ON APPROXIMATION OF INVERSE PROBLEMS FOR ABSTRACT HYPERBOLIC EQUATIONS

Dmitry Orlovsky ${ }^{1}$, Sergey Piskarev ${ }^{2, *}$ and Renato Spigler ${ }^{3}$
Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract

This paper is devoted to the numerical analysis of inverse problems for abstract hyperbolic differential equations. The presentation exploits a general approximation scheme and is based on C_{0}-cosine and C_{0}-semigroup theory within a functional analysis approach. We consider both discretizations in space as well as in time. The discretization in time is considered under the Krein-Fattorini conditions.

1. Introduction

Let $B(E)$ denote the Banach algebra of all linear bounded operators on a complex Banach space E. The set of all linear closed densely defined operators in E will be denoted by $\mathcal{C}(E)$.

Let us examine the inverse problem in E consisting of the search for a function $u(\cdot) \in C^{2}([0 ; T] ; E)$ and an element $d \in E$ from the equations

$$
\begin{equation*}
u^{\prime \prime}(t)=A u(t)+\Phi(t) d, \quad 0 \leq t \leq T \tag{1.1a}
\end{equation*}
$$

$$
\begin{array}{r}
u(0)=u^{0}, u^{\prime}(0)=u^{1}, \\
u(T)=u^{T} \tag{1.1c}
\end{array}
$$

Received March 24, 2010. 2000 Mathematics Subject Classification: 65J, 65N, 35J, 47D.
Key words and phrases: Abstract differential equations, Abstract hyperbolic problems, $C_{0}-$ Semigroups, C_{0}-Cosine operator functions, Banach spaces, Semidiscretization, Inverse overdetermined problem, Well-posedness, Difference schemes, Discrete semigroups.
Research partially supported by grants of Analytic Departments Purpose Program "Development of scientist potential of the Higher Education School", project 2.1.1/6827. ${ }^{1}$, 10-01-00297 ${ }^{2}$, 10-01-91219CT ${ }^{2}$, by Italian grant of INdAM ${ }^{2}$ and by grant SFB 701 "Spectral Structures and Topological Methods in Mathematics," Bielefeld University ${ }^{2}$.
*Corresponding author.
where $A \in \mathcal{C}(E), \Phi(\cdot) \in C^{2}([0 ; T] ; B(E))$ and the elements u^{0}, u^{1}, $u^{T} \in E$ are given. The cases of parabolic and elliptic equations were considered in [10, 14]. Here we assume that the abstract differential equation in (1.1a) is of the hyperbolic type. This means that the operator A generates a C_{0}-cosine operatorfunction $C(\cdot, A)$. Recall that a C_{0}-cosine operator-function is used to represent a solution of the abstract Cauchy problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t)+f(t), \quad 0 \leq t \leq T \tag{1.2}\\
u(0)=u^{0}, u^{\prime}(0)=u^{1}
\end{array}\right.
$$

Definition 1.1. A function $u(\cdot)$ is called a classical solution of problem (1.2) if $u(\cdot)$ is twice continuously differentiable, $u(t) \in D(A)$ for all $t \in[0, T]$, and $u(\cdot)$ satisfies the relations in (1.2).

We denote by $\sigma(B)$ the spectrum of the operator B, by $\rho(B)$ the resolvent set of B.

Proposition 1.1. $[6,18]$. The operator A generates a C_{0}-cosine operatorfunction if and only if there are constants M and ω such that for each λ with $R e \lambda>\omega$ the value λ^{2} is contained in the resolvent set $\rho(A)$ of the operator A and for the same value λ the following estimate holds :

$$
\begin{equation*}
\left\|\frac{d^{n}}{d \lambda^{n}}\left(\lambda R\left(\lambda^{2}, A\right)\right)\right\| \leqslant \frac{M n!}{(\lambda-\omega)^{n+1}}, \quad n=0,1,2, \ldots \tag{1.3}
\end{equation*}
$$

For any strongly continuous C_{0}-cosine operator-function $C(\cdot, A)$ the following inequality holds

$$
\begin{equation*}
\|C(t, A)\| \leqslant M \exp (\omega|t|), \quad t \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

In this case we will write $A \in C(M, \omega)$. Furthermore, we introduce the Kisynski space [7]

$$
E^{1}=\left\{x \in E: C(t, A) x \in C^{1}(I R ; E)\right\}
$$

with the norm $\|x\|_{E^{1}}=\|x\|+\sup _{0<t \leq 1}\left\|C^{\prime}(t, A) x\right\|$. This is a Banach space with the norm $\|\cdot\|_{E^{1}}$.

If the operator A generates a C_{0}-cosine operator-function $C(\cdot, A)$ and $f(\cdot) \in$ $C([0, T] ; E)$, then for any classical solution of (1.2)

$$
\begin{equation*}
u(t)=C(t, A) u^{0}+S(t, A) u^{1}+\int_{0}^{t} S(t-s, A) f(s) d s, \quad t \in[0, T] \tag{1.5}
\end{equation*}
$$

where $S(t, A):=\int_{0}^{t} C(s, A) d s$ is the corresponding C_{0}-sine operator-function. The formula (1.5) is the analog of the variation-of-constants formula for C_{0}-semigroups.

As in the case of C_{0}-semigroups of operators, the function $u(\cdot)$ given by (1.5) is not a classical solution, in general, since it may be not twice continuously differentiable.

Remark 1.1. According to (1.5), in general, the problem (1.1) is ill-posed. This happens, for instance, if resolvent $(\lambda I-A)^{-1}$ is compact for some λ. Indeed, in this case the integral operator $\int_{0}^{T} S(T-s, A) \Phi(s) d s$ is compact and thus the equation

$$
\int_{0}^{T} S(T-s, A) \Phi(s) d s d=u(T)-C(T, A) u^{0}-S(T, A) u^{1}
$$

in the space E leads to an ill-posed problem. However, if we consider the operator $\int_{0}^{T} S(T-s, A) \Phi(s) d s$ as the operator from E to $\mathfrak{D}(A)$, where $\mathfrak{D}(A)$ equiped with the norm $\|x\|_{\mathfrak{D}_{(A)}}=\|x\|+\|A x\|$, then the operator $\int_{0}^{T} S(T-$ $s, A) \Phi(s) d s: E \rightarrow \mathfrak{D}(A)$ has a chance to be not compact. Therefore, in case of $u(T), C(T, A) u^{0}, S(T, A) u^{1} \in D(A)$ one can play with formula (4.3) to get a Fredhom equation of the second kind, which is a well-posed problem.

Definition 1.2. The function $u(\cdot) \in C([0, T) ; E)$ given by (1.5) is called a mild solution of problem (1.2).

Proposition 1.2. [6]. Let the operator A be a generator of a C_{0}-cosine operatorfunction $C(\cdot, A)$, and let either
(i) $f(\cdot), A f(\cdot) \in C([0, T) ; E)$ and $f(t) \in D(A)$ for $t \in[0, T]$
or
(ii) $f(\cdot) \in C^{1}([0, T] ; E)$.

Then the function $u(\cdot)$ given by (1.5) with $u^{0} \in D(A)$ and $u^{1} \in E^{1}$ is a classical solution of problem (1.2) on $[0, T]$.

If we differentiate both sides of (1.5), we get

$$
u^{\prime}(t)=S(t, A) A u^{0}+C(t, A) u^{1}+\int_{0}^{t} C(t-s, A) f(s) d s
$$

Integrating by parts we obtain an alternative form for the first derivative

$$
\begin{equation*}
u^{\prime}(t)=S(t, A)\left(A u^{0}+f(0)\right)+C(t, A) u^{1}+\int_{0}^{t} S(t-s, A) f^{\prime}(s) d s \tag{1.6}
\end{equation*}
$$

We have to note here that one cannot expect maximal regularity for the problem (1.2), see [4], so in order to get a classical solution the differentiability of $f(\cdot)$ is almost necessary condition. Let us write $v(t)=u^{\prime}(t), v^{0}=u^{1}, v^{1}=A u_{0}+f(0)$, $f_{1}(t)=f^{\prime}(t)$. Then last formula in (1.6) can be written as formula (1.5):

$$
v(t)=C(t, A) v^{0}+S(t, A) v^{1}+\int_{0}^{t} S(t-s, A) f_{1}(s) d s
$$

Proposition 1.2 yields the conditions under which the function $v(\cdot)$ is a classical solution (in particular is twice continuously differentiable) of the problem

$$
\left\{\begin{array}{l}
v^{\prime \prime}(t)=A v(t)+f_{1}(t), \quad 0 \leq t \leq T, \\
v(0)=v^{0}, v^{\prime}(0)=v^{1}
\end{array}\right.
$$

These conditions are that $v^{0} \in D(A), v^{1} \in E^{1}, f_{1}(\cdot) \in C^{1}([0, T] ; E)$, i. e. $u^{0}, u^{1} \in$ $D(A), A u^{0}+f(0) \in E^{1}, f(\cdot) \in C^{2}([0, T] ; E)$. It follows from these conditions that $v(\cdot) \in C^{2}([0, T] ; E)$, i. e. $u(\cdot) \in C^{3}([0, T] ; E)$.

Following the same procedure it is possible to find some sufficient conditions under which the solution of the Cauchy problem becomes as smooth as we like. Set $w(t)=v^{\prime}(t)$. Then, one can write

$$
\begin{equation*}
w(t)=C(t, A) w^{0}+S(t, A) w^{1}+\int_{0}^{t} S(t-s, A) f_{2}(s) d s \tag{1.7}
\end{equation*}
$$

where $w^{0}=v^{1}, w^{1}=A v_{0}+f_{1}(0), f_{2}(t)=f_{1}^{\prime}(t)$.
If $w^{0} \in D(A), w^{1} \in E^{1}$ and $f_{2}(\cdot) \in C^{1}([0, T] ; E)$, then $w(\cdot) \in C^{2}([0, T] ; E)$, i. e. $u(\cdot) \in C^{4}([0, T] ; E)$. This leads us to the next proposition:

Proposition 1.3. Assume that the operator $A \in C(M, \omega)$ and $u^{0}, u^{1} \in D\left(A^{2}\right)$. Suppose also that the following conditions hold
(i) $f(\cdot) \in C^{3}([0, T] ; E)$,
(ii) $A u^{0}+f(0) \in D(A), A u^{1}+f^{\prime}(0) \in E^{1}$.

