Then easy calculation shows that ϕ(gk) = ϕ(g) for any g ∈ SL2(R) and k ∈ K.
Furthermore, ϕ is continuous and positive. Thus we have the following result.

Proposition 2.2. [5]. There is a unique quasi-SL 2(R)-invariant Borel measure
ν on the left quotient space Γ such that∫

Γ

(∫
K
f(gk)dνK(k)

)
dν([g]) =

∫
SL2(R)

f(g)ϕ(g)2rdµ(g)

for any f ∈ Cc(SL2(R)) which is the set of all continuous function on SL 2(R)
with compact support, where dµ is the left Haar measure 2dxdydθ/y 3 of the group
SL2(R).

According to this result, the Hilbert space L2(SL2(R), ϕ2rdµ) can be decom-
posed into the tensor product L2(Γ, dν)⊗ L2(K, dθ) which can be identified with
L2(P, 2dxdy/y3−2r) ⊗ L2(K, dθ) by the mapping τ .

The subgroup P also can be identified with the upper half plane H by the
following bijection:

σ : P �
(

1 x
0 1

)(
y 0
0 y−1

)
�→ z = x+ iy2 ∈ H.

Let’s fix the measure dxdy/y2−r on H and the measure 2dxdy/y3−2r on the group
P . Then the mapping σ is a measure-preserving transformation. Let ν be the
measure on Γ induced by through proposition 2.2. Then the mapping σ and the



The Crossed Product von Neumann Algebras Associated with SL2(R) 1505

quotient mapping τ induce a unitary operator V from the Hilbert space L2(H, dµr)
onto the Hilbert space L2(Γ, dν). The operator V is defined by

(V f)([g]) = f(σ(τ−1([g])))

for any g ∈ P and f ∈ L2(H, dxdy/y2−r).

With f ∈ L2(H, dxdy/y2−r) and g =
(
a b

c d

)
∈ SL2(R), where r > 1 is a

fixed integer, we define a measurable function πr(g)f on H by

(πr(g)f)(z) = (a− cz)−rf(g−1z).

Simple calculation shows that πr(g) is a unitary operator. Furthermore, we have
the following result [1, 3].

Proposition 2.3. With respect to the strong pointwise topology, π r is a contin-
uous unitary representation of SL 2(R) on L2(H, dxdy/y2−r).

With F ∈ L∞(H, dxdy/y2−r), the bounded linear operator MF is defined by

(MF f)(z) = F (z)f(z)

for any f ∈ L2(H, dxdy/y2−r). Then A = {MF : F ∈ L∞(H, dxdy/y2−r)}
is a MASA of B(L2(H, dxdy/y2−r))[2]. Now for any g ∈ SL2(R), we define
the action αg of g on the MASA A by αg(A) = πr(g)Aπr(g)∗. Concerning the
definition of the representation πr of SL2(R), we have the following results.

Lemma 2.4. With respect to the weak-operator topology, α is a continuous
action of the group SL2(R) on the MASA A.

Proof. According to the properties of the unitary representation πr, we just
need to show that, for any g ∈ SL2(R) and MF ∈ A, we have αg(MF ) ∈ A.

In fact, for all MF ∈ A and g =
(
a b

c d

)
∈ SL2(R), we have

πr(g)MFπr(g)∗ = MF (g−1·),

since

(πr(g)MFπr(g)∗f)(z) = (a− cz)−r(MFπr(g)∗f)(g−1z)

= (a− cz)−rF (g−1z)(πr(g)∗f)(g−1z)

= (a− cz)−rF (g−1z)(d+ c(g−1z))−rf(z)

= (MF (g−1·)f)(z)
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for any f ∈ L2(H, dxdy/y2−r).

