TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 3B, pp. 1093-1109, June 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

ON EXISTENCE AND APPROXIMATION OF SOLUTIONS OF SECOND ORDER ABSTRACT CAUCHY PROBLEM

Chung-Cheng Kuo

Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract. Let A be the generator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on a Banach space X for some $\alpha \geq 0$, $f \in L^1_{loc}([0, T_0), X) \cap C((0, T_0), X)$, and $x, y \in X$. We first show that the abstract Cauchy problem : $ACP(A, Cf, Cx, Cy) \quad u''(t) = Au(t) + Cf(t)$, u(0) = Cx and u'(0) = Cy, has a strong solution is equivalent to the function $v(\cdot) = C(\cdot)x + j_0 * C(\cdot)y + j_0 * C * f(\cdot) \in C^{\alpha+1}([0, T_0), X)$ and $D^{\alpha+1}v(\cdot) \in C^1((0, T_0), X)$, and then use it to prove some new existence and approximation theorems concerning strong solutions of $ACP(A, Cz+j_{\alpha-1}*Cg, Cx, Cy)$ and mild solutions of $ACP(A, Cx+j_1Cy+j_2Cz+j_{\alpha-1}*Cg, 0, 0)$ (for $\alpha \geq 2$) in $C^2([0, T_0), X)$ when $C(\cdot)$ is locally Lipschitz continuous, and vectors x, y and z satisfy some suitable regularity assumptions. Here $0 < T_0 \leq \infty$ is fixed.

1. INTRODUCTION

Let X be a Banach space over \mathbb{F} with norm $\|\cdot\|$, and let B(X) denote the family of all bounded linear operators from X into itself. We consider the following second order abstract Cauchy problem:

(1.1)
$$ACP(A, f, x, y) \qquad \begin{cases} u''(t) = Au(t) + f(t) \text{ for } 0 < t < T_0, \\ u(0) = x \text{ and } u'(0) = y, \end{cases}$$

where $0 < T_0 \leq \infty$ and $x, y \in X$ are given, $A : D(A) \subset X \to X$ is a closed linear operator in X with domain D(A) and range R(A), and f is an X-valued function defined on $(0, T_0)$. A function $u : [0, T_0) \to X$ is called a strong solution of ACP(A, f, x, y) if $u \in C^2((0, T_0), X) \cap C^1([0, T_0), X) \cap C((0, T_0), [D(A)])$ and

Received January 8, 2010.

²⁰⁰⁰ Mathematics Subject Classification: 47D60, 47D62.

Key words and phrases: Local α -times integrated C-cosine function, Generator, Abstract Cauchy problem.

Research supported in part by the National Science Council of R.O.C.

satisfies ACP(A, f, x, y). Here [D(A)] denotes the Banach space D(A) equipped with the graph norm $|x|_A = ||x|| + ||Ax||$. For each $\alpha > 0$ and $C \in B(X)$, a family $C(\cdot)(= \{C(t)|0 \le t < T_0\})$ in B(X) is called a local α -times integrated C-cosine function on X if

(1.2)
$$C(\cdot) \text{ is strongly continuous, that is, for each } x \in X,$$
$$C(\cdot)x : [0, T_0) \to X \text{ is continuous,}$$

(1.3)
$$C(\cdot)C = CC(\cdot)$$
, that is, $C(t)C = CC(t)$ on X for all $0 \le t < T_0$,

(1.4)
$$2C(t)C(s)x = \frac{1}{\Gamma(\alpha)} \{ [\int_0^{t+s} - \int_0^t - \int_0^s] (t+s-r)^{\alpha-1}C(r)Cxdr + \int_{|t-s|}^t (s-t+r)^{\alpha-1}C(r)Cxdr + \int_{|t-s|}^s (t-s+r)^{\alpha-1}C(r)Cxdr + \int_0^{|t-s|} (|t-s|+r)^{\alpha-1}C(r)Cxdr + \int_0^{|t-s|} (|t-s|+r)^{\alpha-1}C(r)Cxdr \}$$

for all $x \in X$ and $0 \le t, s, t+s < T_0$ (see [9]); or called a local (0-times integrated) *C*-cosine function on X if it satisfies (1.2), (1.3), and

(1.5)
$$2C(t)C(s)x = C(t+s)Cx + C(|t-s|)Cx$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$ (see [7]). Here $\Gamma(\cdot)$ denotes the Gamma function. Moreover, we say that $C(\cdot)$ is

- (i) locally Lipschitz continuous, if for each $0 < t_0 < T_0$ there exists a $K_{t_0} > 0$ such that
- (1.6) $||C(t+h) C(t)|| \le K_{t_0}h \text{ for all } 0 \le t, h \le t+h \le t_0;$
 - (ii) nondegenerate, if x = 0 whenever C(t)x = 0 for all $0 \le t < T_0$. In this case, its (integral) generator $A : D(A) \subset X \to X$ is a closed linear operator in X defined by $D(A) = \{x \in X | \text{ there exists a } y_x \in X \text{ such that } C(t)x \frac{t^{\alpha}}{\Gamma(\alpha+1)}Cx = \int_0^t \int_0^s C(r)y_x dr ds$ for $0 \le t < T_0\}$ and $Ax = y_x$ for all $x \in D(A)$.

In general, a local α -times integrated C-cosine function on X is also called an α -times integrated C-cosine function on X if $T_0 = \infty$ (see [1,2,6-14,16,17]), an α -times integrated C-cosine function may not be exponentially bounded (see

[9]), and the generator of a local α -times integrated C-cosine function may not be densely defined (see [2, 16]). Moreover, a local α -times integrated C-cosine function is not necessarily extendable to the half line $[0,\infty)$ except for C = I the case of cosine function(that is, C = I and $T_0 = \infty$)(see [1,3,4]). Here I denotes the identity operator on X. The concept of α -times integrated C-cosine functions has been extensively applied to discuss the existence of (strong, mild or weak) solutions of ACP(A, f, x, y) when $\alpha \in \mathbb{N} \cup \{0\}$ (see [3, 7, 12, 14, 16]) or C = I (see [2, 4, 13] and their references). Some equivalence conditions between the existence of an α -times integrated C-cosine function and the unique existence of (strong or weak) solutions of ACP(A, f, x, y) are also discussed as in [9-11]. Several examples concerning α -times integrated cosine functions with densely defined generators are given as in [2, 6, 17]. All consequences of this paper are motivated by the aforementioned results as in [1, 6, 8, 12, 15] for which the concept of α -times integarted C-semigroups is used to obtain some existence and approximation theorems concerning (strong or mild) solutions of the following first order abstract Cauchy problem:

(1.7)
$$ACP(A, f, x) = \begin{cases} u'(t) = Au(t) + f(t) \text{ for } 0 < t < T_0, \\ u(0) = x. \end{cases}$$

In section 2, we first show that ACP(A, Cf, Cx, Cy) has a unique strong solution is equivalent to $v(\cdot) = C(\cdot)x + j_0 * C(\cdot)y + j_0 * C * f(\cdot) \in C^{\alpha+1}([0, T_0), X)$ and $D^{\alpha+1}v(\cdot) \in C^1((0,T_0),X)$ when A generates a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X for some $\alpha \ge 0, f \in L^1_{loc}([0,T_0),X) \cap$ $C((0, T_0), X), \text{ and } x, y \in X. \text{ Here } j_{\beta}(t) = t^{\beta} / \Gamma(\beta + 1) \text{ for } \beta > -1 \text{ and } t > 0, \text{ and}$ $j_{-1}(t) = \begin{cases} 1 & \text{for } t = 0 \\ 0 & \text{for } t \neq 0. \end{cases} \text{ In this case, } u = D^{\alpha}v \text{ (the } \alpha \text{th order derivative of } v) \text{ on} \end{cases}$

