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CLASSES OF MEROMORPHIC a-CONVEX FUNCTIONS

Rosihan M. Ali and V. Ravichandran

Abstract. For a fixed analytic univalent function ¢, the class of meromorphic
univalent a-convex functions with respect to ¢ is introduced. A representa-
tion theorem for functions in the class, as well as a necessary and sufficient
condition for functions to belong to the class are obtained. Also we obtain a
sharp growth theorem and estimate on a certain coefficient functional for mero-
morphic starlike functions with respect to ¢. Differential subordination and
superordination conditions are also obtained for the subclass of meromorphic
starlike functions with respect to ¢.

1. INTRODUCTION

Let X denote the class of meromorphic univalent functions f defined on the
punctured unit disk A* := {z € C : 0 < |z| < 1} having the form f(z) =
1/2 4+ Y 52, axz®. A function f € X is said to be meromorphic starlike of order
a 0<a<l)if =Rzf(2)/f(z)] >aforall ze¢ A:={z€C:|z| < 1}. We
denote by >*(«) the class of all such meromorphic starlike functions of order « in
A*,

Several authors [2, 3, 7, 10, 11, 14, 16, 17] have studied various subclasses of
Y*(«a), as well as subclasses of meromorphic convex functions of order «. The
latter class is characterized by the property —R[1 + zf"(2)/f'(z)] > «. We shall
unify these functions in Definition 1.1.

First we recall the definition of subordination. For two functions f and g
analytic in A, we say that the function f(z) is subordinate to g(z) in A, and
write f <g or f(z) <g(z) (z€ A), if there exists a Schwarz function w(z),
analytic in A with w(0) = 0 and |w(z)| < 1 (z € A), such that f(z) = g (w(2))
(z € A). In particular, if the function g is univalent in A, the above subordination
is equivalent to f(0) = ¢(0) and f(A) C g(A).
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Definition 1.1. Let ¢(z) be an analytic univalent function in A with ¢(0) = 1.
Let 3% (¢) be the class of functions f € ¥ satisfying f(z)f’(z) # 0 and

wy - [(1 —a) ('Z{é?) +a (1 + ZJ{,/;S))] < d(2) (z€A).

The function f € X% (¢) is called a meromorphic a-convex function with respect
to ¢. (Here < denotes subordination between analytic functions.) We shall write

25(¢) by X*().
With

14+ (1 —-20)z
P(z) = S
it is obvious that X (¢) is the class of meromorphic starlike functions of order «,
while X7 (¢) is the class of meromorphic convex functions of order a. The class
¥*(¢) reduces to the class X(«, 3, ) introduced by Kulkarni and Joshi [5] when

(0<a<,

14+ B(1—2ay)z
L2 o) =350,

0<a<; 0<A<1; 1/2<y<1).
Karunakaran [4] have considered a special case of the class ¥*(¢) consisting
of functions f € X for which

_zf'(2) 1 + Aw(z)
f(z) 1+ Buw(z)

(0<B<1;-B<A<B),

where w(z) is an analytic function in A with w(0) =0 and |w(z)|<1 (z¢€
A). He denoted this class by K;(A, B).

In this paper, a representation theorem as well as a necessary and sufficient
condition for functions to belong to X% (¢) is obtained. Also we obtain a sharp
growth theorem and estimate for the coefficient functional |a; — pa?| for functions
in X*(¢). Finally we investigate the subclass ¥*(¢) from the perspective of first-
order differential subordination and superordination [8, 9].

2. A REPRESENTATION THEOREM

We first prove a representation formula for functions in the class £} (¢).

Theorem 2.1. A function f(z) € £ (¢) if and only if

e () Io[—22 ()] = exp ( I Mdn) |

where w(z) is analytic in A satisfying w(0) = 0 and |w(z)| < 1.
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Proof. Let f(z) € ¥} (¢). Then (1.1) holds and therefore there is a function
w(z) analytic in A with w(0) = 0 and |w(z)| < 1 such that

o (80 o ) e e

Rewriting the above equation in the form

[(l—a) (1 + f/(z)) ta <3+ fﬂ(g))] _1oow@) e

2 f(?) z f(2) z
and integrating from 0 to z, we obtain the desired expression upon exponentiation.
The converse follows directly by differentiation. ]

Example 2.1. For the function ¢(z) given by (1.2) and with a = 0, we obtain
[5, Theorem 1, p. 198]: Let fe X and 0 <a <1, 0<fB<land1/2<~<1.
Then f € X(a, 3,7) if and only if

e ([T 200 a)u(n)
2f(z) = exp ( /0 [1+8(1- 2w)w(n)]ndn>

where w(z) is analytic in A satisfying w(0) = 0 and |w(z)| < 1.