Then the function $u(\cdot)$ from (1.5) belongs to $C^{4}([0, T] ; E)$. Conversely. Assume that the function $u(\cdot)$ defined by (1.5) belongs to $C^{4}([0, T] ; E)$, i.e. $u(\cdot) \in$ $C^{4}([0, T] ; E)$, and $f(\cdot) \in C^{3}([0, T] ; E)$ with $f(0)=0$. Then $f^{\prime}(0) \in E^{1}$ and so $A S(t, A) f^{\prime}(0) \in C([0, T] ; E)$.

Proof. We prove just second part of Proposition. As it can be seen from (1.7) we have

$$
\begin{gathered}
u^{\prime \prime \prime}(t)=A^{2} S(t, A) u^{0}+C(t, A)\left(A u^{1}+f^{\prime}(0)\right)+\int_{0}^{t} C(t-s, A) f^{\prime \prime}(s) d s \\
=S(t, A) A^{2} u^{0}+C(t, A)\left(A u^{1}+f^{\prime}(0)\right)+S(t, A) f^{\prime \prime}(0)+\int_{0}^{t} S(t-s, A) f^{\prime \prime \prime}(s) d s
\end{gathered}
$$

Now,

$$
\begin{align*}
& u^{\prime \prime \prime \prime}(t)=C(t, A) A^{2} u^{0}+S(t, A) A^{2} u^{1}+A S(t, A) f^{\prime}(0)+C(t, A) f^{\prime \prime}(0) \\
& +\int_{0}^{t} C(t-s, A) f^{\prime \prime \prime}(s) d s \tag{1.8}
\end{align*}
$$

hence the function $A S(t, A) f^{\prime}(0) \in C([0, T] ; E)$.
Let consider the homogenous uniformly well-posed Cauchy problem

$$
\begin{equation*}
u^{\prime \prime}(t)=A u(t), \quad t \in \mathbb{R} ; \quad u(0)=u^{0}, \quad u^{\prime}(0)=u^{1} . \tag{1.9}
\end{equation*}
$$

Define the matrix operator $\mathcal{A}:=\left(\begin{array}{cc}0 & I \\ A & 0\end{array}\right): E^{1} \times E \rightarrow E^{1} \times E$ acting on the element $(x, y) \in E^{1} \times E$ according to the formula $\mathcal{A}(x, y)=(y, A x)$. This operator has the domain $D(\mathcal{A}):=D(A) \times E^{1}$.

Let the uniformly well-posed problem (1.9) have the form

$$
\begin{equation*}
u^{\prime \prime}(t)=\mathfrak{B}^{2} u(t), \quad t \in \mathbb{R} ; \quad u(0)=u^{0}, \quad u^{\prime}(0)=u^{1}, \tag{1.10}
\end{equation*}
$$

where $\mathfrak{B} \in \mathcal{C}(E)$. Then
Definition 1.3. We say that a solution $u(\cdot)$ of problem (1.10) satisfies Condition (K) if

$$
u^{\prime}(\cdot) \in C([0, T] ; \mathfrak{D}(\mathfrak{B}))
$$

Proposition 1.4. [23]. Problem (1.10) has a unique solution satisfying Condition (K) iff the following Cauchy problem:

$$
\binom{u}{v}^{\prime}(t)=\left(\begin{array}{cc}
0 & \mathfrak{B} \tag{1.11}\\
\mathfrak{B} & 0
\end{array}\right)\binom{u}{v}(t), \quad t \in \mathbb{R}, \quad\binom{u}{v}(0)=\binom{u_{0}}{v_{0}}
$$

is uniformly well posed on the space $E \times E$.
The following Condition (F) is analog to Condition (K), which allows to simplify the study of problem (1.9) by using C_{0}-semigroups.

Definition 1.4. We say that a C_{0}-cosine operator-valued function $C(\cdot, A)$ satisfies Condition (F) if the following conditions hold:
(i) there exists $\mathfrak{B} \in \mathcal{C}(E)$ such that $\mathfrak{B}^{2}=A$, and \mathfrak{B} commutes with any operator from $B(E)$ commuting with A;
(ii) the operator $S(t, A)$ maps E into $D(\mathfrak{B})$ for any $t \in \mathbb{R}$;
(iii) the function $\mathfrak{B} S(t, A) x$ is continuous in $t \in \mathbb{R}$ for every fixed $x \in E$.

Proposition 1.5. [6]. Under Condition (F), for each $t \in \mathbb{R}$, we have $\mathfrak{B} S(t, A) \in$ $B(E)$ and $\mathfrak{D}(\mathfrak{B}) \subseteq E^{1}$.

Proposition 1.6. [6]. Pairs of a Banach space E and a C_{0}-cosine operatorfunction $C(\cdot, A)$ (also uniformly bounded) such that Condition (F) does not hold do exist.

We have to note that if $0 \in \rho(A)$, then conditions (K) and (F) are equivalent.
Proposition 1.7. [20]. Let E be a Hilbert space, and let the operator A be self-adjoint and negative-definite. Then $A \in \mathcal{C}(M ; \omega)$, condition (F) is satisfied and the corresponding space E^{1} coincides with $\mathfrak{D}\left((-A)^{1 / 2}\right)$.

Theorem 1.1. [19]. Let A and \mathfrak{B} be operators satisfying condition (i) of Definition 1.4, and let $0 \in \rho(\mathfrak{B})$. The following conditions are equivalent:
(i) the C_{0}-cosine operator-function $C(\cdot, A)$ satisfies Condition (F);
(ii) the operator \mathfrak{B} generates a $C_{0-\text { group }} \exp (\cdot \mathfrak{B})$ on E;
(iii) the operator $\left(\begin{array}{cc}0 & \mathfrak{B} \\ \mathfrak{B} & 0\end{array}\right)$ with the domain $D(A) \times D(\mathfrak{B})$ generates a C_{0} group on $E \times E$;
(iv) the operator $\mathcal{A}:=\left(\begin{array}{ll}0 & I \\ A & 0\end{array}\right)$ with the domain $D(A) \times D(\mathfrak{B})$ generates a C_{0}-group $\exp (\cdot \mathcal{A})$ on $\mathfrak{D}(\mathfrak{B}) \times E$, where $\mathfrak{D}(\mathfrak{B})$ is the Banach space of elements $D(\mathfrak{B})$ endowed with the graph norm;
(v) the embedding $D(\mathfrak{B}) \subseteq E^{1}$ holds;
(vi) $\mathfrak{D}(\mathfrak{B})=E^{1}$.

Proposition 1.8. [19]. Under the conditions of Theorem 1.1, for $t \in \mathbb{R}$, we have
$(i) \exp (t \mathfrak{B})=C(t, A)+\mathfrak{B} S(t, A), C(t, A)=(\exp (t \mathfrak{B})+\exp (-t \mathfrak{B})) / 2$;
(ii) $\exp (t \mathcal{A})=\left(\begin{array}{cc}\mathfrak{B}^{-1} & 0 \\ 0 & I\end{array}\right) \exp \left(t\left(\begin{array}{cc}0 & \mathfrak{B} \\ \mathfrak{B} & 0\end{array}\right)\right)\left(\begin{array}{cc}\mathfrak{B} & 0 \\ 0 & I\end{array}\right)$.

The analog of Proposition 1.2 is given in
Theorem 1.2. [8]. Let the operator $\mathfrak{B}=\sqrt{A}$ in problem (1.2) have a bounded inverse $\mathfrak{B}^{-1} \in B(E)$ and be a generator of a C_{0}-group. Assume also that the function $f(\cdot)$ have one of the following properties:
(i) $f(\cdot) \in C^{1}([0, T) ; E)$;
(ii) $\mathfrak{B} f(\cdot) \in C([0, T) ; E)$.

Then for any $u^{0} \in D(A)$ and $u^{1} \in D(\mathfrak{B})$, there exists a unique classical solution of problem (1.2) given by formula (1.5) in the form

$$
\begin{align*}
u(t)= & \frac{1}{2}(\exp (t \mathfrak{B})+\exp (-t \mathfrak{B})) u^{0}+\frac{1}{2}(\exp (t \mathfrak{B})-\exp (-t \mathfrak{B})) \mathfrak{B}^{-1} u^{1} \\
& +\frac{1}{2} \int_{0}^{t}(\exp ((t-s) \mathfrak{B})-\exp (-(t-s) \mathfrak{B})) \mathfrak{B}^{-1} f(s) d s, \quad t \in[0, T] . \tag{1.12}
\end{align*}
$$

2. A General Approximation Scheme

A general approximation scheme, due to [21], [22], can be described in the following way. Let E_{n} and E be Banach spaces and $\left\{p_{n}\right\}$ be a sequence of linear bounded operators $p_{n}: E \rightarrow E_{n}, p_{n} \in B\left(E, E_{n}\right), n \in I N=\{1,2, \cdots\}$, with the property:

$$
\left\|p_{n} x\right\|_{E_{n}} \rightarrow\|x\|_{E} \text { as } n \rightarrow \infty \text { for any } x \in E .
$$

Definition 2.1. The sequence of elements $\left\{x_{n}\right\}, x_{n} \in E_{n}, n \in I N$, is said to be \mathcal{P}-convergent to $x \in E$ iff $\left\|x_{n}-p_{n} x\right\|_{E_{n}} \rightarrow 0$ as $n \rightarrow \infty$ and we write this $x_{n} \xrightarrow{\mathcal{P}} x$.