According to the above result, the action α of SL2(R) is implemented by the
unitary representation πr. Now for the convenience, we identify the tensor product
Hilbert space L2(H, dxdy/y2−r) ⊗ L2(SL2(R), µ) with L2(SL2(R), L2(H, dxdy
/y2−r)) by identifying v ⊗ φ with vφ, where v ∈ L2(H, dxdy/y2−r) and φ ∈
L2(SL2(R), µ). With MF ∈ A and g ∈ G, we define the operators Π(MF ) and
Λ(g) acting on L2(H, dxdy/y2−r) ⊗ L2(SL2(R), µ) by

(Π(MF )vφ)(h) = φ(h)αh−1(MF )v

and
Λ(g) = I ⊗ Lg.

Then Π is a faithful normal representation of A and Λ is a continuous unitary
representation of SL2(R) on L2(H, dxdy/y2−r) ⊗ L2(SL2(R), µ). The crossed
product R(A, α) of A by α is the von Neumann subalgebra of B(L2(H, dxdy/y2−r)⊗
L2(G, µ)), which is generated by the operators Π(MF ), MF ∈ A and Λ(g), g ∈ G.
Furthermore, R(A, α) is the weak operator topology closure of the linear span of
the set {Π(T )Λ(g) : T ∈ A, g ∈ G}.

Using the unitary operator V and the bijection τ , we can define another ac-
tion β of the group SL2(R) on the von Neumann algebra C = {Mf : f ∈
L∞(Γ, ν)} which is acting on the Hilbert space L2(Γ, ν), where the measure ν
is induced by the measure 2dxdy/y3−2r on P . We firstly define the operator
π̃r(g) ∈ B(L2(Γ, 2dxdy/y3−2r)) by π̃r(g) = V πr(g)V ∗ for any g ∈ SL2(R).
Then according to the proposition 2.3, π̃r is a continuous unitary representation
of SL2(R) with respect to the strong pointwise topology. With g ∈ SL2(R) and
Mf ∈ C, we define the βg by

βg(Mf ) = π̃r(g)Mf π̃r(g)∗.

Lemma 2.5. With respect to the weak-operator topology, β is a continuous
action of the group SL2(R) on the von Neumann algebra C.

Proof. For any g =
(
a b
c d

)
∈ SL2(R) and f ∈ L2(Γ, ν), we have

(π̃r(g)f)
([(

1 x
0 1

)(
y 0
0 y−1

)])

= (V πr(g)V ∗f)
([(

1 x
0 1

)(
y 0
0 y−1

)])

= (πr(g)V ∗f)(x+ iy2)
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= (a− c(x+ iy2))−r(V ∗f)(g−1(x+ iy2))

= (a− c(x+ iy2))−rf([σ−1(g−1(x+ iy2))])

= (a− c(x+ iy2))−rf([g−1p]).

The last equation has used the computation in the Appendix 1. of [7].
Hence with F ∈ L∞(Γ, ν), we have

βg(MF ) = π̃r(g)MF π̃r(g)∗ = MF ([g−1·])

since for all f ∈ L2(Γ, ν) and p =
(

1 x
0 1

)(
y 0
0 y−1

)
∈ P ⊂ SL2(R),

(βg(MF )f)([p]) = (π̃r(g)MF π̃r(g)∗f)([p])

= (a− c(x+ iy2))−r(MF π̃r(g)∗f)([σ−1(g−1(x+ iy2))])

= (a− c(x+ iy2))−rF ([g−1p])(π̃r(g)∗f)([g−1p])

= (a− c(x+ iy2))−rF ([g−1p])(d+ c(g−1(x+ iy2)))−rf([p])

= (MF ([g−1·])f)([p]).

Thus β is a continuous automorphism action of SL2(R) on the abelian von Neu-
mann algebra C with respect to the weak-operator topology by the continuity of the
representation πr.

With MF ∈ C and g ∈ SL2(R), we define the operators Π̃(MF ) and Λ̃(g)
acting on L2(Γ, ν)⊗ L2(SL2(R), µ) by

(Π̃(MF )vφ)(h) = φ(h)βh−1(MF )v,

and
Λ̃(g) = I ⊗ Lg.