3. A NECESSARY AND SUFFICIENT CONDITION
We need the following subordination result.

Lemma 3.1. [13]. Let ¢ be a convex univalent function defined on A and
¢»(0)=1. Define F'(z) by

F(2) = zexp (/Oz%dn)

Let ¢(z) be analytic in A and ¢(0) = 1. Then

2q'(2)

q(z)

if and only if for all |s|] <1 and |¢| <1,

(3.1) 1+ < ¢(2)

q(tz) 5 sF(tz)

(3:2) q(sz) tF(sz)

Using Lemma 3.1, we obtain the following necessary and sufficient conditions
for functions to belong to X} (¢).
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Theorem 3.1. Let ¢(z) and F'(z) be as in Lemma 3.1. A function f belongs
to X% (o) if and only if for all |s| <1 and |¢| <1,

(o)™ (o) < ors

Proof.  Define the function ¢(z) by
1 - l—a (2 p1 @
5 = EE) TR E)"

Then a computation shows that

o0 (F) o (5

and the result now follows from Lemma 3.1. n

Example 3.2. Let £} [A, B] be the class of all meromorphic a-convex functions
f € X satisfying

_ [(1—a) (Z;;i'j))m <1+ZJ{C,/;S)>] < H_gz (C1<B<A<1;z€A).

The function f € X% [A, B] if and only if for all |s|] <1 and |¢| <1,

(A-B)/B
(sf(sz))l_a <5>’2f’(5>’2)>&< <115Z> TEAY
tf(tz) t2f/(t2) pA(t—s)z if B=0 '

4. GROWTH THEOREM FOR FUNCTIONS IN ¥* ()

We need the following Lemma in the proof of Theorem 4.1.

Lemma 4.1. [8, Corollary 3.4h.1, p.135]. Let ¢(z) be univalent in A and let
1(2) be analytic in a domain containing ¢(A). If zq'(z) /v (q(2)) is starlike, and

2p'(2)1(p(2)) < 24/ (2)¥(q(2)),
then p(z) < ¢(z) and ¢(z) is the best dominant.

Theorem 4.1 below is a special case of Theorem 3.1 if ¢ is a convex univalent
function. However we prove Theorem 4.1 without the convexity assumption.
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Theorem 4.1. Let ¢(z) be an analytic function with positive real part on A
with ¢(0) = 1, ¢/(0) > 0 and maps the unit disk A onto a region starlike with
respect to 1 and symmetric with respect to the real axis. Let the functions % 4,
(n=2,3,...) be defined by

If f(z) € ¥*(¢), then

Proof.  Define the function p(z) by
p(z) = 2f(2) (z€A).

Then a computation shows that

) )
f(2) p(z)
If f(2) € ¥*(¢), then
2p'(2)

(2) <1—¢(2).

Since ¢(z) is starlike in A, by an application of Lemma 4.1, we obtain p(z) < ¢(2)
where ¢(z) is given by

a(z) _ _ 2h(?)
q(z) hg(2)
or ¢(z) = z/he(2). |

As a consequence of Theorem 4.1, we immediately obtain

Theorem 4.2. (Growth Theorem). Let ¢(z) be an analytic function with pos-
itive real part on A with ¢(0) = 1, ¢’(0) > 0 and maps the unit disk A onto a
region starlike with respect to 1 and symmetric with respect to the real axis. If

f(z) € ¥*(¢), then
[ho(r) ™! < |F(2) < [=he(=r)]7" (lz] =7 < 1).

For the choice p(z) = (1 — Az2)/(1-Bz), 0 < B<1; —-B< A< B, we
obtain the following result of Karanukaran:
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Corollary 4.1. [4]. If f € K1(A, B), then

r7 (1= Br)EAE < f(2)] <07 (14 Br) BB

5. COEFFICIENT PROBLEM FOR THE CLASS ¥*(¢)

Now we consider coefficient problems for the class ¥*(¢).

