TAIWANESE JOURNAL OF MATHEMATICS

Vol. 14, No. 4, pp. 1479-1490, August 2010

This paper is available online at http://www.tjm.nsysu.edu.tw/

CLASSES OF MEROMORPHIC α -CONVEX FUNCTIONS

Rosihan M. Ali and V. Ravichandran

Abstract. For a fixed analytic univalent function ϕ , the class of meromorphic univalent α -convex functions with respect to ϕ is introduced. A representation theorem for functions in the class, as well as a necessary and sufficient condition for functions to belong to the class are obtained. Also we obtain a sharp growth theorem and estimate on a certain coefficient functional for meromorphic starlike functions with respect to ϕ . Differential subordination and superordination conditions are also obtained for the subclass of meromorphic starlike functions with respect to ϕ .

1. Introduction

Let Σ denote the class of meromorphic univalent functions f defined on the punctured unit disk $\Delta^*:=\{z\in\mathbb{C}:0<|z|<1\}$ having the form $f(z)=1/z+\sum_{k=0}^\infty a_k z^k$. A function $f\in\Sigma$ is said to be *meromorphic starlike of order* α $(0\leq\alpha<1)$ if $-\Re[zf'(z)/f(z)]>\alpha$ for all $z\in\Delta:=\{z\in\mathbb{C}:|z|<1\}$. We denote by $\Sigma^*(\alpha)$ the class of all such meromorphic starlike functions of order α in Δ^* .

Several authors [2, 3, 7, 10, 11, 14, 16, 17] have studied various subclasses of $\Sigma^*(\alpha)$, as well as subclasses of meromorphic convex functions of order α . The latter class is characterized by the property $-\Re[1+zf''(z)/f'(z)]>\alpha$. We shall unify these functions in Definition 1.1.

First we recall the definition of subordination. For two functions f and g analytic in Δ , we say that the function f(z) is *subordinate* to g(z) in Δ , and write $f \prec g$ or $f(z) \prec g(z)$ $(z \in \Delta)$, if there exists a Schwarz function w(z), analytic in Δ with w(0) = 0 and |w(z)| < 1 $(z \in \Delta)$, such that f(z) = g(w(z)) $(z \in \Delta)$. In particular, if the function g is *univalent* in Δ , the above subordination is equivalent to f(0) = g(0) and $f(\Delta) \subset g(\Delta)$.

Received November 8, 2006, accepted October 13, 2008.

Communicated by Der-Chen Chang.

2000 Mathematics Subject Classification: Primary 30C45; Secondary 30C80.

Key words and phrases: Convolution, Univalent meromorphic functions, Differential subordination and superordination.

The authors gratefully acknowledged support from USM's Research University grant.

Definition 1.1. Let $\phi(z)$ be an analytic univalent function in Δ with $\phi(0) = 1$. Let $\Sigma_{\alpha}^*(\phi)$ be the class of functions $f \in \Sigma$ satisfying $f(z)f'(z) \neq 0$ and

$$(1.1) \qquad -\left[\left(1-\alpha\right)\left(\frac{zf'(z)}{f(z)}\right) + \alpha\left(1+\frac{zf''(z)}{f'(z)}\right)\right] \prec \phi(z) \quad (z \in \Delta).$$

The function $f \in \Sigma_{\alpha}^*(\phi)$ is called a meromorphic α -convex function with respect to ϕ . (Here \prec denotes subordination between analytic functions.) We shall write $\Sigma_0^*(\phi)$ by $\Sigma^*(\phi)$.