 $[0, T_0)$. Then, assuming $C(\cdot)$ is locally Lipschitz continuous, $g \in L^1_{loc}([0, T_0), X)$ and $z \in X$, we show that $ACP(A, Cz + j_{\alpha-1} * Cg, Cx, Cy)$ has a unique strong solution u in $C^{2}((0, T_{0}), X)$ (resp., in $C^{2}([0, T_{0}), X)$) when $x \in D(A)$,

(1.8)
$$y \in \begin{cases} D(A^l) \text{ and } A^l y \in C^1(\text{ resp., } A^l y \in D(A)) \text{ if } [\alpha] \text{ is even} \\ D(A^{l+1}) \text{ if } [\alpha] \text{ is odd,} \end{cases}$$

and

$$(1.9) \ w(=Ax+z) \in \begin{cases} D(A^l) \text{ if } [\alpha] \text{ is even} \\ D(A^l) \text{ and } A^l w \in C^1(\text{ resp., } A^l w \in D(A)) \text{ if } [\alpha] \text{ is odd} \end{cases}$$

Moreover, $ACP(A, Cx+j_1Cy+j_2Cz+j_{\alpha-1}*Cg, 0, 0)$ has a unique strong solution $u \text{ in } C^{2}((0, T_{0}), X) \text{ (resp., in } C^{2}([0, T_{0}), X)) \text{ when } 0 \leq \alpha < 1; \text{ or } x \in D(A) \text{ and } x \in D(A)$ either $1 \le \alpha < 2$, or $\alpha \ge 2$ with

Chung-Cheng Kuo

$$(1.10) \quad y \in \begin{cases} D(A^{l-1}) \text{ and } A^{l-1}y \in C^1(\text{ resp., } A^{l-1}y \in D(A)) \text{ if } [\alpha] \text{ is even} \\ D(A^l) \text{ if } [\alpha] \text{ is odd} \end{cases}$$

and

and

$$(1.11) \quad w(=Ax+z) \in \begin{cases} D(A^{l-1}) \text{ if } [\alpha] \text{ is even} \\ D(A^{l-1}) \text{ and } A^{l-1}w \in C^1(\text{ resp., } A^{l-1}w \in D(A)) \\ \text{ if } [\alpha] \text{ is odd.} \end{cases}$$

Here $[\alpha]$ denotes the largest integer that is less than or equal to α , $l = [\frac{\alpha}{2}]$, and $C^1 = \{x \in X | C(\cdot)x \text{ is continuously differentiable on } (0, T_0)\}$. In particular, $ACP(A, Cz + j_{\alpha-3} * Cg, Cx, Cy)$ has a unique mild solution in $C^2((0, T_0), X)$ (resp., in $C^2([0, T_0), X)$) when $\alpha \geq 2$, and both (1.10) and (1.11) are satisfied. Applying these results we can also deduce some new approximation theorems in section 3 concerning the unique strong solution of ACP(A, f, x, y).

2. EXISTENCE THEOREMS

From now on, we always write $\left[\alpha\right]$ to denote the largest integer that is less that or equal to the real number α , and $f * g(\cdot) = \int_0^{\cdot} f(\cdot - s)g(s)ds$ on $[0, t_0]$ for all $0 < t_0 < T_0, f \in L^1([0, t_0])$ the set of all \mathbb{F} -valued Lebesgue integrable functions on $[0, t_0]$, and $g \in L^1([0, t_0], X)$ the set of all Bochner integrable functions from $[0, t_0]$ into the Banach space X over \mathbb{F} .

Definition 2.1. Let $\alpha > 0$, $k = [\alpha] + 1$, and I be a subinterval of $[0, T_0)$ containing $\{0\}$. A function $v: I \to X$ is said to be α -times continuously differentiable on $[0, T_0]$, if $v = v(0) + j_{\alpha-k} * u$ on I for some $u \in C^{k-1}(I, X)$. In this case, we write $v \in C^{\alpha}(I, X)$, and the (k-1)th order derivative $u^{(k-1)}$ of u on I is called the α th order derivative of v on I and denoted by $D^{\alpha}v$ on I or $D^{\alpha}v: I \to X$. Here $C^k(I, X)$ denotes the set of all k-times continuously differentiable functions from I into X, and $C^0(I, X) = C(I, X)$ the set of all continuous functions from I into X.

Next we note some basic properties concerning nondegenerate local α -times integrated C-cosine functions which are frequently applied in the following and have been deduced as in [9] for the case $T_0 = \infty$, and so their proofs are omitted.

Proposition 2.2. Let $\alpha \geq 0$, and A be the generator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X. Then

- C is injective and $C^{-1}AC = A$, (2.1)
- $C(t)x \in D(A)$ and AC(t)x = C(t)Ax(2.2)

for all
$$x \in D(A)$$
 and $0 \le t < T_0$,
(2.3) $\int_0^t S(r)xdr \in D(A)$ and $A \int_0^t S(r)xdr = C(t)x - j_\alpha(t)Cx$
for all $x \in X$ and $0 \le t < T_0$, where $S(r)x = \int_0^r C(s)xds$,

(2.4) C(0) = C on X if $\alpha = 0$, and C(0) = 0 the zero operator on X if $\alpha > 0$.

The next lemma is a direct consequence of Definition 2.1, and so its proof is omitted.

Lemma 2.3. Let $\alpha \geq 0$, $v \in C^{\alpha}(I, X)$ with v(0) = 0 for some subinterval I of $[0, T_0)$ containing $\{0\}$, and $k = [\alpha] + 1$. Then $j_{k-\alpha-1} * v \in C^k(I, X)$, $v \in C^{\alpha-i}(I, X)$, and $D^{\alpha-i}v = (j_{k-\alpha-1} * v)^{(k-i)}$ on I for all integers $0 \leq i \leq k-1$. In particular, for each $x \in X$, we have $j_{\alpha}(\cdot)x \in C^{\alpha}([0, T_0), X)$ and $D^{\alpha-i}j_{\alpha}(\cdot)x = D^{k-i}j_k(\cdot)x = j_i(\cdot)x$ on $[0, T_0)$ for all integers $0 \leq i \leq k-1$.

The next theorem is motivated by Arendt [1, Prop. 5.1 and Thm. 5.2] in which the first order Cauchy problem (1.7) is considered.

Theorem 2.4. Let A be the generator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X for some $\alpha \ge 0$, $f \in L^1_{loc}([0,T_0),X) \cap C((0,T_0),X)$, and $x, y \in X$. Assume that $v(\cdot) = C(\cdot)x + S(\cdot)y + S*f(\cdot)$ on $[0,T_0)$. Then ACP(A, f, x, y) has a strong solution u if and only if $v(t) \in R(C)$ for all $0 \le t < T_0$, $C^{-1}v(\cdot) \in C^{\alpha+1}([0,T_0),X)$ and $D^{\alpha+1}C^{-1}v(\cdot) \in C^1((0,T_0),X)$. Here $S*f(t) = \int_0^t S(t-s)f(s)ds$ for $0 \le t < T_0$. In this case, we have $u = D^{\alpha}C^{-1}v$. Moreover, $C^{-1}v \in C^{\alpha+2}([0,T_0),X)$ (resp., $C^{-1}v \in C^{\alpha}([0,T_0),[D(A)])$ if and only if $u \in C^2([0,T_0),X)$ (resp., $u \in C([0,T_0),[D(A)])$).