The crossed product von Neumann algebra R(C, β) is generated by the operators
Π̃(C) and Λ̃(SL2(R)).

3. MAIN RESULTS

Now we will analysis the structure of the crossed product R(A, α). Firstly, we
have the following important result.



1508 Wenming Wu and Wei Yuan

Lemma 3.1. The crossed product R(A, α) is *-isomorphic to the crossed
product R(C, β).

Proof. Let ι : A → C be the following isomorphism which is induced by the

mapping τ and σ. With F ∈L∞(H, dxdy/y2−r) and p =
(

1 x

0 1

)(
y 0
0 y−1

)
∈

P , we define the operator ι(MF ) ∈ C by

(ι(MF )f)([p]) = F (σ(τ−1([p])))f([p])

= F (x+ iy2)f([p]).

Then for any g ∈ SL2(R) and MF ∈ A, we have

(ι(αg(MF ))f)([p]) = (ι(MF (g−1·))f)([p])

= F (g−1(x+ iy2))f([p])

and

(βg(ι(MF ))f)([p]) = (βg(MF (σ◦τ−1·))f)([p])

= F (σ(τ−1([g−1p])))f([p])

By using of the computation in the Appendix 1. of [7] again, we have ι ◦αg =
βg ◦ ι. Thus R(A, α) ∼= R(C, β).

According to this lemma, we just need to study the crossed product R(C, β)
to characterize the crossed product R(A, α). With F ∈ L∞(SL2(R), ϕ2rdµ) and
f ∈ H = L2(SL2(R), ϕ2rdµ), we define the operator MF acting on H as following

(MF f)(x) = F (x)f(x), x ∈ SL2(R).

Let M be the MASA {MF : F ∈ L∞(SL2(R), ϕ2rdµ)}. As the measure ϕ2rdµ is
not invariant under the left translation of the group SL2(R), then we have to define

another action of the group SL2(R) on M. With g =
(
a b
c d

)
∈ SL2(R)

and k ∈ K, we define the bounded linear operator π̂r(g) and R̂k acting on
L2(SL2(R), ϕ2rdµ) by

(π̂r(g)f)(h) =
1

(a− cσ(τ−1([h])))r
f(g−1h)

and
(R̂kf)(h) = f(hk).
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Lemma 3.2.

(1) π̂r and R̂ are unitary representations of the groups SL 2(R) and K respec-
tively.

(2) For any g =
(
a b

c d

)
∈ SL2(R) and k ∈ K, we have

π̂r(g)R̂k = R̂kπ̂r(g).

Proof. The proof of (1) is paralleling to the proof of Lemma 2.5. Here we
just need to show that the second claim holds. With f ∈ L2(SL2(R), ϕ2rdµ) and
h ∈ SL2(R), by the following computation

(π̂r(g)R̂kf)(h) =
1

(a− cσ(τ−1([h])))r
(R̂kf)(g−1h)

=
1

(a− cσ(τ−1([h])))r
f(g−1hk)

and

(R̂kπ̂r(g)f)(h) = (π̂r(g)f)(hk)

=
1

(a− cσ(τ−1([hk])))r
f(g−1hk),

the claim holds since τ−1([hk]) = τ−1([h]).

We will identify C = {MF : F ∈ L∞(Γ, ν)} with an abelian von Neumann sub-
algebra N of M and define another action of the group SL2(R) on the subalgebra
N . In fact,

N = {MF ∈ M : F (gk) = F (g), g ∈ SL2(R), k ∈ K}.
We have the following result.

Lemma 3.3. With notations as above, N = M∩{R̂k : k ∈ K}′ .

Proof. We just need to show that with MF ∈ M, F (gk) = F (g) if and only
if MF R̂k = R̂kMF .