With

$$\phi(z) = \frac{1 + (1 - 2\alpha)z}{1 - z} \quad (0 \le \alpha < 1),$$

it is obvious that $\Sigma_0^*(\phi)$ is the class of meromorphic starlike functions of order α , while $\Sigma_1^*(\phi)$ is the class of meromorphic convex functions of order α . The class $\Sigma^*(\phi)$ reduces to the class $\Sigma(\alpha, \beta, \gamma)$ introduced by Kulkarni and Joshi [5] when

(1.2)
$$\phi(z) = \frac{1 + \beta(1 - 2\alpha\gamma)z}{1 + \beta(1 - 2\gamma)z} \quad (0 \le \alpha < 1; \ 0 < \beta \le 1; \ 1/2 \le \gamma \le 1).$$

Karunakaran [4] have considered a special case of the class $\Sigma^*(\phi)$ consisting of functions $f \in \Sigma$ for which

$$-\frac{zf'(z)}{f(z)} = \frac{1 + Aw(z)}{1 + Bw(z)} \quad (0 \le B < 1; -B < A < B),$$

where w(z) is an analytic function in Δ with w(0) = 0 and |w(z)| < 1 $(z \in \Delta)$. He denoted this class by $K_1(A, B)$.

In this paper, a representation theorem as well as a necessary and sufficient condition for functions to belong to $\Sigma_{\alpha}^*(\phi)$ is obtained. Also we obtain a sharp growth theorem and estimate for the coefficient functional $|a_1 - \mu a_0^2|$ for functions in $\Sigma^*(\phi)$. Finally we investigate the subclass $\Sigma^*(\phi)$ from the perspective of first-order differential subordination and superordination [8, 9].

2. A Representation Theorem

We first prove a representation formula for functions in the class $\Sigma_{\alpha}^{*}(\phi)$.

Theorem 2.1. A function $f(z) \in \Sigma_{\alpha}^*(\phi)$ if and only if

$$[zf(z)]^{1-\alpha}[-z^2f'(z)]^{\alpha} = \exp\left(\int_0^z \frac{1-\phi(w(\eta))}{\eta}d\eta\right),$$

where w(z) is analytic in Δ satisfying w(0) = 0 and $|w(z)| \leq 1$.

Proof. Let $f(z) \in \Sigma_{\alpha}^*(\phi)$. Then (1.1) holds and therefore there is a function w(z) analytic in Δ with w(0) = 0 and $|w(z)| \le 1$ such that

$$-\left[(1-\alpha) \left(\frac{zf'(z)}{f(z)} \right) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] = \phi(w(z)), \quad (z \in \Delta).$$

Rewriting the above equation in the form

$$\left[(1 - \alpha) \left(\frac{1}{z} + \frac{f'(z)}{f(z)} \right) + \alpha \left(\frac{2}{z} + \frac{f''(z)}{f'(z)} \right) \right] = \frac{1 - \phi(w(z))}{z}, \quad (z \in \Delta)$$

and integrating from 0 to z, we obtain the desired expression upon exponentiation. The converse follows directly by differentiation.

Example 2.1. For the function $\phi(z)$ given by (1.2) and with $\alpha=0$, we obtain [5, Theorem 1, p. 198]: Let $f\in \Sigma$ and $0\leq \alpha<1,\ 0<\beta\leq 1$ and $1/2\leq \gamma\leq 1$. Then $f\in \Sigma(\alpha,\beta,\gamma)$ if and only if

$$zf(z) = \exp\left(-\int_0^z \frac{2\beta\gamma(1-\alpha)w(\eta)}{[1+\beta(1-2\gamma)w(\eta)]\eta}d\eta\right)$$

where w(z) is analytic in Δ satisfying w(0) = 0 and $|w(z)| \leq 1$.

3. A NECESSARY AND SUFFICIENT CONDITION

We need the following subordination result.

Lemma 3.1. [13]. Let ϕ be a convex univalent function defined on Δ and $\phi(0)=1$. Define F(z) by

$$F(z) = z \exp\left(\int_0^z \frac{\phi(\eta) - 1}{\eta} d\eta\right).$$

Let q(z) be analytic in Δ and q(0) = 1. Then

$$(3.1) 1 + \frac{zq'(z)}{q(z)} \prec \phi(z)$$

if and only if for all $|s| \le 1$ and $|t| \le 1$,

(3.2)
$$\frac{q(tz)}{q(sz)} \prec \frac{sF(tz)}{tF(sz)}.$$

Using Lemma 3.1, we obtain the following necessary and sufficient conditions for functions to belong to $\Sigma_{\alpha}^{*}(\phi)$.