Proof. We consider only the case $\alpha > 0$, for the case $\alpha = 0$ can be treated similarly. Now if u is a strong solution of ACP(A, f, x, y). For each $0 \le t < T_0$, we set $w(\cdot) = C(t - \cdot)u(\cdot)$ on [0, t]. Since $u \in C^1([0, T_0), X)$, we have $\frac{d}{ds}w(s)|_{s=s_0} = \frac{d}{ds}C(t - s)u(s_0)|_{s=s_0} + C(t - s_0)u'(s)|_{s=s_0} = -j_{\alpha-1}(t - s_0)Cu(s_0) - S(t - s_0)Au(s_0) + C(t - s_0)u'(s_0)$ for all $0 \le s_0 \le t$. Since $u \in C^2((0, T_0), X) \cap C((0, T_0), [D(A)])$, we also have $u'(s) - u'(s_0) = \int_{s_0}^s Au(r)dr + \int_{s_0}^s f(r)dr = A \int_{s_0}^s u(r)dr + \int_{s_0}^s f(r)dr$ for all $0 \le s_0 \le s \le t$, and so

$$\begin{aligned} &\frac{d}{ds}w(s) \\ &= \frac{d}{ds}C(t-s)u(s) \\ &= -j_{\alpha-1}(t-s)Cu(s) - S(t-s)Au(s) + C(t-s)[y+A\int_0^s u(r)dr + \int_0^s f(r)dr \\ &= -j_{\alpha-1}(t-s)Cu(s) - S(t-s)Au(s) + C(t-s)[y+j_0*Au(s)+j_0*f(s)] \end{aligned}$$

for all $0 \le s \le t$. Hence

$$\begin{split} &C(t)x\\ = -\int_0^t \frac{d}{ds} w(s)ds\\ = \int_0^t j_{\alpha-1}(t-s)Cu(s)ds + \int_0^t S(t-s)Au(s)ds - \\ &\left[\int_0^t C(t-s)yds + \int_0^t C(t-s)j_0 * Au(s)ds + \int_0^t C(t-s)j_0 * f(s)ds\right]\\ = &Cj_{\alpha-1} * u(t) + S * Au(t) - [S(t)y + S * Au(t) + S * f(t)]\\ = &Cj_{\alpha-1} * u(t) - S(t)y - S * f(t). \end{split}$$

Consequently, $v(t) = Cj_{\alpha-1} * u(t) \in R(C)$ for all $0 \le t < T_0$, $C^{-1}v(\cdot) = j_{\alpha-1} * u(\cdot) \in C^{\alpha+1}([0,T_0), X)$, $D^{\alpha+1}C^{-1}v(\cdot) \in C^1((0,T_0), X)$, and $u = D^{\alpha}C^{-1}v$. Conversely, if $v(t) \in R(C)$ for all $0 \le t < T_0$, $C^{-1}v(\cdot) \in C^{\alpha+1}([0,T_0), X)$, and $D^{\alpha+1}C^{-1}v(\cdot) \in C^1((0,T_0), X)$. By (2.3) and (2.4) with $\alpha > 0$, we have v(0) = 0, $j_1 * v(t) \in D(A)$ and

$$Aj_{1} * v(t)$$

=C(t)x - j_{\alpha}(t)Cx + S(t)y - j_{\alpha+1}(t)Cy + S * f(t) - j_{\alpha+1} * Cf(t)
=v(t) - C[j_{\alpha}(t)x + j_{\alpha+1}(t)y + j_{\alpha+1} * f(t)]

for all $0 \le t < T_0$, and so $ACj_1 * C^{-1}v(t) = Aj_1 * v(t) \in R(C)$ and

$$Aj_1 * C^{-1}v(t) = C^{-1}ACj_1 * C^{-1}v(t)$$
$$= C^{-1}v(t) - [j_{\alpha}(t)x + j_{\alpha+1}(t)y + j_{\alpha+1} * f(t)]$$

for all $0 \le t < T_0$. Now if $k = [\alpha] + 1$. By Lemma 2.3, we have $D^{\alpha+1-i}j_{\alpha}(t) = \frac{d}{dt}D^{\alpha-i}j_{\alpha}(t) = \frac{d}{dt}j_i(t), D^{\alpha+1-i}j_{\alpha+1}(t) = j_i(t)$ and $D^{\alpha+1}j_{\alpha}(t) = 0 = D^{\alpha+2}j_{\alpha+1}(t)$ for all integers $0 \le i \le k$ and all $0 \le t < T_0$. Combining this, and the closedness of A with the fact $j_{k-\alpha-1} * C^{-1}v(\cdot) \in C^{k+2}((0,T_0), X) \cap C^{k+1}([0,T_0), X)$, we have $Aj_1 * j_{k-\alpha-1} * C^{-1}v(t) = j_{k-\alpha-1} * C^{-1}v(t) - [j_k(t)x + j_{k+1}(t)y + j_{k+1} * f(t)]$ for all $0 \le t < T_0, AD^i(j_{k-\alpha-1} * C^{-1}v)(\cdot) = D^{i+2}(j_{k-\alpha-1} * C^{-1}v)(\cdot) - [j_{k-(i+2)}(\cdot)x + j_{k-(i+1)}(\cdot)y + j_{k-(i+1)} * f(\cdot)]$ on $[0,T_0)$ for all integers $0 \le i \le k-2$ if $k \ge 2$, $AD^{k-1}j_{k-\alpha-1} * C^{-1}v(\cdot) = D^{k+1}j_{k-\alpha-1} * C^{-1}v(\cdot) - (y + j_0 * f(\cdot))$ on $[0,T_0)$ and $AD^kj_{k-\alpha-1} * C^{-1}v(t) = D^{k+2}(j_{k-\alpha-1} * C^{-1}v)(t) - f(t)$ for all $0 \le t < T_0$. Combining these facts with induction, we also have $D^ij_{k-\alpha-1} * C^{-1}v(0) = 0$ for

all integers $0 \le i \le k-1$ and $D^k j_{k-\alpha-1} * C^{-1}v(0) - x = 0 = D^{k+1}j_{k-\alpha-1} * C^{-1}v(0) - y$. Consequently, $D^k j_{k-\alpha-1} * C^{-1}v(\cdot) = D^{\alpha}C^{-1}v(\cdot)$ is a strong solution of ACP(A, f, x, y).

By slightly modifying the proof of Theorem 2.4, the next corollary is also attained.

Corollary 2.5. Let A be the generator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X for some $\alpha \ge 0$, $f \in L^1_{loc}([0,T_0), X) \cap C((0,T_0), X)$, and $x, y \in X$. Assume that $v(\cdot) = C(\cdot)x + S(\cdot)y + S * f(\cdot)$ on $[0,T_0)$. Then ACP(A, Cf, Cx, Cy) has a unique strong solution u if and only if $v \in C^{\alpha+1}([0,T_0), X)$ and $D^{\alpha+1}v \in C^1((0,T_0), X)$. In this case, we have $u = D^{\alpha}v$ on $[0,T_0)$. Moreover, $v \in C^{\alpha+2}([0,T_0), X)$ (resp., $v \in C^{\alpha}([0,T_0), [D(A)])$) if and only if $u \in C^2([0,T_0), X)$ (resp., $u \in C([0,T_0), [D(A)])$).