Theorem 5.1. Let ¢(2) = 1+ Biz + Bo2? + B3z3 + -+, If f(2) = 1/2+
S92 akz® belongs to $*(¢), then

1 :
5(3%—%3%—32) it 2uB} < BY~Bi1— Do
1 :
la1—pad| < 5B if B?—B;—By<2uB?<B}+B,—B,.
1 :
5(—B%+2uB%+B2) if B?+B)—By<2uB?

The result is sharp.

Proof. Our proof of Theorem 5.1 is essentially similar to the proof of Theorem 3
of Ma and Minda[6]. If f(z) € ¥*(¢), then there is a Schwarz function w(z),
analytic in A with w(0) =0 and |w(z)| < 1 in A such that

6. - i),
Define the function p;(z) by
(5.2) p1(2) := % =14cz4+c?+---.

Since w(z) is a Schwarz function, we see that Rp;(z) > 0 and p;1(0) = 1. Define
the function p(z) by

(5.3) p(z) == —ZJ{;? —14+biz+by2? + .
In view of the equations (5.1), (5.2), (5.3), we have
5.4) po) =0 (2921,

and from this equation (5.4), we obtain

1
b1 = 53161
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and

1 1 1
bg = §B1(CQ — 56%) + ZB2C%

From the equation (5.3), we see that

(5.5) b1 +ag =0
(56) by +biag +2a; =0
or equivalently
B
(5.7) ag — —bl = — 14
2
and

1
a1 = 5(6% — bg)

1
= g {B%C% —2Bjco + Blc% — BQC%} .

Therefore,
B
(5.8) ay — pal = _Il {62 — vc%}
where B
1 2
=—|14+B1— = —2ubB|.

v 5 + b1 B 22=41
Our result now follows by an application of Lemma 5.2 below. The sharpness is
also an immediate consequence of Lemma 5.2. ]

Lemma 5.2. [6]. If pi(z) =1+ c12 + ca2? + - -+ is a function with positive
real part in A, then
—4v+2 if v<0
‘CQ—’UC%‘S 2 if 0<ov<1
4v —2 if v>1
When v < 0 or v > 1, equality holds if and only if p1(z) is (1 + z)/(1 — z) or

one of its rotations. If 0 < v < 1, then equality holds if and only if p 1(2) is
(1+ 2%)/(1 — 22) or one of its rotations. If v = 0, equality holds if and only if

1 1 1+2 1 1 1—2z
— I - <)A<1
Pi(2) <2 2)\> 1—2z <2 2)\> 1+ 2 O=A<1)

or one of its rotations. If v = 1, equality holds if and only if p ; is the reciprocal
of one of the functions such that the equality holds in the case of v = 0.
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When p is complex, we have the following:

Theorem 5.2. Let ¢(2) = 1+ Byz + Boz? + Bgz3 + -+, If f(2) = 1/2 +
S22, akz® belongs to *(¢), then for 1 a complex number,

B B
lay — pad| < =L max{1, |B; — 2uB; — =2|}.
2 By
The result is sharp.

Theorem 5.2 follows from the following result. For a function p(z) = 1+¢; 2+
co2? + - - - with positive real part, we have

je2 — el | < 2max{1, |21 — 1}
and the result is sharp for the functions given by

_1—1—22

1+2
p(z)_l——z?’

1=z

p(2)

6. DIFFERENTIAL SUBORDINATION AND SUPERORDINATION FOR ¥*(¢)

In this section, we discuss differential implications for the subclass ¥ *(¢). We
shall require the following definition and lemmas:

Definition 6.1. [9, Definition 2, p. 817]. Denote by Q, the set of all functions
f(z) that are analytic and injective on A — E(f), where

B(f) = {C € 0A: lim f(2) = oo},
and are such that f/(¢) # 0 for ¢ € A — E(f).