Theorem 3.1. Let $\phi(z)$ and F(z) be as in Lemma 3.1. A function f belongs to $\Sigma_{\alpha}^*(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$,

$$\left(\frac{sf(sz)}{tf(tz)}\right)^{1-\alpha} \left(\frac{s^2f'(sz)}{t^2f'(tz)}\right)^{\alpha} \prec \frac{sF(tz)}{tF(sz)}.$$

Proof. Define the function q(z) by

$$\frac{1}{q(z)} := (zf(z))^{1-\alpha} \left(-z^2 f'(z)\right)^{\alpha}.$$

Then a computation shows that

$$1 + \frac{zq'(z)}{q(z)} = -\left[(1 - \alpha) \left(\frac{zf'(z)}{f(z)} \right) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right]$$

and the result now follows from Lemma 3.1.

Example 3.2. Let $\Sigma_{\alpha}^*[A,B]$ be the class of all meromorphic α -convex functions $f \in \Sigma$ satisfying

$$-\left[(1-\alpha) \left(\frac{zf'(z)}{f(z)} \right) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] \prec \frac{1+Az}{1+Bz} \quad (-1 \le B < A \le 1; z \in \Delta).$$

The function $f \in \Sigma_{\alpha}^*[A, B]$ if and only if for all $|s| \le 1$ and $|t| \le 1$,

$$\left(\frac{sf(sz)}{tf(tz)}\right)^{1-\alpha} \left(\frac{s^2f'(sz)}{t^2f'(tz)}\right)^{\alpha} \prec \left\{ \begin{array}{ll} \left(\frac{1+Btz}{1+Bsz}\right)^{(A-B)/B} & \text{if } B \neq 0 \\ e^{A(t-s)z} & \text{if } B = 0 \end{array} \right. .$$

4. Growth Theorem for Functions in $\Sigma^*(\phi)$

We need the following Lemma in the proof of Theorem 4.1.

Lemma 4.1. [8, Corollary 3.4h.1, p.135]. Let q(z) be univalent in Δ and let $\psi(z)$ be analytic in a domain containing $q(\Delta)$. If $zq'(z)/\psi(q(z))$ is starlike, and

$$zp'(z)\psi(p(z)) \prec zq'(z)\psi(q(z)),$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Theorem 4.1 below is a special case of Theorem 3.1 if ϕ is a convex univalent function. However we prove Theorem 4.1 without the convexity assumption.

Theorem 4.1. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0) = 1$, $\phi'(0) > 0$ and maps the unit disk Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Let the functions $h_{\phi n}$ $(n = 2, 3, \ldots)$ be defined by

$$\frac{zh'_{\phi}(z)}{h_{\phi}(z)} = \phi(z) \quad (h_{\phi}(0) = 0 = h'_{\phi}(0) - 1).$$

If $f(z) \in \Sigma^*(\phi)$, then

$$zf(z) \prec \frac{z}{h_{\phi}(z)}$$
.

Proof. Define the function p(z) by

$$p(z) := z f(z) \quad (z \in \Delta).$$

Then a computation shows that

$$-\frac{zf'(z)}{f(z)} = 1 - \frac{zp'(z)}{p(z)}.$$

If $f(z) \in \Sigma^*(\phi)$, then

$$\frac{zp'(z)}{p(z)} \prec 1 - \phi(z).$$

Since $\phi(z)$ is starlike in Δ , by an application of Lemma 4.1, we obtain $p(z) \prec q(z)$ where q(z) is given by

$$\frac{zq'(z)}{q(z)} = 1 - \frac{zh'_{\phi}(z)}{h_{\phi}(z)}$$

or
$$q(z) = z/h_{\phi}(z)$$
.