If F (gk) = F (k), then for any f ∈ L2(SL2(R), ϕ2rdµ) and h ∈ SL2(R), we
have

(MF R̂kf)(h) = F (h)f(hk) = F (hk)f(hk) = (R̂kMF f)(h).
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When MF R̂k = R̂kMF , the claim holds since, for any f ∈ L2(SL2(R), ϕ2rdµ)
and h ∈ SL2(R), we have

F (h)f(hk) = (MF R̂kf)(h) = (R̂kMF f)(h) = F (hk)f(hk).

With g =
(
a b
c d

)
∈ SL2(R), we have π̂r(g)Mπ̂r(g)∗ = M and π̂r(g)N π̂r

(g)∗ = N . In fact, for any MF ∈ B, we have

(π̂r(g)MF π̂r(g)∗f)(h) =
1

(a− cσ(τ−1([h])))r
(MF π̂r(g)∗f)(g−1h)

=
1

(a− cσ(τ−1([h])))r
F (g−1h)(π̂r(g)∗f)(g−1h)

=
F (g−1h)f(h)

(a− cσ(τ−1([h])))r(d+ cσ(τ−1([g−1h])))r

= (MF (g−1·)f)(h).

As MF ∈ N or M is equivalent to MF (g−1·) ∈ N or M, then the claim is true.
Thus γg(MF ) = π̂r(g)MF π̂r(g)∗ is a continuous automorphism action of SL2(R)
on M with respect to the weak operator topology and the restriction of γ on the
subalgebra N is also a continuous action. The crossed product R(M, γ) is the von
Neumann algebra generated by the bounded linear operators Π̂(MF ), MF ∈ M
and Λ̂(g), g ∈ SL2(R) acting on L2(SL2(R), ϕ2rdµ) ⊗ L2(SL2(R), dµ) which is
defined by

(Π̂(MF )vφ)(h) = φ(h)γh−1(MF )v,

and
Λ̂(g) = I ⊗ Lg,

respectively. Note that R(N , γ) is generated by the operators Π̂(MF ), MF ∈ N
and Λ̂(g), g ∈ SL2(R). Now we can get the main result of this paper.

Theorem 3.4. With notations as above, let LK be the group von Neumann al-
gebra ofK. Then the following von Neumann algebras R(A, α), R(C, β), R(N , γ)
and B(L2(P, 2dxdy/y3−2r))⊗LK are *-isomorphic.

Proof. By Lemma 3.1., the crossed product R(A, α) is *-isomorphic to the
crossed product R(C, β). Our plan to verify the rest is to show that R(C, β) ∼=
R(N , γ) and R(N , γ) ∼= B(L2(P, 2dxdy/y3−2r))⊗LK .

Recall that C = {MF : F ∈ L∞(Γ, ν)} where Γ is the quotient space of
left coset with respect to the group K . From the mapping τ , with MF ∈ N ,
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F̃ ([g]) � F (g) is well defined and M
F̃
∈ C. Conversely, for any F̃ ∈ L∞(Γ, ν),

F (g) � F̃ ([g]) is well defined and MF belongs to N . Furthermore, we have
‖F‖ = ‖F̃‖. Thus ω : MF �→M

F̃
is an *-isomorphism from N onto C.

Claim 1. R(C, β) ∼= R(N , γ) is implemented by the mapping ω.
According to the above-mentioned results, we just need to show that the mapping

ω interweave the actions β and γ of the group SL2(R) on C and N . WithMF ∈ N ,
let G � F (g−1·). Then for any g, h ∈ SL2(R), we have

(ω(γg(MF ))f)([h]) = (ω(MF (g−1·))f)([h])

= (M
G̃
f)([h]) = G̃([h])f([h])

= G(h)f([h]) = F (g−1h)f([h])

and

(βg(ω(MF ))f)([h]) =(βg(MF̃ )f)([h])

= F̃ ([g−1h])f([h]) = F (g−1h)f([h]).