Definition 2.2. The sequence of elements $\left\{x_{n}\right\}, x_{n} \in E_{n}, n \in I N$, is said to be \mathcal{P}-compact if for any subset of interges $I N^{\prime} \subseteq I N$ there exist a subset of interges $I N^{\prime \prime} \subseteq I N^{\prime}$ and $x \in E$ such that $x_{n} \xrightarrow{\mathcal{P}} x$, as $n \rightarrow \infty$ in $I^{\prime \prime}$.

Definition 2.3. The sequence of linear bounded operators $B_{n} \in B\left(E_{n}\right), n \in I N$, is said to be $\mathcal{P} \mathcal{P}$-convergent to the bounded linear operator $B \in B(E)$ if for every $x \in E$ and for every sequence $\left\{x_{n}\right\}, x_{n} \in E_{n}, n \in I N$, such that $x_{n} \xrightarrow{\mathcal{P}} x$ one has $B_{n} x_{n} \xrightarrow{\mathcal{P}} B x$. We write this as $B_{n} \xrightarrow{\mathcal{P P}} B$.

For general examples of notions of \mathcal{P}-convergence see [21].
Remark 2.1. If we set $E_{n}=E$ and $p_{n}=I$ for every $n \in I N$, where I is the identity operator on E, then Definition 2.1 leads to the usual pointwise convergence of bounded linear operators which we denote by $B_{n} \rightarrow B$.

In case of operators which have a compact resolvent it is natural to consider approximating operators which "preserve" the property of compactness. Hence,

Definition 2.4. A sequence of operators $\left\{B_{n}\right\}, B_{n}: E_{n} \rightarrow E_{n}, n \in I N$, converges compactly to an operator $B: E \rightarrow E$ if $B_{n} \xrightarrow{\mathcal{P P}} B$ and the following compactness condition holds:

$$
\left\|x_{n}\right\|_{E_{n}}=O(1) \Longrightarrow\left\{B_{n} x_{n}\right\} \text { is } \mathcal{P} \text {-compact. }
$$

Definition 2.5. The region of stability $\Delta_{s}=\Delta_{s}\left(\left\{A_{n}\right\}\right), A_{n} \in \mathcal{C}\left(B_{n}\right)$, is defined as the set of all $\lambda \in \mathbb{C}$ such that $\lambda \in \rho\left(A_{n}\right)$ for almost all n and such that the sequence $\left\{\left\|\left(\lambda I_{n}-A_{n}\right)^{-1}\right\|\right\}_{n \in N}$ is bounded for almost all n. The region of convergence $\Delta_{c}=\Delta_{c}\left(\left\{A_{n}\right\}\right), A_{n} \in \mathcal{C}\left(E_{n}\right)$, is defined as the set of all $\lambda \in \mathbb{C}$ such that $\lambda \in \Delta_{s}\left(\left\{A_{n}\right\}\right)$ and such that the sequence of operators $\left\{\left(\lambda I_{n}-A_{n}\right)^{-1}\right\}_{n \in N}$ is $\mathcal{P} \mathcal{P}$-convergent to some operator $S(\lambda) \in B(E)$.

Definition 2.6. The region of compact convergence of resolvents, $\Delta_{c c}=\Delta_{c c}$ $\left(A_{n}, A\right)$, where $A_{n} \in \mathcal{C}\left(E_{n}\right)$ and $A \in \mathcal{C}(E)$ is defined as the set of all $\lambda \in \Delta_{c} \cap \rho(A)$ such that $\left(\lambda I_{n}-A_{n}\right)^{-1} \xrightarrow{\mathcal{P} \mathcal{P}}(\lambda I-A)^{-1}$ compactly.

In the case of unbounded operators (recall that in general infinitesimal generators are unbounded), we consider the notion of compatibility.

Definition 2.7. The sequence of closed linear operators $\left\{A_{n}\right\}, A_{n} \in \mathcal{C}\left(E_{n}\right), n \in$ $I N$, is said to be compatible with a linear closed operator $A \in \mathcal{C}(E)$ iff for each $x \in D(A)$ there is a sequence $\left\{x_{n}\right\}, x_{n} \in D\left(A_{n}\right) \subseteq E_{n}, n \in I N$, such that $x_{n} \xrightarrow{\mathcal{P}} x$ and $A_{n} x_{n} \xrightarrow{\mathcal{P}} A x$. We write this as $\left(A_{n}, A\right)$ are compatible.

Usually, in practice, the Banach spaces E_{n} are finite-dimensional, although, in general, e.g. in the case of a closed operator A, we have $\operatorname{dim} E_{n} \rightarrow \infty$ and $\left\|A_{n}\right\|_{B\left(E_{n}\right)} \rightarrow \infty$ as $n \rightarrow \infty$.

Definition 2.8. A sequence of operators $\left\{B_{n}\right\}, B_{n} \in B\left(E_{n}\right), n \in I N$, is said to be stably convergent to an operator $B \in B(E)$ iff $B_{n} \xrightarrow{\mathcal{P P}} B$ and $\left\|B_{n}^{-1}\right\|_{B\left(E_{n}\right)}=$ $O(1), n \rightarrow \infty$. We will write this as: $B_{n} \xrightarrow{\mathcal{P} \mathcal{P}} B$ stably.

Definition 2.9. A sequence of operators $\left\{B_{n}\right\}, B_{n} \in B\left(E_{n}\right)$, is called regularly convergent to the operator $B \in B(E)$ iff $B_{n} \xrightarrow{\mathcal{P} \mathcal{P}} B$ and the following implication holds:

$$
\left\|x_{n}\right\|_{E_{n}}=O(1) \&\left\{B_{n} x_{n}\right\} \text { is } P \text {-compact } \Longrightarrow\left\{x_{n}\right\} \text { is } P \text {-compact. }
$$

We write this as: $B_{n} \xrightarrow{\mathcal{P} \mathcal{P}} B$ regularly.
Theorem 2.1. [22]. Let $C_{n}, S_{n} \in B\left(E_{n}\right), C, S \in B(E)$ and $\mathcal{R}(S)=E$. Assume also that $C_{n} \xrightarrow{\mathcal{P} \mathcal{P}} C$ compactly and $S_{n} \xrightarrow{\mathcal{P} \mathcal{P}} S$ stably. Then $S_{n}+C_{n} \xrightarrow{\mathcal{P} \mathcal{P}} S+C$ converges regularly.

Theorem 2.2. [22]. For $Q_{n} \in B\left(E_{n}\right)$ and $Q \in B(E)$ the following conditions are equivalent:
(i) $Q_{n} \xrightarrow{\mathcal{P} \mathcal{P}} Q$ regularly, Q_{n} are Fredholm operators of index 0 and $\mathcal{N}(Q)=\{0\}$;
(ii) $Q_{n} \xrightarrow{\mathcal{P} \mathcal{P}} Q$ stably and $\mathcal{R}(Q)=E$;
(iii) $Q_{n} \xrightarrow{\mathcal{P} \mathcal{P}} Q$ stably and regularly;
(iv) if one of conditions (i)-(iii) holds, then there exist $Q_{n}^{-1} \in B\left(E_{n}\right), Q^{-1} \in$ $B(E)$, and $Q_{n}^{-1} \xrightarrow{\mathcal{P P}} Q^{-1}$ regularly and stably.

Theorem 2.3. [5]. Let the operators A and A_{n} generate C_{0}-semigroups. The following conditions (A) and (B) are equivalent to condition (C).
(A) Consistency. There exists $\lambda \in \rho(A) \cap \cap_{n} \rho\left(A_{n}\right)$ such that the resolvents converge
$\left(\lambda I_{n}-A_{n}\right)^{-1} \xrightarrow{\mathcal{P P}}(\lambda I-A)^{-1} ;$
(B) Stability. There are some constants $M_{1} \geq 1$ and $\omega_{1} \in \mathbb{R}$ independent of n such that for any $t \geq 0$

$$
\left\|\exp \left(t A_{n}\right)\right\| \leq M_{1} e^{\omega t} \text { for all } n \in I N
$$

(C) Convergence. For any finite $T>0$ we have

$$
\max _{t \in[0, T])}\left\|\exp \left(t A_{n}\right) u_{n}^{0}-p_{n} \exp (t A) u^{0}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for any $u^{0} \in E$, whenever $u_{n}^{0} \xrightarrow{\mathcal{P}} u^{0}$.
Usually it is assumed that conditions (A) and (B) for the corresponding $C_{0}{ }^{-}$ semigroup case are satisfied without any loss of generality whatever process of discretization in time is considered. We denote by $T_{n}(\cdot)$ a family of discrete semigroups $T_{n}(t)=T_{n}\left(\tau_{n}\right)^{k_{n}}$, where $k_{n}=\left[\frac{t}{\tau_{n}}\right]$, as $\tau_{n} \rightarrow 0, n \rightarrow \infty$, see [13]. The generator of discrete semigroup is defined by $\breve{A}_{n}=\frac{1}{\tau_{n}}\left(T_{n}\left(\tau_{n}\right)-I_{n}\right) \in B\left(E_{n}\right)$ and hence $T_{n}(t)=\left(I_{n}+\tau_{n} \breve{A}_{n}\right)^{k_{n}}$, where $t=k_{n} \tau_{n}$.

Theorem 2.4. (Theorem ABC-discr, [13]). The following conditions (A) and $\left(B^{\prime}\right)$ are equivalent to condition $\left(C^{\prime}\right)$.
(A) Consistency. There exists $\lambda \in \rho(A) \cap \cap_{n} \rho\left(\breve{A}_{n}\right)$ such that the resolvents converge

$$
\left(\lambda I_{n}-\breve{A}_{n}\right)^{-1} \xrightarrow{\mathcal{P} \mathcal{P}}(\lambda I-A)^{-1} ;
$$

(B^{\prime}) Stability. There are some constants $M \geq 1$ and $\omega_{1} \in \mathbb{R}$ such that

$$
\left\|T_{n}(t)\right\| \leq M \exp \left(\omega_{1} t\right) \text { for } t \in \overline{\mathbb{R}}_{+}=[0, \infty), n \in I N
$$

(C') Convergence. For any finite $T>0$ one has

$$
\max _{t \in[0, T]}\left\|T_{n}(t) u_{n}^{0}-p_{n} \exp (t A) u^{0}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$, whenever $u_{n}^{0} \xrightarrow{\mathcal{P}} u^{0}$ for any $u^{0} \in E, u_{n}^{0} \in E_{n}$.