As a consequence of Theorem 4.1, we immediately obtain

Theorem 4.2. (Growth Theorem). Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0)=1$, $\phi'(0)>0$ and maps the unit disk Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. If $f(z) \in \Sigma^*(\phi)$, then

$$[h_{\phi}(r)]^{-1} \le |f(z)| \le [-h_{\phi}(-r)]^{-1} \quad (|z| = r < 1).$$

For the choice p(z) = (1 - Az)/(1 - Bz), $0 \le B \le 1$; -B < A < B, we obtain the following result of Karanukaran:

Corollary 4.1. [4]. *If* $f \in K_1(A, B)$, *then*

$$r^{-1}(1 - Br)^{(B-A)/B} \le |f(z)| \le r^{-1}(1 + Br)^{(B-A)/B}$$

5. Coefficient Problem for the Class $\Sigma^*(\phi)$

Now we consider coefficient problems for the class $\Sigma^*(\phi)$.

Theorem 5.1. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$. If $f(z) = 1/z + \sum_{k=0}^{\infty} a_k z^k$ belongs to $\Sigma^*(\phi)$, then

$$|a_1 - \mu a_0^2| \le \begin{cases} \frac{1}{2} (B_1^2 - 2\mu B_1^2 - B_2) & \text{if} \quad 2\mu B_1^2 \le B_1^2 - B_1 - B_2 \\ \frac{1}{2} B_1 & \text{if} \quad B_1^2 - B_1 - B_2 \le 2\mu B_1^2 \le B_1^2 + B_1 - B_2. \\ \frac{1}{2} (-B_1^2 + 2\mu B_1^2 + B_2) & \text{if} \quad B_1^2 + B_1 - B_2 \le 2\mu B_1^2 \end{cases}$$

The result is sharp.

Proof. Our proof of Theorem 5.1 is essentially similar to the proof of Theorem 3 of Ma and Minda[6]. If $f(z) \in \Sigma^*(\phi)$, then there is a Schwarz function w(z), analytic in Δ with w(0) = 0 and |w(z)| < 1 in Δ such that

(5.1)
$$-\frac{zf'(z)}{f(z)} = \phi(w(z)).$$

Define the function $p_1(z)$ by

(5.2)
$$p_1(z) := \frac{1 + w(z)}{1 - w(z)} = 1 + c_1 z + c_2 z^2 + \cdots$$

Since w(z) is a Schwarz function, we see that $\Re p_1(z) > 0$ and $p_1(0) = 1$. Define the function p(z) by

(5.3)
$$p(z) := -\frac{zf'(z)}{f(z)} = 1 + b_1 z + b_2 z^2 + \cdots$$

In view of the equations (5.1), (5.2), (5.3), we have

(5.4)
$$p(z) = \phi\left(\frac{p_1(z) - 1}{p_1(z) + 1}\right).$$

and from this equation (5.4), we obtain

$$b_1 = \frac{1}{2}B_1c_1$$

and

$$b_2 = \frac{1}{2}B_1(c_2 - \frac{1}{2}c_1^2) + \frac{1}{4}B_2c_1^2.$$

From the equation (5.3), we see that

$$(5.5) b_1 + a_0 = 0$$

$$(5.6) b_2 + b_1 a_0 + 2a_1 = 0$$

or equivalently

$$(5.7) a_0 = -b_1 = -\frac{B_1 c_1}{2}$$

and

$$a_1 = \frac{1}{2}(b_1^2 - b_2)$$

= $\frac{1}{8} \{ B_1^2 c_1^2 - 2B_1 c_2 + B_1 c_1^2 - B_2 c_1^2 \}.$

Therefore,

(5.8)
$$a_1 - \mu a_0^2 = -\frac{B_1}{4} \left\{ c_2 - v c_1^2 \right\}$$

where

$$v := \frac{1}{2} \left[1 + B_1 - \frac{B_2}{B_1} - 2\mu B_1 \right].$$

Our result now follows by an application of Lemma 5.2 below. The sharpness is also an immediate consequence of Lemma 5.2.