Thus the claim 1. holds.
Now we investigate the structure of the crossed product R(N , γ). As the ac-

tion γ of SL2(R) is implemented by the unitary representation π̂, the commutant
R(N , γ)

′ of R(N , γ) equals to the von Neumann subalgebra {T ′ ⊗ I, π̂(g)⊗Rg :
T

′ ∈ N ′
, g ∈ SL2(R)}′′ of B(L2(SL2(R), ϕ2rdµ) ⊗ L2(SL2(R), dµ)). Thus

R(N , γ) = (N ′⊗I)′ ∩ {π̂(g)⊗Rg : g ∈ SL2(R)}′

= (N⊗B(L2(SL2(R), dµ)))∩ {π̂(g)⊗ Rg : g ∈ SL2(R)}′
.

From Lemma 3.3, we have

N⊗B(L2(SL2(R), dµ)) = (M∩ {R̂k : k ∈ K}′
)⊗B(L2(SL2(R), dµ))

= (M⊗B(L2(SL2(R), dµ)))∩ {R̂k ⊗ I : k ∈ K}′
.

Note that the commutant algebra of R(M, γ) is the von Neumann subalgebra
of B(L2(SL2(R), ϕ2rdµ) ⊗ L2(SL2(R), dµ)) generated by the operators T ⊗ I ,
T ∈ M′

(= M) ⊂ N ′ and π̂(g)⊗Rg, g ∈ SL2(R). Therefore,

R(M, γ) = (M⊗CI)
′ ∩ {π̂(g)⊗ Rg : g ∈ SL2(R)}′

= (M⊗B(L2(SL2(R), dµ)))∩ {π̂(g)⊗Rg : g ∈ SL2(R)}′
.
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Hence,
R(N , γ) = R(M, γ)∩ {R̂k ⊗ I : k ∈ K}′

.

Claim 2. R(M, γ) ∼= B(L2(SL2(R), ϕ2rdµ))⊗CI .
In fact, this isomorphism is induced by a unitary operator W which is defined

as follows:
(Wξ)(g, h) = ϕ(g)−rϕ(h)rξ(h, gh−1),

where ξ ∈ L2(SL2(R)×SL2(R), ϕ2rdµ×dµ) and µ is the above-mentioned Haar
measure on SL2(R). With ξ, η ∈ L2(SL2(R) × SL2(R), ϕ2rdµ× dµ), we have

‖Wξ‖2 =
∫

G

∫
G

ϕ(g)−2rϕ(h)2r|ξ(h, gh−1)|2ϕ(g)2rdµ(g)dµ(h)

=
∫

G

(∫
G
|ξ(h, gh−1))|2dµ(g)

)
ϕ(h)2rdµ(h)

=
∫

G

∫
G
|ξ(h, g)|2ϕ(h)2rdµ(h)dµ(g)

= ‖ξ‖2

and

〈Wξ, η〉 =
∫ ∫

ϕ(g)rϕ(h)rξ(h, gh−1)η(g, h)dµ(g)dµ(h)

=
∫ ∫

ϕ(h)rϕ(sh)rξ(h, s)η(sh, h)dµ(sh)dµ(h)

=
∫ ∫

ϕ(h)rϕ(sh)rξ(h, s)η(sh, h)dµ(s)dµ(h)

=
∫ ∫

ξ(h, s)ϕ(h)−rϕ(sh)rη(sh, h)ϕ(h)2rdµ(s)dµ(h)

= 〈ξ,W ∗η〉.
Thus (W ∗ξ)(g, h) = ϕ(g)−rϕ(hg)rξ(hg, g) and W ∗W = WW ∗ = I .

With MF ∈ M and g ∈ SL2(R), recalling that (Π̂(MF )ξ)(s, t) = F (ts)ξ(s, t)
and (Λ̂(g)ξ) = ξ(s, g−1t) for any ξ ∈ L2(SL2(R) × SL2(R), ϕ2rdµ × dµ). We
have

(W Π̂(MF )W ∗ξ)(g, h) = ϕ(g)−rϕ(h)r(Π̂(MF )W ∗ξ)(h, gh−1)

= F (g)ϕ(g)−rϕ(h)r(W ∗ξ)(h, gh−1)

= F (g)ξ(g, h)

= ((MF ⊗ I)ξ)(g, h)
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and

(W Λ̂(g)W ∗ξ)(s, t) = ϕ(s)−rϕ(t)r((I ⊗ Lg)W ∗ξ)(t, st−1)

= ϕ(s)−rϕ(t)r(W ∗ξ)(t, g−1st−1)

= ϕ(s)−rϕ(g−1s)rξ(g−1s, t).