Theorem 2.5. [13]. Assume that $A \in \mathcal{C}(E), A_{n} \in \mathcal{C}\left(E_{n}\right)$ and let A, A_{n} generate C_{0}-semigroups. Assume also that conditions (A) and (B) of Theorem 2.3 hold. Then, the implicit difference scheme

$$
\begin{equation*}
\frac{\bar{U}_{n}\left(t+\tau_{n}\right)-\bar{U}_{n}(t)}{\tau_{n}}=A_{n} \bar{U}_{n}(t+\tau), \bar{U}_{n}(0)=u_{n}^{0} \tag{2.1}
\end{equation*}
$$

is stable, i.e. $\left\|\left(I_{n}-\tau_{n} A_{n}\right)^{-k_{n}}\right\| \leq M_{1} e^{\omega_{1} t}, t=k_{n} \tau_{n} \in \bar{R}_{+}$, and gives an approximation to the $\exp (t A) u_{n}^{0}$, i.e. $\bar{U}_{n}(t) \equiv\left(I_{n}-\tau_{n} A_{n}\right)^{-k_{n}} u_{n}^{0} \xrightarrow{\mathcal{P}} \exp (t A) u_{n}^{0}$ uniformly with respect to $t=k_{n} \tau_{n} \in[0, T]$ as $u_{n}^{0} \xrightarrow{\mathcal{P}} u^{0}, n \rightarrow \infty, k_{n} \rightarrow \infty$, $\tau_{n} \rightarrow 0$.

For C_{0}-cosine operator-functions the following ABC Theorem holds:
Theorem 2.6. [13]. Let the operators A and A_{n} be generators of C_{0}-cosine operator-functions. Then, the following conditions (A) and $\left(B^{\prime \prime}\right)$ are equivalent to condition $\left(C^{\prime \prime}\right)$:
(A) Compatability. There exists $\lambda \in \rho(A) \cap \cap_{n} \rho\left(A_{n}\right)$ such that the resolvents converge

$$
\left(\lambda I_{n}-A_{n}\right)^{-1} \xrightarrow{\mathcal{P} \mathcal{P}}(\lambda I-A)^{-1}
$$

(B ") Stability. There are some constants $M_{3} \geq 1$ and $\omega_{3} \geq 0$ such that

$$
\left\|C\left(t, A_{n}\right)\right\| \leq M_{3} e^{\omega_{3} t}, \quad t \geq 0, \quad n \in I N
$$

(C ") Convergence. For any finite $T>0$ one has

$$
\max _{t \in[0, T]}\left\|C\left(t, A_{n}\right) u_{n}^{0}-p_{n} C(t, A) u^{0}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$ for any $u^{0} \in E$, whenever $u_{n}^{0} \xrightarrow{\mathcal{P}} u^{0}$.

3. Discretizing in Space and Time

The semidiscrete approximation of (1.2) leads to the following Cauchy problems in the Banach spaces E_{n} :

$$
\begin{align*}
u_{n}^{\prime \prime}(t) & =A_{n} u_{n}(t)+f_{n}(t), t \in[0, T] \tag{3.1}\\
u_{n}(0) & =u_{n}^{0}, u_{n}^{\prime}(0)=u_{n}^{1}
\end{align*}
$$

with operators A_{n}, which generate C_{0}-cosine operator-functions, the operators A_{n} and A are compatible, $u_{n}^{0} \xrightarrow{\mathcal{P}} u^{0}, u_{n}^{1} \xrightarrow{\mathcal{P}} u^{1}$ and $f_{n}(\cdot) \xrightarrow{\mathcal{P}} f(\cdot)$ in an appropriate sense. It is natural to assume that conditions (A) and $\left(B^{\prime \prime}\right)$ of Theorem 2.6 for C_{0}-cosine operator-functions are satisfied.

The discretization of (3.1) in the time variable has been considered in many papers [$1,11,17]$. One of the simplest difference scheme is

$$
\begin{align*}
& \frac{U_{n}^{k+1}-2 U_{n}^{k}+U_{n}^{k-1}}{\tau_{n}^{2}} \tag{3.2}\\
= & A_{n} U_{n}^{k+1}+\varphi_{n}^{k}, k \in\left\{1, \ldots,\left[\frac{T}{\tau_{n}}\right]\right\}, U_{n}^{0}=u_{n}^{0}, U_{n}^{1}=u_{n}^{0}+\tau_{n} u_{n}^{1},
\end{align*}
$$

where, for instance if $f_{n}(\cdot) \in C\left([0, T] ; E_{n}\right)$, one can set $\varphi_{n}^{k}=f_{n}\left(k \tau_{n}\right), k \in$ $\{1, \ldots, K\}, K=\left[\frac{T}{\tau_{n}}\right]$, and in case that $f_{n}(\cdot) \in L^{1}\left([0, T] ; E_{n}\right)$, one can set

$$
\varphi_{n}^{k}=\frac{1}{\tau_{n}} \int_{t_{k-1}}^{t_{k}} f_{n}(s) d s, t_{k}=k \tau_{n}, k \in\{1, \ldots, K\}
$$

The solution to problem (3.2) is given by the formula [16]:

$$
\begin{equation*}
U_{n}^{k}=C_{k}^{(n)} U_{n}^{0}+S_{k}^{(n)} U_{n}^{1}+\tau_{n}^{2} R_{n} \sum_{j=2}^{k} S_{k+1-j}^{(n)} \varphi_{n}^{j-1}, \tag{3.3}
\end{equation*}
$$

where $k \geqslant 2$. Indeed, in order to solve the homogeneous equations associated to (3.2), i.e.

$$
\begin{equation*}
U_{n}^{k+1}-2\left(I_{n}-\tau_{n}^{2} A_{n}\right)^{-1} U_{n}^{k}+\left(I_{n}-\tau_{n}^{2} A_{n}\right)^{-1} U_{n}^{k-1}=0, \tag{3.4}
\end{equation*}
$$

we consider the discrete operator-functions defined by the recurrent relations

$$
\begin{align*}
& C_{k+1}^{(n)}=R_{n}\left(2 C_{k}^{(n)}-C_{k-1}^{(n)}\right), \quad C_{0}^{(n)}=I_{n}, \quad C_{1}^{(n)}=0, \\
& S_{k+1}^{(n)}=R_{n}\left(2 S_{k}^{(n)}-S_{k-1}^{(n)}\right), \quad S_{0}^{(n)}=0, \quad S_{1}^{(n)}=I_{n}, \tag{3.5}
\end{align*}
$$

where $R_{n}=\left(I_{n}-\tau_{n}^{2} A_{n}\right)^{-1}$. Then, the solution of (3.4) is given by

$$
U_{n}^{k}=C_{k}^{(n)} U_{n}^{0}+S_{k}^{(n)} U_{n}^{1}=\left(C_{k}^{(n)}+S_{k}^{(n)}\right) U_{n}^{0}+\tau_{n} S_{k}^{(n)} \frac{U_{n}^{1}-U_{n}^{0}}{\tau_{n}}
$$

To operate with representations of discrete families of operators we give the following

Definition 3.1. [12]. The operators A_{n} of C_{0}-cosine operator-valued function $C\left(\cdot, A_{n}\right)$ satisfy the discrete Krein-Fattorini Conditions if the following conditions hold:
(i) there exist $\mathfrak{B}_{n} \in \mathcal{C}\left(E_{n}\right)$ such that $\mathfrak{B}_{n}^{2}=A_{n}$, and \mathfrak{B}_{n} commutes with any operator from $B\left(E_{n}\right)$ commuting with A_{n};
(ii) the operators \mathfrak{B}_{n} generate C_{0}-groups such that $\left\|\exp \left(\pm t \mathfrak{B}_{n}\right)\right\| \leq M_{0} e^{\omega_{0}|t|}, t \in$ \mathbb{R};
(iii) the operators $-A_{n}$ are strongly positive, i.e.

$$
\left\|\left(\lambda I_{n}-A_{n}\right)^{-1}\right\| \leq \frac{M}{1+|\lambda|}, \quad R e \lambda \geq 0
$$

and $\left\|\mathfrak{B}_{n}^{-1}\right\| \leq C$ as $n \in I N$.
We can obtain explicit representations for the functions $C_{k}^{(n)}, S_{k}^{(n)}$ in the following way. Let us introduce the operators

$$
R_{1, n}=\left(I_{n}-\tau_{n} \mathfrak{B}_{n}\right)^{-1}, \quad R_{2, n}=\left(I_{n}+\tau_{n} \mathfrak{B}_{n}\right)^{-1}
$$

where the operators \mathfrak{B}_{n} are those in the Krein-Fattorini conditions. These operators satisfy the relations

$$
\begin{equation*}
R_{1, n} R_{2, n}=R_{n}, \quad R_{1, n}-R_{2, n}=2 \tau_{n} \mathfrak{B}_{n} R_{n}, \quad R_{1, n}+R_{2, n}=2 R_{n} \tag{3.6}
\end{equation*}
$$

which follow from the well-known Hilbert identity for resolvents. Since under the Krein-Fattorini conditions the operator \mathfrak{B}_{n} generates a C_{0}-group one has that $\left\|R_{j, n}^{k}\right\| \leq \operatorname{const}(t), k \tau_{n}=t$ for $j=1,2$.

