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PALINDROMIC EIGENVALUE PROBLEMS: A BRIEF SURVEY

Eric King-wah Chu, Tsung-Ming Huang, Wen-Wei Lin and Chin-Tien Wu

Abstract. The T-palindromic quadratic eigenvalue problem (λ2B + λC +
A)x = 0, with A, B, C ∈ Cn×n, CT = C and BT = A, governs the vibration
behaviour of trains. Other palindromic eigenvalue problems, quadratic or
higher order, arise from applications in surface acoustic wave filters, optimal
control of discrete-time systems and crack modelling. Numerical solution
of palindromic eigenvalue problems is challenging, with unacceptably low
accuracy from the basic linearization approach. In this survey paper, we shall
talk about the history of palindromic eigenvalue problems, in terms of their
history, applications, numerical solution and generalization. We shall also
speculate on some future directions of research.

1. INTRODUCTION

Physical phenomena have been modelled in terms of differential equations ever
since the invention of calculus, by Leibniz and Newton in the late seventeenth
century. From Newton’s second law, Kirchoff’s law and the like, it is natural to
model using second-order systems like

(1) Mẍ(t) + Dẋ(t) + Kx(t) = f(t)

where the state and input x, f ∈ Rn, with the mass, damping and stiffness matrices
M, D, K ∈ R

n×n. Despite of the equivalent first-order system of equations (in
companion form):

(2)
[

In 0
0 M

]
ż(t) =

[
0 In

−K −D

]
z(t) +

[
0

f(t)

]
, z(t) ≡

[
x(t)
ẋ(t)

]
it is often more natural, sometimes even desirable, to work with the original matrices
M , D and K from the original formulation (1). More importantly, applying blunt
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numerical tools to the companion form in (2) without considering or preserving its
structure produces unnecessary errors.

In the field of numerical computation, an early account of matrix polynomials
(under the name of λ-matrices) can be found in [36], followed by the authoritative
book in [20] and the survey of applications and numerical methods in [56].

In general, we can analyze the solution or vibration of second-order systems
through the quadratic eigenvalue problem (QEP)

Q(λ)x ≡ (λ2B + λC + A)x = 0,(3)

where A, B, C ∈ C
n×n, λ ∈ C, x �= 0 ∈ C

n. Many QEPs from a variety of
applications have extra structure that results in certain symmetry in the spectrum.
One such QEP is the palindromic QEP with the property that reversing the order
of the coefficients leads back to the original QEP, which explains the adjective
“palindromic”.

If BT = A and CT = C, then (3) is called a T-palindromic QEP:

(4) Q(λ)x ≡ (λ2AT + λC + A)x = 0 , CT = C

Transposing (4) implies the important symplectic or reciprocity property of the spec-
trum of palindromic eigenvalue problem, that

(5) λ ∈ σ(Q(λ))⇒ 1/λ ∈ σ(Q(λ))

with σ(·) denoting the spectrum, and the convention that 0 and ∞ are considered
to be mutually reciprocal.

In general, from [43], for a (possibly rectangular) matrix polynomial

Q(λ) ≡
k∑

i=0

λiBi , Bi ∈ F
m×n

for some field F, we can define the adjoint Q∗(λ) and the reversal rev Q(λ) by

Q∗(λ) ≡
k∑

i=1

λiB∗
i , rev Q(λ) ≡

k∑
i=0

λk−iBi

with ∗ = T or H . A matrix polynomial Q(λ) is said to be *-palindromic if
rev Q(λ) = Q∗(λ) and *-anti-palindromic if rev Q(λ) = −Q∗(λ). For a regular
*-(anti-)palindomic Q(λ) (which is square with a discrete spectrum), we have the
reciprocity property

(6) λ ∈ σ(Q(λ))⇒ 1/λ∗ ∈ σ(Q(λ))
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similar to and more general than (5). The results in (5) and (6) are contained in the
more general Theorem 5.1 later.

The T-palindromic QEP was first raised in a study of the vibration of fast trains
in Germany [26, 27], associated with the company SFE GmbH in Berlin. Quadratic
real and complex T-palindromic QEPs also arise in the mathematical modeling and
numerical simulation of the behaviour of periodic surface acoustic wave (SAW)
filters [58]. The computation of the Crawford number [25], associated with the
perturbation analysis of symmetric generalized eigenvalue problems, produces an
H-palindromic QEP, i.e., BH = A and CH = C, where H stands for the conjugate
transpose. The study of corner singularities in anisotropic elastic materials [2, 3,
34, 47, 51] and gyroscopic systems [56] leads to T-even QEPs, i.e., BT = B,
CT = −C and AT = A. For other QEPs with symmetry in the spectrum, see [43].

