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RATIONAL KRYLOV FOR REAL PENCILS
WITH COMPLEX EIGENVALUES

Axel Ruhe

Abstract. A rational Krylov algorithm for eigenvalue computation is de-
scribed. It is usable on a real matrix pencil with complex eigenvalues and
builds up a real basis. The main purpose is to get real reduced models of a
real linear dynamic system. Two variants are described, one where two real
vectors are added to the Krylov space in each step and another where just one
real vector is added in each step.

Results are reported from one small example that has been used earlier
and where the solution is known, and one more realistic example, a linear
descriptor system from a computational fluid dynamics application.

1. INTRODUCTION

We want to compute eigenvalues of a linear matrix pencil

(1) (A − λE)x = 0.

when the pencil is real but has complex eigenvalues.
Eigenvalues are of interest to understand the behavior of a linear time-invariant

dynamical system

(2)
Eẋ(t) = Ax(t) + bu(t),

y(t) = cx(t),

connecting input u(t) and output y(t) via the state x(t). The poles of the transfer
function are the eigenvalues of the pencil (1). Typically, for slowly damped systems,
the eigenvalues are in the left half plane close to the imaginary axis.

Eigenvalue algorithms are by their nature complex, and special devices are
needed to stay in real arithmetic and get solutions that give complex conjugate
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pairs of eigenvalues with real invariant subspaces. If the original matrices are small
enough for transfomation methods, there is the double shift QR or QZ algorithm. It
computes a real Schur form and gives real bases for the invariant subspaces. Now
we are interested in algorithms for larger problems, that can be treated with shift
and invert Krylov space methods. The aim is to get real reduced order models for
a real system (2).

We start this paper by describing the rational Krylov algorithm [10], imple-
mented as shift invert Arnoldi with varying shifts [1, Ch. 8.5 p. 246]. A detailed
description is given in the thesis by Olsson [5] and the paper [6]. In section 3, we
treat the case with real matrices. First we describe a double shift variant, introduced
in [8] and tested in the thesis by Holst [2]. Then we describe how to apply the
original single vector variant, given by Parlett and Saad [7]. This variant promises
to be the most interesting one for model reduction purposes, but we have yet to
show how to change shifts.

We conclude in section 4, by reporting a few numerical tests. The reader is
referred to the works by Olsson [5], Mathews [3] and Holst [2] for more details.

2. RATIONAL KRYLOV, GENERAL CASE

The rational Krylov algorithm is a shift invert Arnoldi decomposition

(3) (A − σE)−1EVj = Vj+1Hj+1,j ,

where the shift σ is changed in some of the steps j. The resulting matrix H is of
Hessenberg form.

Consider step j,
(A − σjE)−1Evj = Vj+1hj ,

where the j + 1 vector hj consists of Gram Schmidt coefficients that assures that
the next basis vector vj+1 is a unit vector orthogonal to the span of Vj , the previous
vectors.

Multiply by (A − σjE) and get

(A − σjE)Vj+1hj = Evj ,

and separate A and E terms

AVj+1hj = EVj+1(ej + hjσj) .

Put earlier columns up front and get a rational Krylov recursion [10],

(4) AVj+1Hj+1,j = EVj+1Kj+1,j ,
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with two Hessenberg matrices, H consisting of the Gram Schmidt coefficients, and

(5) Kj+1,j = Ij+1,j + Hj+1,jdiagj
i=1(σi)

We may now formulate the rational Krylov recursion (4) as an Arnoldi iteration
with another starting vector w1, chosen from the Krylov space spanned by Vj+1.
This is done by QR factorizing either H or K .

Let us choose to factorize H , which will give a direct iteration,

Hj+1,j = Qj+1Rj+1,j

giving

(6)
AVj+1Qj+1Rj+1,j = EVj+1Qj+1(Q′

j+1Kj+1,j)

AWjRj,j = EWj+1Mj+1,j

with
Wj+1 = Vj+1Qj+1 and Mj+1,j = Q′

j+1Kj+1,j

In the unreduced case, when all the subdiagonal elements of H are nonzero, the
orthogonal matrix is

Qj+1 = G1,2G2,3 . . .Gj,j+1 ,

a product of j Givens rotations in the coordinate planes given by the subscripts.
Apply the QZ algorithm to the leading j × j square pencil (Mj,j , Rj,j) of the

recursion (6). A Ritz approximation (θ(j), y(j)) to an eigenpair of the pencil (1) is
given by

Mj,jsj = Rj,jsjθ
(j) y(j) = WjRj,jsj .

Its residual is,

(7) r(j) = Ay(j) − Ey(j)θ(j) = Ewj+1mj+1,.sj .

It is in the direction of the next basis vector Ewj+1. Its length is given by the inner
product between the j + 1st and last row of M and the eigenvector sj . We note
that the transformed matrix Mj,j is full. We may transform it into Hessenberg form,
using the algorithm described in [9], but this may be ill conditioned if R j,j is close
to singular.

3. RATIONAL KRYLOV FOR REAL MATRICES

We have developed a double shift variant, that gives a real Hessenberg pair
when the original pencil (A, E) is real, but the shifts σ and the eigenvalues λ are
complex.

In each step, add two vectors, given by the real and imaginary parts of
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(8) r = (A − σE)−1Evj

orthogonalized to the previous basis vectors Vj , to give vj+1 and vj+2. The matrix

diag(σi) in (5) will have 2 × 2 blocks,
(

ρi θi

−θi ρi

)
in those positions where the

shift σ is complex, with real and imaginary parts

(9) σ = ρ + iθ .