Simple calculations show that the general solution of (3.4) is given as in [16] by the formula

$$
\begin{equation*}
U_{n}^{k}=R_{1, n}^{k} x+R_{2, n}^{k} y \tag{3.7}
\end{equation*}
$$

where x and y are arbitrary elements of E_{n}. Note that the representation (3.7) was established also in [2], [3] without Krein-Fattorini conditions, but in our case we need that $\left\|R_{1, n}^{k_{n}}\right\| \leq M e^{\omega t},\left\|R_{2, n}^{k_{n}}\right\| \leq M e^{\omega t}$ with $k_{n} \tau_{n}=t$. Now if we solve the system

$$
\left\{\begin{array}{l}
x+y=U_{n}^{0} \\
R_{1, n} x+R_{2, n} y=U_{n}^{1}
\end{array}\right.
$$

and insert x and y in (3.7), we obtain by some calculations

$$
C_{k}^{(n)}=-R_{n} \sum_{s=0}^{k-2} R_{1, n}^{s} R_{2, n}^{k-2-s}, \quad S_{k}^{(n)}=\sum_{s=0}^{k-1} R_{1, n}^{s} R_{2, n}^{k-1-s}
$$

From (3.6) we derive

$$
\begin{equation*}
R_{n} \mathfrak{B}_{n} S_{k}^{(n)}=\frac{1}{2 \tau_{n}}\left(R_{1, n}-R_{2, n}\right) \sum_{s=0}^{k-1} R_{1, n}^{s} R_{2, n}^{k-1-s}=\frac{1}{2 \tau_{n}}\left(R_{1, n}^{k}-R_{2, n}^{k}\right) . \tag{3.8}
\end{equation*}
$$

We note also that

$$
\begin{align*}
& R_{1, n}^{k}-R_{1, n}^{k-1}=\tau_{n} \mathfrak{B}_{n} R_{1, n}^{k}, \tag{3.9}\\
& R_{2, n}^{k}-R_{2, n}^{k-1}=-\tau_{n} \mathfrak{B}_{n} R_{2, n}^{k},
\end{align*}
$$

and

$$
\begin{equation*}
R_{1, n}^{k}+R_{2, n}^{k}=2 R_{n}\left(S_{k}^{(n)}-S_{k-1}^{(n)}\right) . \tag{3.10}
\end{equation*}
$$

The equality (3.10) can be proved by induction on k. For $k=1$ and $k=2$ it can be checked by direct calculations. For $k>2$,

$$
\begin{aligned}
& R_{1, n}^{k+1}+R_{2, n}^{k+1}=\left(R_{1, n}^{k}+R_{2, n}^{k}\right)\left(R_{1, n}+R_{2, n}\right)-R_{1, n} R_{2, n}\left(R_{1, n}^{k-1}+R_{2, n}^{k-1}\right) \\
= & 2 R_{n}\left(S_{k}^{(n)}-S_{k-1}^{(n)}\right) \cdot 2 R_{n}-R_{n} \cdot\left(S_{k-1}^{(n)}-S_{k-2}^{(n)}\right)=2 R_{n}^{2}\left(2 S_{k}^{(n)}-3 S_{k-1}^{(n)}+S_{k-2}^{(n)}\right) \\
= & 2 R_{n}\left(R_{n}\left(2 S_{k}^{(n)}-S_{k-1}^{(n)}\right)-R_{n}\left(2 S_{k-1}^{(n)}-2 S_{k-2}^{(n)}\right)\right)=2 R_{n}\left(S_{k+1}^{(n)}-S_{k}^{(n)}\right) .
\end{aligned}
$$

From (3.6) and equality $I-R_{1, n}=-\tau_{n} \mathfrak{B}_{n} R_{1, n}$ we have

$$
\begin{aligned}
C_{k}^{(n)}+S_{k}^{(n)} & =-R_{1, n} R_{2, n} \sum_{s=0}^{k-2} R_{1, n}^{s} R_{2, n}^{k-2-s}+\sum_{s=0}^{k-1} R_{1, n}^{s} R_{2, n}^{k-1-s} \\
& =-\sum_{s=0}^{k-2} R_{1, n}^{s+1} R_{2, n}^{k-1-s}+\sum_{s=0}^{k-1} R_{1, n}^{s} R_{2, n}^{k-1-s} \\
& =\sum_{s=0}^{k-2}\left(R_{1, n}^{s}-R_{1, n}^{s+1}\right) R_{2, n}^{k-1-s}+R_{1, n}^{k-1} \\
& =-\tau_{n} \mathfrak{B}_{n} \sum_{s=0}^{k-2} R_{1, n}^{s+1} R_{2, n}^{k-1-s}+R_{1, n}^{k-1} \\
& =-\tau_{n} \mathfrak{B}_{n} R_{1, n} R_{2, n} \sum_{s=0}^{k-2} R_{1, n}^{s} R_{2, n}^{k-2-s}+R_{1, n}^{k-1} \\
& =-\tau_{n} \mathfrak{B}_{n} R_{n} S_{k-1}^{(n)}+R_{1, n}^{k-1} .
\end{aligned}
$$

Using (3.8) we get

$$
\begin{equation*}
\tau_{n} \mathfrak{B}_{n} R_{n} S_{k-1}^{(n)}=\frac{1}{2}\left(R_{1, n}^{k-1}-R_{2, n}^{k-1}\right), \tag{3.11}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
C_{k}^{(n)}+S_{k}^{(n)}=\frac{1}{2}\left(R_{1, n}^{k-1}+R_{2, n}^{k-1}\right) . \tag{3.12}
\end{equation*}
$$

Let consider the inhomogeneous equation (3.2), i.e.
(3.13) $U_{n}^{k+1}-2\left(I_{n}-\tau_{n}^{2} A_{n}\right)^{-1} U_{n}^{k}+\left(I_{n}-\tau_{n}^{2} A_{n}\right)^{-1} U_{n}^{k-1}=\tau_{n}^{2}\left(I_{n}-\tau_{n}^{2} A_{n}\right)^{-1} \varphi_{n}^{k}$.

Using the recurrent relation (3.5) we derive formula (3.3), see [16].

4. Existence of Solutions to the Inverse Problem

Consider the inverse problem (1.1) in the following form: for given elements $u^{T}, u^{0}, u^{1} \in D(A)$ find a solution $u(\cdot) \in C^{2}([0, T] ; E)$ and an element $d \in E$ such that

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t)+\Phi(t) d, \quad 0 \leq t \leq T \tag{4.1}\\
u(0)=u^{0}, u^{\prime}(0)=u^{1} \\
u(T)=u^{T}
\end{array}\right.
$$

Here $A \in C(M ; \omega)$. The problem (4.1) is an inverse problem with overdetermination. Details on such kind of description of problems can be found in [15].

Basing on Remark 1.1, we can treat the solution of (4.1) as follows

$$
A \int_{0}^{T} S(T-s, A) \Phi(s) d s d=A u(T)-C(T, A) A u^{0}-A S(T, A) u^{1}
$$

and then use the identities
(4.2) $A \int_{0}^{T} S(T-s, A) \Phi(s) d s=\int_{0}^{T} C(T-s, A) \Phi^{\prime}(s) d s-\Phi(T)+C(T, A) \Phi(0)$
and

$$
\begin{align*}
& A \int_{0}^{T} S(T-s, A) \Phi(s) d s \\
= & \int_{0}^{T} S(T-s, A) \Phi^{\prime \prime}(s) d s-S(T, A) \Phi^{\prime}(0)-\Phi(T)+C(T, A) \Phi(0) \tag{4.3}
\end{align*}
$$

Proposition 4.1. Let $\Phi(\cdot) \in C^{1}([0, T] ; B(E))$, the operator $\Phi(T)$ be invertible, i.e. $\Phi(T)^{-1} \in B(E)$. Then the inverse problem (4.1) is equivalent to that of solving

$$
\begin{equation*}
I d-B_{1} d=g_{1} \tag{4.4}
\end{equation*}
$$

where

$$
B_{1}=\Phi(T)^{-1}\left(\int_{0}^{T}\left(C(T-s, A) \Phi^{\prime}(s)-\lambda S(T-s, A) \Phi(s)\right) d s+C(T, A) \Phi(0)\right)
$$

and

$$
g_{1}:=-\Phi(T)^{-1}(A-\lambda I)\left(u^{T}-C(T, A) u^{0}-S(T, A) u^{1}\right) \text { for } \lambda \in \rho(A)
$$

Proposition 4.2. Let $\Phi(\cdot) \in C^{2}([0, T] ; B(E))$, and assume that the operator

$$
\begin{equation*}
D=\Phi(T)-C(T, A) \Phi(0) \tag{4.5}
\end{equation*}
$$

is invertible, i.e. $D^{-1} \in B(E)$. Then the inverse problem (4.1) is equivalent to that of solving

$$
\begin{equation*}
I d-B_{2} d=g_{2}, \tag{4.6}
\end{equation*}
$$

where

$$
B_{2}:=D^{-1}\left(\int_{0}^{T} S(T-s, A)\left(\Phi^{\prime \prime}(s)-\lambda \Phi(s)\right) d s+S(T, A) \Phi^{\prime}(0)\right)
$$

and

$$
g_{2}:=-D^{-1}(A-\lambda I)\left(u^{T}-C(T, A) u^{0}-S(T, A) u^{1}\right) \text { for } \lambda \in \rho(A) .
$$

Proposition 4.3. [15]. Let the conditions of Proposition 4.1 be satisfied and

$$
\int_{0}^{T}\left(\left\|\Phi^{\prime}(s)\right\|+|\lambda|(T-s)\|\Phi(s)\|\right) e^{\omega(T-s)} d s+\|\Phi(0)\| e^{\omega T}<\frac{1}{M\left\|\Phi(T)^{-1}\right\|}
$$

Then a solution $(u(\cdot), d)$ of the inverse problem (4.1) exists and is unique for any input data u^{0}, $u^{T} \in D(A), u^{1} \in E^{1}$.

Proposition 4.4. [15]. Assume that the conditions of Proposition 4.2 and the inequality

$$
\int_{0}^{T}(T-s)\left\|\Phi^{\prime \prime}(s)-\lambda \Phi(s)\right\| e^{\omega(T-s)} d s+T\left\|\Phi^{\prime}(0)\right\| e^{\omega T}<\frac{1}{M\left\|D^{-1}\right\|}
$$

are satisfied. Then a solution $(u(\cdot), d)$ of the inverse problem (4.1) exists and is unique for any input data $u^{0}, u^{T} \in D(A), u^{1} \in E^{1}$.