Proposition 2.6. Let $\alpha \ge 1$, and $C(\cdot)$ be a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function on X with generator A. Then A_1 the part of A in $X_1(=\overline{D(A)})$ generates a nondegenerate local $(\alpha - 1)$ -times integrated C_1 -cosine function $C_1(\cdot)$ on X_1 . Here C_1 denotes the part of C in X_1 and $C_1(t)x = \frac{d}{dt}C(t)x$ for all $x \in X_1$ and $0 \le t < T_0$.

Proof. It is easy to see that $A_1: D(A_1) \subset X_1 \to X_1$ is a closed linear operator satisfying $C_1^{-1}A_1C_1 = A_1$. Since $\{x \in X | C(\cdot)x \text{ is continuously differentiable on} [0, T_0)\}$ is a closed subspace of X containing D(A), we have $\frac{d}{dt}C(t)x \in \overline{D(A)}$ for all $x \in \overline{D(A)}$ and $0 \le t < T_0$. Applying the closedness of A and (2.3), we also have $C_1(t)x - j_{\alpha-1}(t)C_1x = \frac{d}{dt}C(t)x - j_{\alpha-1}(t)Cx = AS(t)x = A_1\int_0^t \int_0^s C_1(r)xdrds$ for all $x \in \overline{D(A)}$ and $0 \le t < T_0$. It follows from the uniqueness of solutions of $ACP(A, j_{\alpha-1}(\cdot)Cx, 0, 0)$ that $S(\cdot)x = j_1 * C_1(\cdot)x$ is the unique strong solution of $ACP(A_1, j_{\alpha-1}C_1x, 0, 0)$ in $C^2([0, T_0), X_1) \cap C([0, T_0), [D(A_1)])$ for all $x \in \overline{D(A)}$. We conclude from [9, Thm.2.3 or 11, Thm.2.5] that $C_1(\cdot)$ is a nondegenerate local $(\alpha - 1)$ -times integrated C_1 -cosine function on X_1 with generator A_1 .

Remark 2.7. Let A be the generator of a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function $C(\cdot)$ on X for some $0 < \alpha < 1$. Then A is also the generator of a nondegenerate norm continuous local C-cosine function $\widetilde{C}(\cdot)$ on X which is defined by $\widetilde{C}(t)x = \frac{d}{dt}C * j_{-\alpha}(t)x$ for all $x \in X$ and $0 \le t < T_0$. In particular, $A \in B(X)$ if C = I.

Proposition 2.8. Let $\alpha \ge 1$, and $C(\cdot)$ be a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function on X with generator A. Then for each $0 < \theta < 1$ there exists a nondegenerate local $(\alpha - 1 + \theta)$ -times integrated

C-cosine function $\tilde{C}(\cdot)$ on X with generator A such that for each $0 < t_0 < T_0$, we have

(2.5)
$$\|\widetilde{C}(t+h) - \widetilde{C}(t)\| \le K_{t_0} h^{\theta}$$

for all $0 \le t, h \le t + h \le t_0$, where K_{t_0} is given as in (1.6).

Proof. Clearly, $-1 < \theta - 1 < 0$. It follows that $C * j_{\theta-1}(\cdot)x \in C^1([0, T_0), X)$ for all $x \in X$, and $C * j_{\theta-1}(\cdot)$ is a local $(\alpha+\theta)$ -times integrated *C*-cosine function on *X* with generator *A*. Now let $\widetilde{C}(t) : X \to X$ be defined by $\widetilde{C}(t)x = \frac{d}{dt}C * j_{\theta-1}(t)x$ for all $x \in X$. Just as in the proof of Proposition 2.6, we can show that $\widetilde{C}(\cdot)$ is a local $(\alpha - 1 + \theta)$ -times integrated *C*-cosine function on *X* with generator *A* and (2.5) is satisfied.

Theorem 2.9. Let $\alpha \ge 0$, $l = [\frac{\alpha}{2}]$, and $C(\cdot)$ be a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function on X with generator A. Assume that $x \in D(A)$, $y, z \in X$, and $g \in L^1_{loc}([0, T_0), X)$. Then $ACP(A, Cz + j_{\alpha-1} * Cg, Cx, Cy)$ has a unique strong solution u in $C^2([0, T_0), X)$ (resp., in $C^2((0, T_0), X)$) when

(2.7)
$$y \in \begin{cases} D(A^{l}) \text{ and } A^{l}y \in D(A)(\text{ resp., } A^{l}y \in C^{1}) \text{ if } [\alpha] \text{ is even} \\ D(A^{l+1}) \text{ if } [\alpha] \text{ is odd} \end{cases}$$

and

$$(2.8) \quad w(=Ax+z) \in \begin{cases} D(A^l) \text{ if } [\alpha] \text{ is even} \\ D(A^l) \text{ and } A^l w \in D(A)(\text{resp., } A^l w \in C^1) \text{ if } [\alpha] \text{ is odd }. \end{cases}$$

In fact, $ACP(A, Cz + j_{\alpha-1} * Cg, Cx, Cy)$ has a unique strong solution u in $C^2([0, T_0), X)$ when $\alpha \in \mathbb{N} \cup \{0\}$, $x \in D(A)$, and either α is even with $A^l y \in \overline{D(A)}$ and $w \in D(A^l)$; or α is odd with $y \in D(A^{l+1})$ and $A^l w \in \overline{D(A)}$.

Proof. Indeed, if we set $k = [\alpha]$ and $f = z + j_{\alpha-1} * g$ on $[0, T_0)$, then $k = \begin{cases} 2l \text{ if } [\alpha] \text{ is even} \\ 2l + 1 \text{ if } [\alpha] \text{ is odd.} \end{cases}$ By (2.3), we have $\widetilde{C}(\cdot)x + \widetilde{S}(\cdot)y + \widetilde{S} * f(\cdot) = j_k(\cdot)Cx + \widetilde{S}(\cdot)y + j_0 * \widetilde{S}(\cdot)w + j_{\alpha-1} * \widetilde{S} * g(\cdot) \text{ on } [0, T_0).$ Here $\widetilde{C}(\cdot)$ denotes the local $[\alpha]$ -times integrated C-cosine function on X with generator A which is given as

in either Remark 2.7 when $0 \le \alpha < 1$ or Proposition 2.8 when $\alpha \ge 1$ with $\theta = [\alpha] - (\alpha - 1)$, and $\widetilde{S}(\cdot) = j_0 * \widetilde{C}(\cdot)$. Applying Corollary 2.5, we need only to show that $v(\cdot) = \widetilde{C}(\cdot)x + \widetilde{S}(\cdot)y + \widetilde{S} * f(\cdot) \in C^{k+2}([0, T_0), X)$ (resp., $v(\cdot) \in C^{k+2}((0, T_0), X)$). Now if k = 0, then l = 0, and so $j_0 * \widetilde{S}(\cdot)w$, $j_{\alpha-1} * \widetilde{$

 $\widetilde{S} * g = S * g \in C^2([0, T_0), X)$, and $\widetilde{S}(\cdot)y \in C^2([0, T_0), X)$ for $y \in D(A)$ (resp., $\widetilde{S}(\cdot)y \in C^2((0, T_0), C) \cap C^1([0, T_0), X)$ for $y \in C^1$). Hence $v \in C^{k+2}([0, T_0), X)$ for $y \in D(A)$ (resp., $v \in C^{k+2}((0, T_0), X) \cap C^{k+1}([0, T_0), X)$ for $y \in C^1$). Next if $k \ge 1$, then