Thus the von Neumann algebra generated by the operators WΠ̂(MF )W ∗, MF ∈ B
and W Λ̂(g)W ∗, g ∈ SL2(R) is B(L2(SL2(R), ϕ2rdµ))⊗CI . Then the claim 2.
holds.

With k ∈ K, we have W (R̂k ⊗ I)W ∗ = R̂k ⊗ Rk, since for any ξ ∈
L2(SL2(R)× SL2(R), ϕ2rdµ × dµ),

(W (R̂k ⊗ I)W ∗ξ)(g, h) = ϕ(g)−rϕ(h)r((R̂k ⊗ I)W ∗ξ)(h, gh−1)

= ϕ(g)−rϕ(h)r(W ∗ξ)(hk, gh−1)

= ϕ(g)−rϕ(h)rϕ(hk)−rϕ(gk)rξ(gk, hk)

= ξ(gk, hk)

= ((R̂k ⊗ Rk)ξ)(g, h).

Summarizing all the above facts, we have

WR(N , γ)W ∗ = (B(L2(SL2(R), ϕ2rdµ))⊗CI) ∩ {R̂k ⊗Rk : k ∈ K}′
.

As K is an abelian group, thus

R(N , γ) ∼= B(L2(SL2(R), ϕ2rdµ)) ∩ {R̂k : k ∈ K}′
.

To determine the structure of B(L2(SL2(R), ϕ2rdµ))∩{R̂k : k ∈ K}′ , we recall
the decompositionB(L2(SL2(R), ϕ2rdµ)) ∼= B(L2(P, 2dxdy/y3−2r))⊗B(L2(K, dθ)).
Consider the right regular representation ρk of K on L2(K, dθ). Denote by RK

the von Neumann algebra generated by ρk, k ∈ K. Then R′
K = LK , the abelian

group von Neumann algebra generated by the left regular representation of K on
L2(K, ddθ). According to the Iwasawa decomposition of SL2(R), under the above
mentioned decomposition of B(L2(SL2(R), ϕ2rdµ)), the representation R̂k of K is
I ⊗ ρk. Hence

R(N , γ) ∼= B(L2(SL2(R), ϕ2rdµ)) ∩ {R̂k : k ∈ K}′

∼= (B(L2(P, 2dxdy/y3−2r))⊗B(L2(K, dθ)))∩ (CI⊗RK)
′

= B(L2(P, 2dxdy/y3−2r))⊗LK .
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By summarizing all the above facts, we can get this theorem.

According to this result, the crossed product von Neumann algebra R(A, α) is
of type I. In fact, the von Neumann algebra B(L2(P , 2dxdy/y3−2r)) is of type I
and the abelian von Neumann algebra LK is also of type I, thus the claim holds
since the tensor product of two von Neumann algebras of type I is still of type I.

Remark 3.5. For any r � 0, with g =
(
a b
c d

)
∈ SL2(R), we define the

operator πr(g) acting on the Hilbert space L2(H, dxdy/y2−r) as following:

(πr(g)f)(z) = |a− cz|−rf(g−1z).

Then πr(g) is a unitary operator and πr is a unitary representation of SL2(R). We
define the action α of SL2(R) on the MASA A = {MF : F ∈ L∞(H, dxdy/y2−r)}
as

αg(T ) = πr(g)Tπr(g)∗,

where g ∈ SL2(R) and T ∈ A. Similaring to the crossed product R(A, α), the
crossed product R(A, α) has the same result.
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