Proposition 4.5. [15]. Assume that the operator A generates a strongly continuous C_{0}-cosine operator-function $C(\cdot, A)$ on the Banach space $E, \Phi(t) \equiv I$ and $0 \in \rho(A)$. Then the inverse problem (4.1) is uniquely solvable for any input data $u^{0}, u^{T} \in D(A), u^{1} \in E^{1}$ if and only if $1 \in \rho(C(T, A))$.

We now assume that E is the Hilbert space and the operator A is selfadjoint and negative. For any real-valued function $\Phi(\cdot)$, the value $\Phi(t)$ will be identified with the operator of multiplication by the number $\Phi(t)$ in the space E. The characteristic function $\varphi(\cdot)$ on the negative semi-axis is defined by

$$
\begin{equation*}
\varphi(\lambda)=\frac{1}{\sqrt{-\lambda}} \int_{0}^{T} \Phi(s) \sin (\sqrt{-\lambda}(T-s)) d s \tag{4.7}
\end{equation*}
$$

Note that we might extend the function $\varphi(\cdot)$ from the negative semi-axis to construct an entire function of the complex variable λ. If, in particular, $\Phi(t) \not \equiv 0$, then the zeroes of the function $\varphi(\cdot)$ are isolated.

In what follows, we denote by E_{λ} the spectral decomposition of unity of the operator A. With this notation, we can write

$$
A=\int_{0}^{+\infty} \lambda d E(\lambda) .
$$

Theorem 4.1. [15]. If the operator A is self-adjoint and semibounded from above on the Hilbert space $E, \Phi(\cdot) \in C^{1}[0, T]$ and $\Phi(\cdot) \not \equiv 0$, then the following statements hold:
(i) the inverse problem (4.1) with the fixed input data $u^{0}, u^{T} \in D(A), u^{1} \in E^{1}$ is solvable if and only if

$$
\begin{equation*}
\int_{0}^{+\infty}|\varphi(\lambda)|^{-2} d\left(E_{\lambda} g, g\right)<\infty, \tag{4.8}
\end{equation*}
$$

being $g:=u^{T}-C(T, A) u^{0}-S(T, A) u^{1}$;
(ii) if the inverse problem (4.1) is solvable, then its solution is unique if and only if the point spectrum of the operator A contains no zeros of the entire function $\varphi(\cdot)$ defined by (4.7).
Of special interest is the particular case $\Phi(t) \equiv t I$. In this case we have

$$
\varphi(\lambda)= \begin{cases}\frac{\sin (\sqrt{-\lambda} T)-\sqrt{-\lambda} T}{\lambda \sqrt{-\lambda} T} & , \lambda \neq 0 \\ T^{3} / 6 & , \lambda=0\end{cases}
$$

This function has no zeros on the negative semi-axis and $\varphi(\lambda) \sim-\frac{T}{\lambda}$ as $\lambda \rightarrow+\infty$. Hence the convergence of the integral

$$
\int_{0}^{+\infty}|\varphi(\lambda)|^{-2} d\left(E_{\lambda} g, g\right)
$$

is equivalent to that of

$$
\int_{-\infty}^{+\infty}|\lambda|^{2} d\left(E_{\lambda} g, g\right)
$$

This integral converges for every element $g \in D(A)$. We thus proved the following
Proposition 4.6. Assume that the operator A is self-adjoint and negative on the Hilbert space $E, \Phi(t) \equiv t I, t \geq 0$. Then the solution $(u(\cdot), d)$ of the inverse problem (4.1) exists and is unique for any input data $u^{0}, u^{T} \in D(A), u^{1} \in E^{1}$.

5. Approximating the Solution of the Inverse Problems

Let us consider the semidiscretization of the inverse problem for the secondorder equation (4.1): for given elements $u_{n}^{T}, u_{n}^{0}, u_{n}^{1} \in D\left(A_{n}\right)$ find a solution $u_{n}(\cdot) \in$ $C^{2}\left([0, T] ; E_{n}\right)$ and an element $d_{n} \in E_{n}$ such that

$$
\left\{\begin{array}{l}
u_{n}^{\prime \prime}(t)=A_{n} u_{n}(t)+\Phi_{n}(t) d_{n}, \quad 0 \leq t \leq T \tag{5.1}\\
u_{n}(0)=u_{n}^{0}, u_{n}^{\prime}(0)=u_{n}^{1} \\
u_{n}(T)=u_{n}^{T}
\end{array}\right.
$$

where operators $A_{n} \in C(M ; \omega)$, the operators A, A_{n} are consistent, $u_{n}^{T} \xrightarrow{\mathcal{P}} u^{T}$, $u_{n}^{0} \xrightarrow{\mathcal{P}} u^{0}, u_{n}^{1} \xrightarrow{\mathcal{P}} u^{1}$ and $\Phi_{n}(\cdot) \xrightarrow{\mathcal{P} \mathcal{P}} \Phi(\cdot)$ in the sense.

The solution d_{n} of the problem (5.1) must satisfy the equation

$$
\begin{equation*}
I_{n} d_{n}-B_{n, 2} d_{n}=g_{n, 2} \tag{5.2}
\end{equation*}
$$

where

$$
\begin{aligned}
B_{n, 2} & :=D_{n}^{-1}\left(\int_{0}^{T} S\left(T-s, A_{n}\right)\left(\Phi_{n}^{\prime \prime}(s)-\lambda \Phi_{n}(s)\right) d s+S\left(T, A_{n}\right) \Phi_{n}^{\prime}(0)\right), \lambda \in \Delta_{c c} \\
g_{n, 2} & :=-D_{n}^{-1}\left(A_{n}-\lambda I_{n}\right)\left(u_{n}^{T}-C\left(T, A_{n}\right) u_{n}^{0}-S\left(T, A_{n}\right) u_{n}^{1}\right) \\
D_{n} & =\Phi_{n}(T)-C\left(T, A_{n}\right) \Phi_{n}(0)
\end{aligned}
$$

Theorem 5.1. [24]. Let $A, A_{n} \in C(M ; \omega)$. Then $S\left(t, A_{n}\right) \xrightarrow{\mathcal{P} \mathcal{P}} S(t, A)$ compactly for any $t>0$ iff $\Delta_{c c} \neq \emptyset$.

Theorem 5.2. Assume that $\Phi(\cdot) \in C^{3}([0, T] ; B(E)), \Phi_{n}(\cdot) \in C^{3}([0, T] ;$ $\left.B\left(E_{n}\right)\right), D_{n}^{-1} \xrightarrow{\mathcal{P P}} D^{-1}$, the resolvents $\left(\lambda I_{n}-A_{n}\right)^{-1},(\lambda I-A)^{-1}$ are compact, $(A),\left(B^{\prime \prime}\right)$ and (1.4) are satisfied, $\Phi_{n}^{(j)}(t) \xrightarrow{\mathcal{P} \mathcal{P}} \Phi^{(j)}(t)$ uniformly in $t \in[0, T]$ for $j \in \overline{1,3}$, and $\Delta_{c c} \neq \emptyset$. Assume also that the problem (4.1) has a unique solution for any $u^{T} \in D(A)$. Then there are solutions to problems (5.1) for almost all n and they converge to solution of problem (4.1), i.e. $u_{n}(t) \xrightarrow{\mathcal{P}} u(t)$ uniformly in $t \in[0, T]$ and $d_{n} \xrightarrow{\mathcal{P}} d$ as $n \in I N$, whenever $A_{n} u_{n}^{0} \xrightarrow{\mathcal{P}} A u^{0}, A_{n} u_{n}^{1} \xrightarrow{\mathcal{P}} A u^{1}, A_{n} u_{n}^{T} \xrightarrow{\mathcal{P}} A u^{T}$.

Proof. We, first, show that the solutions of equations (5.2) converge to the solution of equation (4.6). Since $D_{n}^{-1} \xrightarrow{\mathcal{P} \mathcal{P}} D^{-1}$, it is clear that $g_{n, 2} \xrightarrow{\mathcal{P}} g_{2}$. If $B_{n, 2} \xrightarrow{\mathcal{P} \mathcal{P}} B_{2}$ compactly, then by Theorems 2.1 and 2.2 it follows that $d_{n} \xrightarrow{\mathcal{P}} d$ and Theorem 5.2 is proved.

Using Theorem 5.1 one can show that the operators $B_{n, 2} \xrightarrow{\mathcal{P} \mathcal{P}} B_{2}$ compactly. To see this recall that operators $B_{n, 2}, B_{2}$ can be split into two parts. The first term

$$
D_{n}^{-1} S\left(T, A_{n}\right) \Phi_{n}^{\prime}(0) \xrightarrow{\mathcal{P} \mathcal{P}} D^{-1} S(T, A) \Phi^{\prime}(0)
$$

converges compactly and the second term

$$
\begin{aligned}
& \quad D_{n}^{-1}\left(\lambda I_{n}-A_{n}\right)^{-1}\left(\lambda I_{n}-A_{n}\right) \\
& \int_{0}^{T} S\left(T-s, A_{n}\right) \Phi_{n}^{\prime \prime}(s) d s \xrightarrow{\mathcal{P} \mathcal{P}} D^{-1}(\lambda I-A)^{-1}(\lambda I-A) \\
& \int_{0}^{T} S(T-s, A) \Phi^{\prime \prime}(s) d s
\end{aligned}
$$

also converges compactly, since $\Delta_{c c} \neq \emptyset$ and

$$
\left(\lambda I_{n}-A_{n}\right) \int_{0}^{T} S\left(T-s, A_{n}\right) \Phi_{n}^{\prime \prime}(s) d s \xrightarrow{\mathcal{P} \mathcal{P}}(\lambda I-A) \int_{0}^{T} S(T-s, A) \Phi^{\prime \prime}(s) d s
$$

The last statement can be derived from the representation like (4.2). Therefore from Theorems 2.1 and 2.2 it follows that $d_{n} \xrightarrow{\mathcal{P}} d$. The convergence of solutions $u_{n}(t) \xrightarrow{\mathcal{P}} u(t)$ uniformly in $t \in[0, T]$ then follows from representation formulae like (1.5).