(2.9)
$$\frac{d^k}{dt^k}j_{\alpha-1}*\widetilde{S}*g(t) = j_{\alpha-k-1}*\widetilde{S}*g(t) = S*g(t),$$

$$(2.10) \qquad \frac{d^{k}}{dt^{k}}\widetilde{S}(t)y = \frac{d^{k-1}}{dt^{k-1}}\widetilde{C}(t)y = \begin{cases} \widetilde{C}(t)y & \text{if } k = 1\\ \frac{d}{dt}\frac{d^{2(l-1)}}{dt^{2(l-1)}}\widetilde{C}(t)y & \text{if } k = 2l \ge 2.\\ \frac{d^{2l}}{dt^{2l}}\widetilde{C}(t)y & \text{if } k = 2l+1 \ge 3 \end{cases}$$

and

$$(2.11) \qquad = \begin{cases} \frac{d^{k}}{dt^{k}} j_{0} * \widetilde{S}(t)w & \text{if } k = 1\\ \frac{d^{k-2}}{dt^{k-2}} \widetilde{C}(t)w = \frac{d^{2(l-1)}}{dt^{2(l-1)}} \widetilde{C}(t)w & \text{if } k = 2l \ge 2\\ \frac{d}{dt} \frac{d^{k-1}}{dt^{k-1}} j_{0} * \widetilde{S}(t)w = \frac{d}{dt} \frac{d^{2(l-1)}}{dt^{2(l-1)}} \widetilde{C}(t)w & \text{if } k = 2l + 1 \ge 3 \end{cases}$$

By induction, we have

(2.12)
$$\frac{d^{2m}}{dt^{2m}}\widetilde{C}(t)v = \sum_{i=0}^{m-1} j_{k-2(i+1)}(t)CA^{m-1-i}v + \widetilde{C}(t)A^m v$$
$$= \sum_{i=1}^m j_{k-2i}(t)CA^{m-i}v + \widetilde{C}(t)A^m v$$

for all $m \in \mathbb{N}$ and $v \in D(A^m)$, and so

$$(2.13) \quad (\widetilde{C}(\cdot)v)^{(2m)} \in \begin{cases} C^2([0,T_0),X) \text{ if } v \in D(A^{m+1}) \\ C^1([0,T_0),X) \text{ if } \alpha \in \mathbb{N}, v \in D(A^m) \text{ and } A^m v \in \overline{D(A)} \\ C^1((0,T_0),X) \text{ if } v \in D(A^m) \text{ and } A^m v \in C^1 \end{cases}$$

for all $m \in \mathbb{N} \cup \{0\}$, where $(\widetilde{C}(\cdot)v)^{(0)} = \widetilde{C}(\cdot)v$ and $A^0 = I$. Hence

and

Consequently, $v(\cdot) \in C^{(k+2)}([0,T_0), X)$ (resp., $v(\cdot) \in C^{(k+2)}((0,T_0), X) \cap C^{k+1}([0,T_0), X))$ and $u = D^k v$ is a strong solution of $ACP(A, Cz+j_{\alpha-1}*Cg, Cx, Cy)$ in $C^2([0,T_0), X)$ (resp., in $C^2((0,T_0), X)$) when (2.7) and (2.8) both are satisfied. The uniqueness of strong solutions of $ACP(A, Cz + j_{\alpha-1}*Cg, Cx, Cy)$ follows from the uniqueness of strong solutions of ACP(A, 0, 0, 0) (see [9, Thm. 2.3] or [11, Thm. 2.4]). In this case, we have

$$(2.16) \quad + \begin{cases} \tilde{S}(\cdot)y + j_0 * \tilde{S}(\cdot)w \text{ if } k = 0\\ \tilde{C}(\cdot)y + \tilde{S}(\cdot)w \text{ if } k = 1\\ \sum_{i=0}^{l-1} j_{k-(2i+1)}(\cdot)CA^{l-1-i}y + \tilde{S}(\cdot)A^ly\\ + \sum_{i=1}^{l-1} j_{k-2i}(\cdot)CA^{l-1-i}w + \tilde{C}(\cdot)A^{l-1}w \text{ if } k = 2l \ge 2\\ \sum_{i=1}^{l} j_{k-2i}(\cdot)CA^{l-i}y + \tilde{C}(\cdot)A^ly\\ + \sum_{i=1}^{l-1} j_{k-(2i+1)}(\cdot)CA^{l-1-i}w + \tilde{S}(\cdot)A^lw \text{ if } k = 2l + 1 \ge 3, \end{cases}$$

$$(2.17) \qquad \begin{cases} \tilde{C}(\cdot)y + \tilde{S}(\cdot)w & \text{if } k = 0\\ Cy + \tilde{S}(\cdot)Ay + \tilde{C}(\cdot)w & \text{if } k = 1\\ \sum_{i=1}^{l} j_{k-2i}(\cdot)CA^{l-i}y + \tilde{C}(\cdot)A^{l}y \\ + \sum_{i=0}^{l-1} j_{k-(2i+1)}A^{l-1-i}w + \tilde{S}(\cdot)A^{l}w & \text{if } k = 2l \ge 2\\ \sum_{i=0}^{l} j_{k-(2i+1)}(\cdot)CA^{l-i}y + \tilde{S}(\cdot)A^{l+1}y \\ + \sum_{i=1}^{l} j_{k-2i}(\cdot)CA^{l-i}w + \tilde{C}(\cdot)A^{l}w & \text{if } k = 2l + 1 \ge 3 \end{cases}$$

on $[0, T_0)$, and

$$u''(\cdot) = (C * g)'(\cdot) +$$

$$\begin{cases}
(\tilde{C}(\cdot)y)' + \tilde{C}(\cdot)w & \text{if } k = 0 \\
\tilde{C}(\cdot)Ay + Cw + \tilde{S}(\cdot)Aw & \text{if } k = 1 \\
\sum_{i=1}^{l} j_{k-(2i+1)}(\cdot)CA^{l-i}y + (\tilde{C}(\cdot)A^{l}y)' \\
+ \sum_{i=1}^{l} j_{k-2i}(\cdot)CA^{l-i}w + \tilde{C}(\cdot)A^{l}w & \text{if } k = 2l \ge 2 \\
\sum_{i=1}^{l+1} j_{k-2i}(\cdot)CA^{l+1-i}y + \tilde{C}(\cdot)A^{l+1}y \\
+ \sum_{i=1}^{l} j_{k-(2i+1)}(\cdot)CA^{l-i}w + (\tilde{C}(\cdot)A^{l}w)' & \text{if } k = 2l + 1 \ge 3
\end{cases}$$

on $[0, T_0)$ (resp., on $(0, T_0)$).

By slightly modifying the proof of Theorem 2.9, the next theorem is also attained.