Lemma 5.2. [6]. If $p_1(z) = 1 + c_1 z + c_2 z^2 + \cdots$ is a function with positive real part in Δ , then

$$|c_2 - vc_1^2| \le \begin{cases} -4v + 2 & \text{if } v \le 0\\ 2 & \text{if } 0 \le v \le 1\\ 4v - 2 & \text{if } v \ge 1 \end{cases}$$

When v < 0 or v > 1, equality holds if and only if $p_1(z)$ is (1+z)/(1-z) or one of its rotations. If 0 < v < 1, then equality holds if and only if $p_1(z)$ is $(1+z^2)/(1-z^2)$ or one of its rotations. If v = 0, equality holds if and only if

$$p_1(z) = \left(\frac{1}{2} + \frac{1}{2}\lambda\right) \frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2}\lambda\right) \frac{1-z}{1+z} \quad (0 \le \lambda \le 1)$$

or one of its rotations. If v = 1, equality holds if and only if p_1 is the reciprocal of one of the functions such that the equality holds in the case of v = 0.

When μ is complex, we have the following:

Theorem 5.2. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$. If $f(z) = 1/z + \sum_{k=0}^{\infty} a_k z^k$ belongs to $\Sigma^*(\phi)$, then for μ a complex number,

$$|a_1 - \mu a_0^2| \le \frac{B_1}{2} \max\{1, |B_1 - 2\mu B_1 - \frac{B_2}{B_1}|\}.$$

The result is sharp.

Theorem 5.2 follows from the following result. For a function $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ with positive real part, we have

$$|c_2 - \mu c_1^2| \le 2 \max\{1, |2\mu - 1|\}$$

and the result is sharp for the functions given by

$$p(z) = \frac{1+z^2}{1-z^2}, \quad p(z) = \frac{1+z}{1-z}.$$

6. Differential Subordination and Superordination for $\Sigma^*(\phi)$

In this section, we discuss differential implications for the subclass $\Sigma^*(\phi)$. We shall require the following definition and lemmas:

Definition 6.1. [9, Definition 2, p. 817]. Denote by Q, the set of all functions f(z) that are analytic and injective on $\overline{\Delta} - E(f)$, where

$$E(f) = \{ \zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty \},$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \Delta - E(f)$.

Lemma 6.1. (cf. Miller and Mocanu [8, Theorem 3.4h, p. 132]). Let q(z) be univalent in the unit disk Δ and ϑ and φ be analytic in a domain D containing $q(\Delta)$ with $\varphi(w) \neq 0$ when $w \in q(\Delta)$. Set $Q(z) := zq'(z)\varphi(q(z))$ and $h(z) := \vartheta(q(z)) + Q(z)$. Suppose that either h(z) is convex, or Q(z) is starlike univalent in Δ . In addition, assume that $\Re[zh'(z)/Q(z)] > 0$ for $z \in \Delta$. If p(z) is analytic in Δ with p(0) = q(0), $p(\Delta) \subseteq D$ and