Consider the discretization of (5.1) in time

$$
\begin{align*}
& \frac{U_{n}^{k+1}-2 U_{n}^{k}+U_{n}^{k-1}}{\tau_{n}^{2}}=A_{n} U_{n}^{k+1}+\Phi_{n}\left(k \tau_{n}\right) \tilde{d}_{n} \tag{5.3}\\
& k \in\left\{1, \ldots,\left[\frac{T}{\tau_{n}}\right]\right\}, U_{n}^{0}=u_{n}^{0}, U_{n}^{1}=u_{n}^{0}+\tau_{n} u_{n}^{1}
\end{align*}
$$

According to (3.3) one can write its solution as

$$
\begin{equation*}
U_{n}^{k}=C_{k}^{(n)} U_{n}^{0}+S_{k}^{(n)} U_{n}^{1}+\tau_{n}^{2} R_{n} \sum_{j=2}^{k} S_{k+1-j}^{(n)} \Phi_{n}^{j-1} \tilde{d}_{n} \tag{5.4}
\end{equation*}
$$

where we wrote $\Phi_{n}^{j}=\Phi_{n}\left(j \tau_{n}\right)$. Using (3.8) and (3.9) and summing by parts we have

$$
\begin{align*}
& R_{n} A_{n} \tau_{n}^{2} \sum_{j=2}^{k} S_{k+1-j}^{(n)} \Phi_{n}^{j-1}=R_{n} \mathfrak{B}_{n}^{2} \tau_{n}^{2} \sum_{j=2}^{k} S_{k+1-j}^{(n)} \Phi_{n}^{j-1} \\
= & \frac{\tau_{n} \mathfrak{B}_{n}}{2} \sum_{j=2}^{k}\left(R_{1, n}^{k+1-j}-R_{2, n}^{k+1-j}\right) \Phi_{n}^{j-1}=\frac{\tau_{n} \mathfrak{B}_{n}}{2} \sum_{j=2}^{k} R_{1, n}^{k+1-j} \Phi_{n}^{j-1} \\
& -\frac{\tau_{n} \mathfrak{B}_{n}}{2} \sum_{j=2}^{k} R_{2, n}^{k+1-j} \Phi_{n}^{j-1} \tag{5.5}\\
& =\frac{1}{2} \sum_{j=2}^{k}\left(R_{1, n}^{k+1-j}-R_{1, n}^{k-j}\right) \Phi_{n}^{j-1}+\frac{1}{2} \sum_{j=2}^{k}\left(R_{2, n}^{k+1-j}-R_{2, n}^{k-j}\right) \Phi_{n}^{j-1}
\end{align*}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left(\sum_{j=2}^{k} R_{1, n}^{k+1-j}\left(\Phi_{n}^{j-1}-\Phi_{n}^{j-2}\right)-\Phi_{n}^{k-1}+R_{1, n}^{k-1} \Phi_{n}^{0}\right) \\
& +\frac{1}{2}\left(\sum_{j=2}^{k} R_{2, n}^{k+1-j}\left(\Phi_{n}^{j-1}-\Phi_{n}^{j-2}\right)-\Phi_{n}^{k-1}+R_{2, n}^{k-1} \Phi_{n}^{0}\right) \\
= & \frac{1}{2} \sum_{j=2}^{k}\left(R_{1, n}^{k+1-j}+R_{2, n}^{k+1-j}\right)\left(\Phi_{n}^{j-1}-\Phi_{n}^{j-2}\right)-\Phi_{n}^{k-1}+\frac{1}{2}\left(R_{1, n}^{k-1}+R_{2, n}^{k-1}\right) \Phi_{n}^{0} .
\end{aligned}
$$

Using (3.10) and summing by parts we obtain again

$$
\begin{align*}
& \frac{1}{2} \sum_{j=2}^{k}\left(R_{1, n}^{k+1-j}+R_{2, n}^{k+1-j}\right)\left(\Phi_{n}^{j-1}-\Phi_{n}^{j-2}\right) \\
& =R_{n} \sum_{j=2}^{k}\left(S_{k+1-j}^{(n)}-S_{k-j}^{(n)}\right)\left(\Phi_{n}^{j-1}-\Phi_{n}^{j-2}\right) \tag{5.6}\\
& =R_{n}\left(\sum_{j=2}^{k} S_{k+1-j}^{(n)}\left(\Phi_{n}^{j-1}-2 \Phi_{n}^{j-2}+\Phi_{n}^{j-3}\right)+S_{k-1}^{(n)}\left(\Phi_{n}^{0}-\Phi_{n}^{-1}\right)\right) .
\end{align*}
$$

From (5.5) and (5.6) we get the next identity valid for any solution of (5.3)

$$
\begin{align*}
& A_{n} U_{n}^{k}=A_{n} C_{k}^{(n)} U_{n}^{0}+A_{n} S_{k}^{(n)} U_{n}^{1} \\
+ & R_{n} \sum_{j=2}^{k} S_{k+1-j}^{(n)}\left(\Phi_{n}^{j-1}-2 \Phi_{n}^{j-2}+\Phi_{n}^{j-3}\right) \tilde{d}_{n} \tag{5.7}\\
+ & \left(R_{n} \tau_{n} S_{k-1}^{(n)} \frac{\Phi_{n}^{0}-\Phi_{n}^{-1}}{\tau_{n}}-\Phi_{n}^{k-1}+\frac{1}{2}\left(R_{1, n}^{k-1}+R_{2, n}^{k-1}\right) \Phi_{n}^{0}\right) \tilde{d}_{n}, k \geq 2 .
\end{align*}
$$

As in (4.5) define the operator

$$
D_{n, k_{n}}=\Phi_{n}^{k_{n}-1}-\left(C_{k_{n}}^{(n)}+S_{k_{n}}^{(n)}\right) \Phi_{n}^{0} .
$$

Then we have the following
Theorem 5.3. Assume that $\Phi(\cdot) \in C^{4}([0, T] ; B(E)), \Phi_{n}(\cdot) \in C^{4}\left([0, T] ; B\left(E_{n}\right)\right)$, $\mathfrak{B}_{n}^{-1} \xrightarrow{\mathcal{P} \mathcal{P}} \mathfrak{B}^{-1}$ compactly, $\left(D_{n, k_{n}}\right)^{-1} \xrightarrow{\mathcal{P} \mathcal{P}} D^{-1}, k_{n} \tau_{n}=T$, the resolvents $\left(\lambda I_{n}-\right.$ $\left.A_{n}\right)^{-1},(\lambda I-A)^{-1}$ are compact, $\left(B^{\prime \prime}\right)$ and (1.4) are satisfied and $\Phi_{n}^{(l)}(t) \xrightarrow{\mathcal{P P}} \Phi^{(l)}(t)$ uniformly in $t \in[0, T]$ for $l=\overline{1,4}$. Assume also that the problem (4.1) has a unique solution for any $u^{T} \in D(A)$ and the Krein-Fattorini conditions are satisfied. Then there are solutions of the problem (5.3) for almost all n and they converge to the solution of problem (4.1), i.e.

$$
U_{n}(t) \xrightarrow{\mathcal{P}} u(t) \text { uniformly in } t \in[0, T]
$$

and $\tilde{d}_{n} \xrightarrow{\mathcal{P}} d$ as $n \in I N$, whenever $A_{n} u_{n}^{T} \xrightarrow{\mathcal{P}} A u^{T}, A_{n} u_{n}^{0} \xrightarrow{\mathcal{P}} A u^{0}, \mathfrak{B}_{n} u_{n}^{1} \xrightarrow{\mathcal{P}} \mathfrak{B} u^{1}$.

Proof. First we apply the operator $\left(A_{n}-\lambda I_{n}\right)$ to (5.4) for $\lambda \in \Delta_{c c}$. Using (5.7) we get equation

$$
\begin{align*}
& \left(\Phi_{n}^{k-1}-\left(C_{k}^{(n)}+S_{k}^{(n)}\right) \Phi_{n}^{0}\right) \tilde{d}_{n}-\left[R_{n} \sum_{j=2}^{k} S_{k+1-j}^{(n)}\left(\Phi_{n}^{j-1}-2 \Phi_{n}^{j-2}+\Phi_{n}^{j-3}\right)\right. \\
- & \left.\lambda R_{n} \tau_{n}^{2} \sum_{j=2}^{k} S_{k+1-j}^{(n)} \Phi_{n}^{j-1}+R_{n} S_{k-1}^{(n)}\left(\Phi_{n}^{0}-\Phi_{n}^{-1}\right)\right] \tilde{d}_{n} \tag{5.8}\\
= & \left(A_{n}-\lambda I_{n}\right)\left[C_{k}^{(n)} U_{n}^{0}+S_{k}^{(n)} U_{n}^{1}-U_{n}^{k}\right]
\end{align*}
$$

Since

$$
\left(D_{n, k_{n}}\right)^{-1}=\left(\Phi_{n}^{k_{n}-1}-\left(C_{k_{n}}^{(n)}+S_{k_{n}}^{(n)}\right) \Phi_{n}^{0}\right)^{-1} \xrightarrow{\mathcal{P} \mathcal{P}} D^{-1}
$$

we can rewrite (5.8) in the form

$$
\begin{equation*}
I_{n} \tilde{d}_{n}-B_{n, 3} \tilde{d}_{n}=g_{n, 3} \tag{5.9}
\end{equation*}
$$

where

$$
\begin{aligned}
B_{n, 3}:= & \left(D_{n, k_{n}}\right)^{-1}\left[R_{n} \sum_{j=2}^{k_{n}} S_{k_{n}+1-j}^{(n)}\left(\Phi_{n}^{j-1}-2 \Phi_{n}^{j-2}+\Phi_{n}^{j-3}\right)\right. \\
& \left.-\lambda R_{n} \tau_{n}^{2} \sum_{j=2}^{k_{n}} S_{k_{n}+1-j}^{(n)} \Phi_{n}^{j-1}+R_{n} S_{k_{n}-1}^{(n)}\left(\Phi_{n}^{0}-\Phi_{n}^{-1}\right)\right]
\end{aligned}
$$

and

$$
g_{n, 3}:=\left(D_{n, k_{n}}\right)^{-1}\left(A_{n}-\lambda I_{n}\right)\left(C_{k_{n}}^{(n)} U_{n}^{0}+S_{k_{n}}^{(n)} U_{n}^{1}-u_{n}^{T}\right), \quad k_{n} \tau_{n}=T
$$