Theorem 2.10. Let $\alpha \ge 0$, $l = [\frac{\alpha}{2}]$, and $C(\cdot)$ be a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function on X with generator A. Assume that $x, y, z \in X$ and $g \in L^1_{loc}([0, T_0), X)$. Then $ACP(A, Cx + j_1Cy + j_2Cz + j_{\alpha-1} * Cg, 0, 0)$ has a unique strong solution u in $C^2([0, T_0), X)$ (resp., in $C^2((0, T_0), X)$) when $0 \le \alpha < 1$; or $x \in D(A)$ and either $1 \le \alpha < 2$, or $\alpha \ge 2$ with

$$(2.19) \quad y \in \begin{cases} D(A^{l-1}) \text{ and } A^{l-1}y \in D(A)(\text{ resp., } A^{l-1}y \in C^1) & \text{ if } [\alpha] \text{ is even} \\ D(A^l) & \text{ if } [\alpha] \text{ is odd} \end{cases}$$

and

$$\begin{array}{l} w(=Ax+z) \in \\ (2.20) \quad \begin{cases} D(A^{l-1}) & \text{if } [\alpha] \text{ is even} \\ D(A^{l-1}) \text{ and } A^{l-1}w \in D(A)(\text{ resp., } A^{l-1}w \in C^1) & \text{if } [\alpha] \text{ is odd.} \end{cases}$$

In fact, $ACP(A, Cx+j_1Cy+j_2Cz+j_{\alpha-1}*Cg, 0, 0)$ has a unique strong solution in $C^2([0,T_0), X)$ when $\alpha \in \mathbb{N} \setminus \{1\}$, $x \in D(A)$, and either α is even with $A^{l-1}y \in \overline{D(A)}$ and $w \in D(A^{l-1})$; or α is odd with $y \in D(A^l)$ and $A^{l-1}w \in \overline{D(A)}$.

Remark 2.11. If $\alpha \geq 2$, and u is the unique strong solution of $ACP(A, Cx + j_1Cy + j_2Cz + j_{\alpha-1} * Cg, 0, 0)$ in $C^2([0, T_0), X)$. Then u'' is the unique mild solution of $ACP(A, Cz + j_{\alpha-3} * Cg, Cx, Cy)$ in $C([0, T_0), X)$. That is, u'' is the unique continuous function v from $[0, T_0)$ into X which satisfies the integral equation $v = Aj_1 * v + Cx + j_1(\cdot)Cy + j_1 * (Cz + j_{\alpha-3} * Cg)$ on $[0, T_0)$.

Corollary 2.12. Let $\alpha \geq 0$, $l = [\frac{\alpha}{2}]$, and $C(\cdot)$ be a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function on X with generator A. Assume that $x \in D(A)$, $y, z \in X$, and $g \in L^1_{loc}([0, T_0), X)$. Then $ACP(A, Cz+j_{\alpha-1}*Cg, Cx, Cy)$ has a unique strong solution u in $C^2([0, T_0), X)$ when $y \in D(A^{l+1})$ and

 $w(=Ax+z) \in \begin{cases} D(A^l) \text{ if } [\alpha] \text{ is even} \\ D(A^{l+1}) \text{ if } [\alpha] \text{ is odd }. \end{cases}$

Corollary 2.13. Let $\alpha \in \mathbb{N} \cup \{0\}$, $l = [\frac{\alpha}{2}]$, and $C(\cdot)$ be a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function on X with generator A. Assume that $x \in D(A)$, $y, z \in X$, and $g \in L^1_{loc}([0, T_0), X)$. Then $ACP(A, Cz + j_{\alpha-1} * Cg, Cx, Cy)$ has a unique strong solution u in $C^2([0, T_0), X)$ when either α is even with $A^l y \in \overline{D(A)}$ and $w \in D(A^l)$; or α is odd with $y \in D(A^{l+1})$ and $A^l w \in \overline{D(A)}$.

Corollary 2.14. Let $\alpha \in \mathbb{N} \cup \{0\}$, $l = [\frac{\alpha+1}{2}]$, and $C(\cdot)$ be a nondegenerate local α -times integrated C-cosine function on X with densely defined generator A. Assume that $x \in D(A)$, $y, z \in X$, and $g \in L^1_{loc}([0, T_0), X)$. Then $ACP(A, Cz + j_{\alpha}*Cg, Cx, Cy)$ has a unique strong solution u in $C^2([0, T_0), X)$ when $w \in D(A^l)$, and either α is even with $y \in D(A^{l+1})$; or α is odd with $y \in D(A^l)$.

Corollary 2.15. Let $\alpha \ge 0$, $l = \left[\frac{\alpha}{2}\right]$, and $C(\cdot)$ be a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function on X with generator A. Assume that $x, y, z \in X$ and $g \in L^1_{loc}([0, T_0), X)$. Then $ACP(A, Cx + j_1Cy + j_2Cz + j_{\alpha-1} * Cg, 0, 0)$ has a unique strong solution u in $C^2([0, T_0), X)$ when $0 \le \alpha < 1$; or $x \in D(A)$ and either $1 \le \alpha < 2$, or $\alpha \ge 2$ with $y \in D(A^l)$ and

$$w(=Ax+z) \in \begin{cases} D(A^{l-1}) \text{ if } \alpha \text{ is even} \\ D(A^l) \text{ if } \alpha \text{ is odd} . \end{cases}$$

Corollary 2.16. Let $\alpha \in \mathbb{N}$, $l = [\frac{\alpha}{2}]$, and $C(\cdot)$ be a nondegenerate locally Lipschitz continuous local α -times integrated C-cosine function on X with generator A. Assume that $x \in D(A)$, $y, z \in X$, and $g \in L^1_{loc}([0, T_0), X)$. Then $ACP(A, Cx + j_1Cy + j_2Cz + j_{\alpha-1} * Cg, 0, 0)$ has a unique strong solution u in $C^2([0, T_0), X)$ when $\alpha = 1$, or $\alpha \geq 2$ and either α is even with $A^{l-1}y \in \overline{D(A)}$ and $w \in D(A^{l-1})$; or α is odd with $y \in D(A^l)$ and $A^{l-1}w \in \overline{D(A)}$.

Corollary 2.17. Let $\alpha \in \mathbb{N} \cup \{0\}$, $l = [\frac{\alpha+1}{2}]$, and $C(\cdot)$ be a nondegenerate local α -times integrated C-cosine function on X with densely defined generator A. Assume that $x \in D(A)$, $y, z \in X$, and $g \in L^1_{loc}([0, T_0), X)$. Then $ACP(A, Cx + j_1Cy + j_2Cz + j_\alpha * Cg, 0, 0)$ has a unique strong solution u in $C^2([0, T_0), X)$ when $\alpha = 0$; or $\alpha \geq 1$ with $w(=Ax + z) \in D(A^{l-1})$ and

$$y \in \begin{cases} D(A^l) \text{ if } \alpha \text{ is even} \\ \\ D(A^{l-1}) \text{ if } \alpha \text{ is odd} \end{cases}$$

3. Approximation Theorems

Definition 3.1. A sequence of local α -times integrated *C*-cosine functions $\{C_m(\cdot)\}_{m=1}^{\infty}$ on *X* is said to be uniformly locally Lipschitz continuous, if for each $0 < t_0 < T_0$ there exists a $K_{t_0} > 0$ such that

(3.1)
$$||C_m(t+h) - C_m(t)|| \le K_{t_0}h$$

for all $0 \leq t, h \leq t + h \leq t_0$ and $m \in \mathbb{N}$.

We first apply Theorem 2.9 to obtain an approximation theorem concerning strong solutions of $ACP(A, Cz + j_{\alpha-1} * Cg, Cx, Cy)$ in $C^2([0, T_0), X)$.