This gives the double vector variant, described in [8] and [2].
We are now testing the original, single vector variant, given by Parlett and

Saad [7]. In each step j, we take either the real or the imaginary part of r (8),
adding one vector to the basis Vj and one column to H .

We get

(10) BVj = Vj+1Hj+1,j

where either
B = B+ = real((A− σE)−1E)

or
B = B− = imag((A− σE)−1E) .

Note that
B+ =

1
2

(
(A − σE)−1 + (A − σE)−1

)
E

and similarly for B−. It will get the same real invariant subspaces as the pencil (1)
but other complex conjugate eigenvalues µ+ and µ−.

If we partition the shift into real and imaginary parts σ = ρ + iθ ( 9), we get

(11)

µ+ = λ(B+) =
1
2
(

1
λ − σ

+
1

λ − σ
)

=
1
2
(
λ − σ + λ − σ

(λ − σ)(λ− σ)
)

=
λ − ρ

(λ2 − 2ρλ + |σ|2)

(12) µ− = λ(B−) =
θ

(λ2 − 2ρλ + |σ|2)
If we compute any of these from the Hessenberg matrix H in (10), we can get
approximations to the pencil eigenvalues λ by solving a quadratic equation.

In the first case, we get from (11) that λ = ρ + ξ where ξ is a solution of

(13) ξ2 − 1
µ+

ξ + θ2 = 0 ,
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and in the second, (12) implies that

(14) ξ2 − θ

µ−
+ θ2 = 0

The sign has to be chosen properly, for each of the j eigenvalues µ we get two λ
suggested. As of now, we do this by checking the Rayleigh quotients of the original
pencil (1).

4. NUMERICAL EXAMPLES

Hopf bifurcation

This small problem was reported by Parlett and Saad [7]. It describes reaction
and transport interaction of two chemical solutions in a tubular reactor. A simple
finite difference approximation over the unit interval with 100 interior points gives
a matrix of order n = 200 with a 2 by 2 block structure. It depends on a bifurcation
parameter L. For interesting values of L, most eigenvalues are real and negative.
We seek the pair of eigenvalues that is close to imaginary axis.

We applied the single vector algorithm of Parlett and Saad [7] with basis size
j = 30 and constant shift σ = 0.5 + 2.1i. In Figure 1, we plot the eigenvalue
approximations together with the exact eigenvalues for comparison. Notice that
those closest to the shift σ are the first to converge. In Figure 2, we plot the
eigenvalues µ of the shifted and inverted pencil

B = (A − σE)−1E

Fig. 1. Hopf bifurcation, eigenvalues.

and µ+ and µ−, those of its real and imaginary parts B+ and B−, (11) and (12).
Note that the eigenvalues of B are not in complex conjugate pairs, while those
of B+ and B− are. All three matrices have some well separated eigenvalues µ,
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expected to converge fast, and many eigenvalues close to zero that correspond to
eigenvalues λ far from the shift σ.

Fig. 2. Hopf bifurcation, transformed eigenvalues.

Fig. 3. Hopf bifurcation, residuals.

We plot the leading 20 residuals in Figure 3. The estimates of the transformed H
residuals in (10) with B = B+, plotted as crosses, are used to signal convergence.
We check by computing and plotting the pencil residuals (7) and see that we indeed
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have 8 converged eigenvalues.

Supersonic engine inlet
The second system we study here comes from Active Control of a Supersonic

Engine Inlet by Willcox, Lassaux, and Gratton [4]. It is a descriptor system (2)
of size n = 11730 coming from a linearization of two-dimensional Euler equations
describing unsteady flow through a supersonic diffuser. The descriptor matrix E

is singular. There are two inputs and one output, which means that b ∈ R
n×2 and

c ∈ R
1×n. This is an interesting test problem to us, since it is reasonably large and

has quite a lot of eigenvalues along the imaginary axis.
Some of the eigenvalues in the second quadrant, as reported in [6] are seen in

Figure 4. The shifts are chosen adaptively along the imaginary axis, so that for
each shift about the same number of eigenvalues converge. Note that we get nearly
all eigenvalues with real part above −10 and imaginary between 0 and 140. Let
us show just one snapshot of the eigenvalue approximations. In Figure 5, we plot
approximations at a basis size j = 100 of the double vector algorithm when the
shift has stepped up to σ = 20i. Observe that the approximations are expanding in
a circle like region around the shift, finding all eigenvalues inside.

We also plot one case of transformed eigenvalues µ+ after j = 20 steps in
Figure 6. Here we do not see an accumulation at zero like in Figure 2, because now
we have a long time to go before those eigenvalues converge. We see a circle like
configuration as implied by the convergence behaviour shown in Figure 5.

Fig. 4. Supersonic engine inlet: Some eigenvalue approximations computed with rational
Krylov, compared with the exact spectrum found with eigs. Also included is a
(half-)circle with radius 10 centered at σ = 10i for indicating the axis scales
and the shape of a typical convergence region of a shift invert method.
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Fig. 5. Supersonic engine inlet: Progress at step j = 100 when shift σ = 20i. Compar-
ison computed with eigs.

Fig. 6. Supersonic engine inlet: Transformed Ritz approximations µ+ at step j = 20.
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