(6.1)
$$\vartheta(p(z)) + zp'(z)\varphi(p(z)) \prec \vartheta(q(z)) + zq'(z)\varphi(q(z)),$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Lemma 6.2. [1]. Let q(z) be univalent in the unit disk Δ and ϑ and φ be analytic in a domain D containing $q(\Delta)$. Suppose that $\Re \left[\vartheta'(q(z))/\varphi(q(z))\right] > 0$ for $z \in \Delta$ and $zq'(z)\varphi(q(z))$ is starlike univalent in Δ . If $p(z) \in \mathcal{H}[q(0),1] \cap \mathcal{Q}$, with $p(\Delta) \subseteq D$, and $\vartheta(p(z)) + zp'(z)\varphi(p(z))$ is univalent in Δ , then

$$\vartheta(q(z)) + zq'(z)\varphi(q(z)) \prec \vartheta(p(z)) + zp'(z)\varphi(p(z)),$$

implies $q(z) \prec p(z)$ and q(z) is the best subordinant. (Here $\mathcal{H}[a,n]$ denotes the class of all analytic functions $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots (z \in \Delta)$.)

First we prove a differential subordination result for the class $\Sigma^*(\phi)$.

Theorem 6.1. Let α be a nonzero complex number. Let q(z) be univalent in Δ , q(0) = 1. Assume that q(z) or $(\alpha - 1)q(z) + \alpha q^2(z) - \alpha z q'(z)$ is convex univalent and

(6.2)
$$\Re\left\{\frac{1-\alpha}{\alpha} - 2q(z) + \left(1 + \frac{zq''(z)}{q'(z)}\right)\right\} > 0.$$

If $f \in \Sigma$ satisfies

$$\frac{zf'(z)}{f(z)} + \alpha \frac{z^2f''(z)}{f(z)} \prec (\alpha - 1)q(z) + \alpha q^2(z) - \alpha zq'(z),$$

then $-\frac{zf'(z)}{f(z)} \prec q(z)$ and q(z) is the best dominant.

Proof. Define the function p(z) by

(6.3)
$$p(z) := -\frac{zf'(z)}{f(z)}.$$

Then a computation shows that

(6.4)
$$p(z) - \frac{zp'(z)}{p(z)} = -\left(1 + \frac{zf''(z)}{f'(z)}\right).$$

Using (6.4) and (6.3), we have

$$\frac{zf'(z)}{f(z)} + \alpha \frac{z^2 f''(z)}{f(z)} = (\alpha - 1)p(z) + \alpha p^2(z) - \alpha z p'(z).$$

Define the function ϑ and φ by

$$\vartheta(w) = (\alpha - 1)w + \alpha w^2$$
 and $\varphi(w) = -\alpha$.

Then the functions ϑ and φ are analytic in $\mathbb C$ and $\varphi(w) \neq 0$ in $\mathbb C$. Also the function $Q(z) := zq'(z)\varphi(q(z)) = -\alpha zq'(z)$ is starlike in Δ . Using (6.2), we see that the function $h(z) := \vartheta(q(z)) + Q(z) = (\alpha - 1)q(z) + \alpha q(z)^2 + Q(z)$ satisfies $\Re[zh'(z)/Q(z)] > 0$. The result now follows by an application of Lemma 6.1.

Theorem 6.2. Let $q(z) \neq 0$ be univalent in Δ and q(0) = 1. Let $zq'(z)/q(z)^2$ be starlike in Δ . If $f \in \Sigma$ and

$$\frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)} \prec 1 - \frac{zq'(z)}{q(z)^2},$$

then $-zf'(z)/f(z) \prec q(z)$ and q(z) is the best dominant.

Proof. Let p(z) be defined by (6.3). From (6.4) and (6.3), we get

$$1 - \frac{zp'(z)}{p(z)^2} = \frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)}$$

and the result follows by an application of Lemma 6.1.

The corresponding superordination results are obtained from Lemma 6.2 in a similar manner to Theorems 6.1 and 6.2. The proofs are omitted.

Theorem 6.3. Let α be a nonzero complex number, q(z) be convex univalent in Δ . Assume that $\Re\left\{\frac{\alpha-1}{\alpha}+2q(z)\right\}<0$. If $f\in\Sigma$, $-zf'(z)/f(z)\in\mathcal{H}[1,1]\cap\mathcal{Q}$ and $\frac{zf'(z)}{f(z)}+\alpha\frac{z^2f''(z)}{f(z)}$ is univalent in Δ and

$$(\alpha - 1)q(z) + \alpha q^{2}(z) - \alpha z q'(z) \prec \frac{zf'(z)}{f(z)} + \alpha \frac{z^{2}f''(z)}{f(z)},$$

then $q(z) \prec -\frac{zf'(z)}{f(z)}$ and q(z) is the best subordinant.