Theorem 3.2. Let $\alpha > 0$, the hypotheses of Corollary 2.12 hold for $C(\cdot)$, A, x, y, z and w(=Ax + z), and also for $C_m(\cdot)$, A_m, x_m, y_m, z_m and $w_m(=A_mx_m + z_m)$ in place of $C(\cdot)$, A, x, y, z and w, respectively. Assume that

- (i) $\{C_m(\cdot)\}_{m=1}^{\infty}$ is uniformly locally Lipschitz continuous, and $\lim_{m\to\infty} C_m(\cdot)v = C(\cdot)v$ uniformly on compact subsets of $[0, T_0)$ for all $v \in X$,
- (ii) $x_m \to x$, and $A_m^i y_m \to A^i y$ in X for all integers $0 \le i \le l+1$,
- (iii) $A_m^i w_m \to A^i w$ in X for all integers $0 \le i \le l$ if $[\alpha]$ is even; or $A_m^i w_m \to A^i w$ in X for all integers $0 \le i \le l+1$ if $[\alpha]$ is odd,

Chung-Cheng Kuo

(iv) $g_m \to g$ in $L^1_{loc}([0, T_0), X)$. That is, $\|g_m - g\|_{L^1([0, t_0], X)} (= \int_0^{t_0} \|g_m(s) - g(s)\| ds) \to 0$ in \mathbb{R} for all $0 < t_0 < T_0$.

Then the strong solution u_m of $ACP(A_m, Cz_m + j_{\alpha+1} * Cg_m, Cx_m, Cy_m)$ converges to the strong solution u of $ACP(A, Cz+j_{\alpha+1}*Cg, Cx, Cy)$ in $C^2([0, T_0), X)$. That is, $u_m \to u$, $u'_m \to u'$ and $u''_m \to u''$ uniformly on compact subsets of $[0, T_0)$.

Proof. Indeed, if $k = [\alpha]$, and $\widetilde{C}_m(\cdot)$ denotes the local k-times integrated C-cosine function on X with generator A_m . By (2.6), we have $\widetilde{C}_m(t)v = \frac{d}{dt}j_{k-\alpha} * C_m(t)v$ for all $v \in X$ and $0 \le t < T_0$. Combining (2.16)-(2.18), we also have

$$u_{m}(\cdot) = S_{m} * g_{m}(\cdot) + Cx_{m} +$$

$$\left\{\begin{array}{l} \tilde{S}_{m}(\cdot)y_{m} + j_{0} * \tilde{S}_{m}(\cdot)w_{m} & \text{if } k = 0 \\ \tilde{C}_{m}(\cdot)y_{m} + \tilde{S}_{m}(\cdot)w_{m} & \text{if } k = 1 \\ \\ \frac{l-1}{\sum} j_{k-(2i+1)}(\cdot)CA_{m}^{l-1-i}y_{m} + \tilde{S}_{m}(\cdot)A_{m}^{l}y_{m} \\ + \sum_{i=1}^{l-1} j_{k-2i}(\cdot)CA_{m}^{l-1-i}w_{m} + \tilde{C}_{m}(\cdot)A_{m}^{l-1}w_{m} & \text{if } k = 2l \ge 2 \\ \\ \frac{l}{\sum} j_{k-2i}(\cdot)CA_{m}^{l-i}y_{m} + \tilde{C}_{m}(\cdot)A_{m}^{l}y_{m} \\ + \sum_{i=0}^{l} j_{k-(2i+1)}(\cdot)CA_{m}^{l-1-i}w_{m} + \tilde{S}_{m}(\cdot)A_{m}^{l}w_{m} & \text{if } k = 2l+1 \ge 3, \end{array}\right\}$$

$$u'_{m}(\cdot) = C_{m} * g_{m}(\cdot) +$$

$$\left\{\begin{array}{l} \tilde{C}_{m}(\cdot)y_{m} + \tilde{S}_{m}(\cdot)w_{m} & \text{if } k = 0 \\ Cy_{m} + \tilde{S}_{m}(\cdot)A_{m}y_{m} + \tilde{C}_{m}(\cdot) & \text{if } k = 1 \\ \sum_{i=1}^{l} j_{k-2i}(\cdot)CA_{m}^{l-i}y_{m} + \tilde{C}_{m}(\cdot)A_{m}^{l}y_{m} \\ + \sum_{i=0}^{l-1} j_{k-(2i+1)}(\cdot)CA_{m}^{l-1-i}w_{m} + \tilde{S}_{m}(\cdot)A_{m}^{l}w_{m} & \text{if } k = 2l \ge 2 \\ \sum_{i=0}^{l} j_{k-(2i+1)}(\cdot)CA_{m}^{l-i}y_{m} + \tilde{S}_{m}(\cdot)A_{m}^{l+1}y_{m} \\ + \sum_{i=0}^{l} j_{k-(2i+1)}(\cdot)CA_{m}^{l-i}w_{m} + \tilde{C}_{m}(\cdot)A_{m}^{l}w_{m} & \text{if } k = 2l + 1 \ge 3, \end{array}\right.$$

and

$$u_m''(\cdot) = (C_m * g_m)'(\cdot) +$$

$$\begin{cases} \tilde{S}_m(\cdot)A_m y_m + \tilde{C}_m(\cdot)w_m & \text{if } k = 0 \\ \tilde{C}_m(\cdot)A_m y_m + Cw_m + \tilde{S}(\cdot)A_m w_m & \text{if } k = 1 \\ \sum_{i=0}^l j_{k-(2i+1)}(\cdot)CA_m^{l-i}y_m + \tilde{S}_m(\cdot)A_m^{l+1}y_m \\ + \sum_{i=1}^l j_{k-2i}(\cdot)CA_m^{l-i}w_m + \tilde{C}_m(\cdot)A_m^l w_m & \text{if } k = 2l \ge 2 \\ \sum_{i=1}^{l+1} j_{k-2i}(\cdot)CA_m^{l+1-i}y_m + \tilde{C}_m(\cdot)A_m^{l+1}y_m \\ + \sum_{i=0}^l j_{k-(2i+1)}(\cdot)CA_m^{l-i}w_m + \tilde{S}_m(\cdot)A_m^{l+1}w_m & \text{if } k = 2l + 1 \ge 3 \end{cases}$$