To show that $B_{n, 3} \xrightarrow{\mathcal{P} \mathcal{P}} B_{2}$ compactly we split the operators $B_{n, 3}, B_{2}$ into two parts. Compact convergence

$$
\frac{1}{2}\left(R_{1, n}^{k-1}-R_{2, n}^{k-1}\right) \mathfrak{B}_{n}^{-1} \xrightarrow{\mathcal{P} \mathcal{P}} \frac{1}{2}(\exp (t \mathfrak{B})-\exp (-t \mathfrak{B})) \mathfrak{B}^{-1}
$$

because of (3.11) and Theorem 2.5, implies that

$$
\left(D_{n, k_{n}}\right)^{-1} R_{n} \tau_{n} S_{k_{n}-1}^{(n)} \frac{\Phi_{n}^{0}-\Phi_{n}^{-1}}{\tau_{n}} \xrightarrow{\mathcal{P} \mathcal{P}} D^{-1} S(T, A) \Phi^{\prime}(0)
$$

compactly. The other parts of the operators $B_{n, 3}$ also converge compactly to the corresponding parts of B_{2}. One can see by the same reasons as in (3.11) and (1.12) that

$$
\mathfrak{B}_{n}\left(B_{n, 3}-\left(D_{n, k_{n}}\right)^{-1} R_{n} \tau_{n} S_{k_{n}-1}^{(n)} \frac{\Phi_{n}^{0}-\Phi_{n}^{-1}}{\tau_{n}}\right) \xrightarrow{\mathcal{P} \mathcal{P}} \mathfrak{B}\left(B_{2}-D^{-1} S(T, A) \Phi^{\prime}(0)\right)
$$

and this implies that $B_{n, 3} \xrightarrow{\mathcal{P} \mathcal{P}} B_{2}$ compactly.
The convergence of the finite differences to derivatives follows, e.g., from [9], p. 409. Therefore, from Theorems 2.1 and 2.2 it follows that $\tilde{d}_{n} \xrightarrow{\mathcal{P}} d$. The convergence of solutions $U_{n}(t) \xrightarrow{\mathcal{P}} u(t)$ uniformly in $t \in[0, T]$ follows from the representation formulas (5.4) and (1.5).

Remark 5.1. In case of Hilbert space and negative self-adjoint operators A in Theorem 5.3, one can omit the condition that $\mathfrak{B}_{n, 3} \xrightarrow{\mathcal{P P}} \mathfrak{B}_{2}$ compactly and just claim the condition $\Delta_{c c} \neq \emptyset$. Indeed, then one can get the compact convergence of square roots of operators as in [10] and then get the compact convergence $B_{n, 3} \xrightarrow{\mathcal{P P}} B_{2}$ as before.

Remark 5.2. In case of a Banach space in Theorem 5.3 one can also omit the condition of compact convergence $\mathfrak{B}_{n}^{-1} \xrightarrow{\mathcal{P P}} \mathfrak{B}^{-1}$ and just use the condition $\Delta_{c c} \neq \emptyset$. In this case one should assume that problem (4.1) possesses some extra smoothness condition. More precisely, assume that $u(\cdot) \in C^{4}([0, T] ; B(E)), \Phi(\cdot) \in$ $C^{3}([0, T] ; B(E)), \Phi(0)=0$ and $u^{0}, u^{1} \in D\left(A^{2}\right)$. Then from Proposition 1.3 follows that $A S(\cdot, A) \Phi^{\prime}(0) \in C([0, T] ; E)$. Moreover, if we assume that for the problems (5.1) and (4.1) $U_{n}^{(4)}(t) \xrightarrow{\mathcal{P}} u^{(4)}(t)$ uniformly in $t \in[0, T]$ for any $\tilde{d}_{n} \xrightarrow{\mathcal{P}} d$, then from the discrete analog of (1.8) follows that

$$
\begin{equation*}
A_{n} R_{n} \tau_{n} S_{k_{n}-1}^{(n)} \frac{\Phi_{n}^{0}-\Phi_{n}^{-1}}{\tau_{n}} \tilde{d}_{n} \xrightarrow{\mathcal{P}} A S(T, A) \Phi^{\prime}(0) d . \tag{5.10}
\end{equation*}
$$

This means that without loss of generality one can assume that

$$
A_{n} R_{n} \tau_{n} S_{k_{n}-1}^{(n)} \frac{\Phi_{n}^{0}-\Phi_{n}^{-1}}{\tau_{n}} \xrightarrow{\mathcal{P} \mathcal{P}} A S(T, A) \Phi^{\prime}(0),
$$

and then the compact convergence $B_{n, 3} \xrightarrow{\mathcal{P} \mathcal{P}} B_{2}$ can be established directly from the convergence $A_{n} B_{n, 3} \xrightarrow{\mathcal{P P}} A B_{2}$.

References

1. A. Ashyralyev and P. E. Sobolevskii, A note on the difference schemes for hyperbolic equations, Abstract and Applied Analysis, 6(2) (2001), 63-70.
2. W. Chojnacki, Group representations of bounded cosine functions, J. Rein. Angew. Math., 478 (1996), 61-84.
3. Chojnacki Wojciech, On group decompositions of bounded cosine sequences(English), Stud. Math., 181(1) (2007), 61-85.
4. D.-K. Chyan, S.-Y. Shaw and S. Piskarev, On maximal regularity and semivariation of cosine operator functions, J. London Math. Soc., 59(3) (1999), 1023-1032.
5. Davide Guidetti, Bulent Karasozen and Sergey Piskarev, Approximation of abstract differential equations, J. Math. Sci. (N. Y.), 122(2) (2004), 3013-3054.
6. H. O. Fattorini, Second order linear differential equations in Banach spaces, North Holland, Amsterdam, 1985, p. 314.
7. J. Kisynski, On cosine operator functions and one parameter groups of operators, Studia Match., 44 (1972), 93-105.
8. S. G. Krein, Linear differential equations in Banach space, American Mathematical Society, R. I. Providence, Translated from the Russian by J. M. Danskin, Translations of Mathematical Monographs, Vol. 29, 1971.
9. L. A. Lusternik and V. I. Sobolev, Elements of Functional Analysys, Moscow, 1965, (in Russian).
10. D. Orlovsky and S. Piskarev, On approximation of inverse problems for abstract elliptic problems, J. Inverse and Ill-posed Problems, 17(8) (2009), 765-782.
11. S. Piskarev, Discretisation of abstract hyperbolic equation, Tartu Riikl. Ul. Toimetised, 500 (1979), 3-23.
12. S. Piskarev, Solution of a second order evolution equation under the Krein-Fattorini conditions, Differ. Equations, 21 (1985), 1100-1106.
13. S. Piskarev, Differential equations in Banach space and their approximation, Moscow, Moscow State University Publish House (in Russian), 2005.
14. A. Prilepko, S. Piskarev and S.-Y. Shaw, On approximation of inverse problem for abstract parabolic differential equations in Banach spaces, J. Inverse Ill-Posed Probl., 15(8) (2007), 831-851.
15. A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000.
16. Samarskij A. Aleksandr and Nikolaev S. Evgenii, Numerical methods for grid equations. Volume I: Direct methods., Volume II: Iterative methods. Transl. from the Russian by Stephen G. Nash. Birkha"user Verlag. xxxv, 242 p./vol. I; xv, 502 p./vol. 2, 1989.
17. P. E. Sobolevskii and L. M. Chebotaryeva, Approximate solution of the Cauchy problem for an abstract hyperbolic equation by the method of lines, Izv. Vyssh.Uchebn. Zav. Mat., in Russian, 180(5) (1977), 103-116
18. M. Sova, Cosine operator functions Rozpr, Math., 49 (1966), 1-47.
19. C. C. Travis and G. F. Webb, Second order differential equations in Banach space Nonlin, equat. in abstract space, 1978, pp. 331-361.
20. C. C. Travis, and G. F. Webb, Cosine families and abstract non-linear second order differential equations, Acta math. Acad. Sci. Hung, 32(3/4) (1978), 75-96.
21. G. Vainikko, Funktionalanalysis der D iskretisierungsmethoden, B. G. Leipzig, Teubner Verlag, Mit Englischen und Russischen Zusammenfassungen, Teubner-Texte zur Mathematik, 1976,
22. G. Vainikko, Approximative methods for nonlinear equations (two approaches to the convergence problem), Nonlinear Anal., 2 (1978), 647-687.
23. V. V. Vasil'ev, S. G. Krein and S. Piskarev, Operator semigroups, cosine operator functions, and linear differential equations, in: Mathematical analysis, Vol. 28 (Russian), Itogi Nauki i Tekhniki, 204. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990, pp. 87-202, Translated in J. Soviet Math., 54(4) (1991), 1042-1129.
24. V. V. Vasil'ev and S. I. Piskarev, Differential equations in Banach spaces. II. Theory of cosine operator functions, J. Math. Sci. (N. Y.) 122(2) (2004), 3055-3174.

Dmitry Orlovsky
Department of Mathematics,
"MEPhI" National Nuclear Research University,
Kashyrskoye shosse 31,
Moscow 115409,
Russia
E-mail: odg@bk.ru
Sergey Piskarev
Scientific Research Computer Center,
Lomonosov Moscow State University,
Leninskie Gory,
Moscow 119991,
Russia
E-mail: piskarev@gmail.com
Renato Spigler
Department of Mathematics,
University Roma Tre,
Roma, Italy
E-mail: spigler@mat.uniroma3.it