Lemma 6.1. (cf. Miller and Mocanu [8, Theorem 3.4h, p. 132]). Let ¢(z) be
univalent in the unit disk A and ¢ and ¢ be analytic in a domain D containing
q(A) with p(w) # 0 when w € g(A). Set Q(z) := z¢'(2)p(q(2)) and h(z) :=
9(q(2)) + Q(z). Suppose that either h(z) is convex, or Q(z) is starlike univalent
in A. In addition, assume that R[zh'(2)/Q(z)] > 0 for z € A. If p(z) is analytic
in A with p(0) = ¢(0), p(A) € D and

(6.1) 9(p(2)) + 20 (2)e(p(2)) < D(q(2)) + 2q'(2)p(a(2)),

then p(z) < ¢(z) and ¢(z) is the best dominant.
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Lemma 6.2. [1]. Let ¢(z) be univalent in the unit disk A and ¢ and ¢ be
analytic in a domain D containing ¢(A). Suppose that % [¢'(q(2))/¢(q(2))] > 0
for z € A and zq'(2)p(q(2)) is starlike univalent in A. If p(z) € H[q(0),1] N Q,
with p(A) C D, and Y(p(z)) + zp’(2)¢(p(z)) is univalent in A, then

9(q(2)) + 2¢'(2)e(a(2)) < I(p(2)) + 20" (2) @ (p(2)),

implies ¢(z) < p(z) and ¢(z) is the best subordinant. (Here H[a, n] denotes the
class of all analytic functions f(2) = a + ap2" + ap 12" 4+ -+ (2 € A)))

First we prove a differential subordination result for the class *(¢).

Theorem 6.1. Let « be a nonzero complex number. Let ¢(z) be univalentin A,
q(0) = 1. Assume that ¢(2) or (a—1)q(2) + aq?(z) — azq'(z) is convex univalent
and

(6.2) R { L ;O‘ — 2q(2) + (1 n zg;i?)} > 0.

If f € X satisfies

() 2
OO

then —%1 < q(z) and ¢(z) is the best dominant.

< (a—1)q(2) + ag®(z) — azd (2),

Proof.  Define the function p(z) by

_ 22
(6.3) p(z) = )
Then a computation shows that
(e zf"(2)
64 W= 35 = (15 )

Using (6.4) and (6.3), we have
2f'(2) | L)
+ o
f(z) f(z)
Define the function 4 and ¢ by

=(a—1)p(z) + ap2(z) — azp'(2).

dw) = (a —Dw+aow® and p(w) = —a.

Then the functions 9 and ¢ are analytic in C and ¢(w) # 0 in C. Also the function
Q(z) = 2¢'(2)p(q(2)) = —azq/(z) is starlike in A. Using (6.2), we see that
the function h(2) := 9(q(2)) + Q(2) = (a — 1)q(2) + aq(2)? + Q(z) satisfies
R[zh'(2)/Q(2)] > 0. The result now follows by an application of Lemma 6.1. m
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Theorem 6.2. Let g(z) # 0 be univalentin A and ¢(0) = 1. Let zq'(2)/q(2)?
be starlike in A. If f € ¥ and

L2/ | ()

TG
then —zf'(2)/f(z) < q(2) and ¢(2) is the best dominant.

Proof. Let p(z) be defined by (6.3). From (6.4) and (6.3), we get

L) 1))
W T ARG

and the result follows by an application of Lemma 6.1. ]

The corresponding superordination results are obtained from Lemma 6.2 in a
similar manner to Theorems 6.1 and 6.2. The proofs are omitted.

Theorem 6.3. Let « be a nonzero complex number, ¢(z) be convex univalent
in A. Assume that R {21 +2¢(z)} < 0. If f € 2, —2f'(2)/f(z) € H[1,1]N Q

and zﬁS) + az?(/;()z) is univalent in A and

) A

- 2) 4+ ag®(2) — azd (=
(= 1)q(z) + ag™(2) q'(2) < 78 Q)

then ¢(z) < —zjf(/S) and ¢(z) is the best subordinant.

Theorem 6.4. Let ¢(z) # 0 be univalent, ¢(0) = 1 and zq’(2)/q(z)? be starlike

in A If f €%, —2f'(2)/f(2) € H[1,1]N Q and - EELED s univalent in A

2 (2) 1+ 2f"(2)/f'(2)

)
O

2 2f'(2)/f(z)

e
then ¢(z) < —zf'(2)/f(z) and ¢(=) is the best subordinant.
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