on $[0, T_0)$. To show that $u_m \to u$ in $C^2([0, T_0), X)$, we shall first show that $C_m * g_m \to C * g$ uniformly on compact subsets of $[0, T_0)$. Indeed, if $0 < t_0 < T_0$ is fixed. Then for each $\phi \in C([0, t_0], X)$, we deduce from the uniform continuity of ϕ on $[0, t_0]$, the uniform boundedness of $\{\|C_m(\cdot\|)\}_{m=1}^{\infty}$ on $[0, t_0]$ and (i) that $C_m(t-\cdot)\phi(\cdot) \to C(t-\cdot)\phi(\cdot)$ uniformly on [0,t] for all $0 < t \leq t_0$, and so $C_m * \phi(t) \to C * \phi(t)$ in X for all $0 \le t \le t_0$. The uniform Lipschitz continuity of $\{C_m(\cdot)\}_{m=1}^{\infty}$ on $[0, t_0]$ implies that $\{C_m * \phi(\cdot)\}_{m=1}^{\infty}$ is uniformly bounded and equicontinuous on $[0, t_0]$. It follows from the pointwise convergence of $\{C_m *$ $\phi(\cdot)\}_{m=1}^{\infty}$ to $C * \phi(\cdot)$ on $[0, t_0]$ and Arzela-Ascoli's theorem that each subsequence of $\{C_m * \phi(\cdot)\}_{m=1}^{\infty}$ contains a subsequence which converges to $C * \phi(\cdot)$ uniformly on $[0, t_0]$. Hence $C_m * \phi(\cdot) \to C * \phi(\cdot)$ uniformly on $[0, t_0]$ for all $\phi \in C([0, t_0], X)$. Combining this, and the uniform boundedness of $\{\|C_m(\cdot)\|\}_{m=1}^{\infty}$ on $[0, t_0]$ with the denseness of $C([0, t_0], X)$ in $L^1([0, t_0], X)$, we have $C_m * \phi(\cdot) \to C * \phi(\cdot)$ uniformly on $[0, t_0]$ for all $\phi \in L^1([0, t_0], X)$. Consequently, $C_m * \phi(\cdot) \to C * \phi(\cdot)$ uniformly on compact subsets of $[0, T_0)$ for all $\phi \in L^1_{loc}([0, T_0), X)$. In particular, $C_m * g_m(\cdot) = C_m * (g_m - g)(\cdot) + C_m * g(\cdot) \to C * g(\cdot)$ uniformly on compact subsets of $[0, T_0)$. Similarly, we can show that $\widetilde{C}_m(\cdot)v_m \to \widetilde{C}(\cdot)v$ and $\widetilde{S}_m(\cdot)v_m \to S(\cdot)v$ uniformly on compact subsets of $[0, T_0)$ whenever $v_m \to v$ in X. Here $\widetilde{C}(\cdot)$ denotes the local k-times integrated C-cosine function on X with generator A and $\widetilde{S}(\cdot) = j_0 * \widetilde{C}(\cdot)$. To show that $u_m \to u$ in $C^2([0,T_0),X)$, we observe from (i)-(iii) and (3.1)-(3.4) that it remains to show that $(C_m * g_m)'(\cdot) \to (C * g)'(\cdot)$ uniformly on compact subsets of $[0, T_0)$. Indeed, if $0 < t_0 < T_0$ is fixed. Then for each $\phi \in C^1([0, t_0], X)$, we deduce from the previous argument and (i) that $(C_m * \phi)'(\cdot) = C_m * \phi'(\cdot) + C_m(\cdot)\phi(0) \to C * \phi'(\cdot) + C(\cdot)\phi(0) = (C * \phi)'(\cdot)$ uniformly on $[0, t_0]$. Combining this, and the denseness of $C^1([0, t_0], X)$ in $L^1([0, t_0], X)$ with the fact

(3.5)
$$\|(C_m * \phi)'(t)\| \le K_{t_0} \int_0^t \|\phi(s)\| ds$$

Chung-Cheng Kuo

for all $\phi \in L^1([0, t_0], X), m \in \mathbb{N}$ and $0 \leq t \leq t_0$, we have $(C_m * \phi)'(\cdot) \to (C * \phi)'(\cdot)$ uniformly on $[0, t_0]$ for all $\phi \in L^1([0, t_0], X)$, where K_{t_0} is given as in (3,1). Consequently, $(C_m * \phi)'(\cdot) \to (C * \phi)'(\cdot)$ uniformly on compact subsets of $[0, T_0)$ for all $\phi \in L^1_{loc}([0, T_0), X)$, which together with (3.5) implies that $(C_m * g_m)'(\cdot) = (C_m * (g_m - g))'(\cdot) + (C_m * g)'(\cdot) \to (C * g)'(\cdot)$ uniformly on compact subsets of $[0, T_0)$.

Similarly, we can apply Theorem 2.10 to obtain the next approximation theorem concerning strong solutions of $ACP(A.Cx + j_1Cy + j_2Cz + j_{\alpha-1} * Cg, 0, 0)$ in $C^2([0, T_0), X)$.

Theorem 3.3. Let $\alpha > 0$, the hypotheses of Corollary 2.15 hold for $C(\cdot)$, A, x, y, z and w(=Ax + z), and also for $C_m(\cdot)$, A_m, x_m, y_m, z_m and $w_m(=A_mx_m + z_m)$ in place of $C(\cdot)$, A, x, y, z and w, respectively. Assume that

- (i) $\{C_m(\cdot)\}_{m=1}^{\infty}$ is uniformly locally Lipschitz continuous, and $\lim_{m\to\infty} C_m(\cdot)v = C(\cdot)v$ uniformly on compact subsets of $[0, T_0)$ for all $v \in X$,
- (ii) $x_m \to x$, and $A_m^i y_m \to A^i y$ in X for all integers $0 \le i \le l$,
- (iii) $z_m \to z$ in X if $0 \le \alpha < 1$; $A_m^i w_m \to A^i w$ in X for all integers $0 \le i \le (l-1)$ if $\alpha \ge 1$ and $[\alpha]$ is even; or $A_m^i w_m \to A^i w$ in X for all integers $0 \le i \le l$ if $\alpha \ge 1$ and $[\alpha]$ is odd,
- (iv) $g_m \rightarrow g$ in $L^1_{loc}([0, T_0), X)$.

Then the strong solution u_m of $ACP(A_m, Cx_m + j_1Cy_m + j_2Cz_m + j_{\alpha-1} * Cg_m, 0, 0)$ converges to the strong solution u of $ACP(A, Cx + j_1Cy + j_2Cz + j_{\alpha-1} * Cg, 0, 0)$ in $C^2([0, T_0), X)$.

REFERENCES

- 1. W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, *Vector-Valued Laplace Transforms and Cauchy Problems*, 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.
- 2. W. Arendt and H. Kellermann, *Integrated Solutions of Volterra Integrodifferential Equations and Applications*, Pitman Res. Notes Math., Longman, 1989, pp. 21-51.
- 3. F. Huang and T. Huang, Local C-cosine family theory and application, Chin. Ann. Math., 16 (1995), 213-232.
- 4. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
- 5. M. Hieber, Laplace transforms and α -times integrated semigroups, *Forum Math.*, **3** (1991), 595-612.
- 6. M. Kostic, Distribution cosine functions, Taiwanese J. Math., 10 (2006), 739-775.

- 7. C.-C. Kuo and S.-Y. Shaw, C-Cosine functions and the abstract cauchy problem I, II, J. Math. Anal. Appl., **210** (1997), 632-646, 647-666.
- C.-C. Kuo, On α-times integrated c-semigroups and approximation of strong solutions of abstract cauchy problems, *Taiwanese J. Math.*, 13 (2009), 137-155.
- C.-C. Kuo, On α-times integrated C-cosine functions and abstract cauchy problem I, J. Math. Appl., 313 (2006), 142-162.
- 10. C.-C. Kuo, On exponentially bounded α -times integrated C-cosine functions, Yokohama Math. J., **52** (2005), 59-72.
- 11. C.-C. Kuo, On local integrated C-cosine function and weak solution of second order abstract cauchy problem, *Taiwanese J. Math.*, **10** (2010), in appear.
- 12. Y.-C. Li and S.-Y. Shaw, On generators of integrated C-semigroups and C-cosine functions semigroup, *Semigroup Forum*, **47** (1993), 29-35.
- 13. T. Takenaka and S. Piskarev, Local C-cosine families and N-times integrated local cosine families, *Taiwanese J. Math.*, **8** (2004), 515-546.
- 14. S.-Y. Wang and Z. Huang, Strongly continuous integrated C-cosine operator functions, *Studia Math.*, **126** (1997), 273-289.
- 15. T.-J. Xiao and J. Liang, Approximations of laplace transforms and integrated semigroups, J. Funct. Anal., **172** (2000), 202-220.
- 16. T. J. Xiao and J. Liang, *The cauchy problem for higher-order abstract differential equations*, Lectures Notes in Math. 1701, Springer, 1998.
- 17. Q. Zheng, Coercive differential operators and fractionally integrated cosine functions, *Taiwanese J. Math.*, **6** (2002), 59-65.

Chung-Chen Kuo Department of Mathematics, Fu Jen University, Taipei 24205, Taiwan E-mail: cckuo@math.fju.edu.tw