Theorem 6.4. Let $q(z) \neq 0$ be univalent, q(0) = 1 and $zq'(z)/q(z)^2$ be starlike in Δ . If $f \in \Sigma$, $-zf'(z)/f(z) \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and $\frac{1+zf''(z)/f'(z)}{zf'(z)/f(z)}$ is univalent in Δ

$$1 - \frac{zq'(z)}{q(z)^2} \prec \frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)},$$

then $q(z) \prec -zf'(z)/f(z)$ and q(z) is the best subordinant.

REFERENCES

1. T. Bulboaca, Classes of first-order differential superordinations, *Demonstratio Math.*, **35(2)** (2002), 287-292.

- J. Clunie, On meromorphic schlicht functions, J. London Math. Soc., 34 (1959), 215-216.
- 3. N. E. Cho and S. Owa, Sufficient conditions for meromorphic starlikeness and close-to-convexity of order α, *Int. J. Math. Math. Sci.*, **26(5)** (2001), 317-319.
- 4. V. Karunakaran, On a class of meromorphic starlike functions in the unit disc, *Math. Chronicle*, **4(2-3)** (1976), 112-121.
- 5. S. R. Kulkarni and Sou. S. S. Joshi, On a subclass of meromorphic univalent functions with positive coefficients, *J. Indian Acad. Math.*, **24**(1) (2002), 197-205.
- W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: *Proceedings of the Conference on Complex Analysis* (*Tianjin*, 1992), 157-169, Internat. Press, Cambridge, MA.
- 7. J. Miller, Convex meromorphic mappings and related functions, *Proc. Amer. Math. Soc.*, **25** (1970), 220-228.
- 8. S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York, 2000.
- 9. S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, *Complex Var. Theory Appl.* **48(10)** (2003), 815-826.
- 10. M. Nunokawa and O. P. Ahuja, On meromorphic starlike and convex functions, *Indian J. Pure Appl. Math.*, **32(7)** (2001), 1027-1032.
- 11. Ch. Pommerenke, On meromorphic starlike functions, *Pacific J. Math.*, **13** (1963), 221-235.
- 12. V. Ravichandran, S. Sivaprasad Kumar and M. Darus, On a subordination theorem for a class of meromorphic functions, *J. Inequal. Pure Appl. Math.*, **5(1)** (2004), Article 8, 4 pp. (electronic).
- 13. V. Ravichandran, M. Bolcal, Y. Polotoglu and A. Sen, Certain subclasses of starlike and convex functions of complex order, *Hacet. J. Math. Stat.*, **34** (2005), 9-15.
- 14. W. C. Royster, Meromorphic starlike multivalent functions, *Trans. Amer. Math. Soc.*, **107** (1963), 300-308.
- 15. S. Ruscheweyh, *Convolutions in Geometric Function Theory*, Presses Univ. Montréal, Montreal, Que., 1982.
- 16. H. M. Srivastava and S. Owa (eds.), *Current Topics in Analytic Function Theory*, World Sci. Publishing, River Edge, NJ, 1992.
- 17. B. A. Uralegaddi and A. R. Desai, Integrals of meromorphic starlike functions with positive and fixed second coefficients, *J. Indian Acad. Math.*, **24**(1) (2002), 27-36.

Rosihan M. Ali School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

E-mail: rosihan@cs.usm.my

V. Ravichandran Department of Mathematics, University of Delhi, Delhi 110 007, India

E-mail: vravi@maths.du.ac.in vravi68@gmail.com