A standard approach for solving the palindromic QEP is to transform it to a
2n × 2n linearized eigenvalue problem and compute its generalized Schur form
(see [56]). However, the symplectic property of eigenvalues of (3) is not preserved
generally, producing large numerical errors [32]. Recently, some pioneering work
[27, 23, 44] discovered that the T-palindromic QEP could be linearized into the
form λZT + Z, which preserves symplecticity to some extent. Later, a QR-like
algorithm [52], a Jacobi-type method [27], a generalized Laub trick [45] and a
URV -decomposition-based structured method of cubic complexity [53] have been
proposed for the palindromic linear pencil λZT + Z. However, the Jacobi-like
method suffers from convergence problems and the QR-like method has quartic
complexity [35]. Another T-symplectic linearizationM−λL of the T-palindromic
QEP has been developed in [29] and two structure-preserving methods based on
Patel’s and Arnoldi methods are proposed to solve the T-symplectic eigenvalue
problem.

In [14], a structure-preserving doubling algorithm (SDA) was developed. The
T-palindromic QEP can be rewritten as a factored form

Q(λ) = (λAT −X)X−1(λX − A)

with symmetries in the spectrum for some nonsingular X if and only if X is satisfied
the following nonlinear matrix equation

ATX−1A + X + C = 0.(7)

A SDA [14, 41] can then be applied to solve (7).
For perturbation and error analysis related to palindromic eigenvalue problems,

see [15, 22, 24].
In this paper, we shall perform a survey of palindromic eigenvalue problems, in

terms of their history, applications, numerical solution and generalization. After this
introduction, we shall summarize the application of train vibration analysis and the
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associated T-palindromic QEP in Section 2. Selected applications involving other
palindromic eigenvalue problems will be presented in Section 3. A summary of
numerical methods for palindromic eigenvalue problems is presented in Section 4.
Some generalizations of palindromic eigenvalue problems and their solution are
presented in Section 5 and the paper is concluded by some speculations on future
research in Section 6.

2. TRAIN VIBRATION AND T-PALINDROMIC QEPs

We shall describe the train vibration problem, the associated T-palindromic QEP
and the corresponding SDAs, quoting results from [14], without some details, proofs
or numerical results.

We shall study the resonance phenomena of the track under high frequent excita-
tion forces. Research in this area not only contributes to the safety of the operations
of high-speed trains but also new designs of train bridges, embedded rail struc-
tures (ERS) and train suspension systems. Recently, the dynamic response of the
vehicle-rails-bridge interaction system under different train speeds has been studied
by Wu and Yang [57] and a procedure for designing an optimal ERS is proposed
by Markine, de Man, Jovanovic and Esveld [46]. An accurate numerical estima-
tion to the resonance frequencies of the rail plays an important role in both works.
However, as mentioned by Ipsen [32], the classic finite element packages fail to de-
liver correct resonance frequencies for such problems [32]. Here, we would like to
compare the method proposed by Mackey, Mackey, Mehl and Mehrmann [43] with
the generalized SDA methods proposed by Chu, Fan, Lin and Wang [12] and Lin
and Xu [41], in solving the palindromic eigenvalue problems arising from spectral
modal analysis of the resonance of the rail under a periodic excitation force.

We assume that the rail sections between consecutive sleeper bays are identical,
distances between consecutive wheels are the same and the wheel loads are equal.
Figure 1 shows an example of the rail section we consider here.

Fig. 1. A 3D rail model.
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Base on our assumptions, we model the rail under cargo wheel loads by a section
of rail between two sleepers. The external force is assumed to be periodic and the
displacements of two boundary cross sections of the modelled rail are assumed to
have a ratio κ, which is dependent on the excitation frequency of the external force.
In the following, we consider the rail as a three dimensional isotropic elastic solid
and a 3D finite element model of the solid with linear isoparametric tetrahedron
elements is introduced.

From the element virtual work principle, the equilibrium state of the solid ele-
ment e under external body forces satisfies the following equation:

(8)
∫

e
(δεT )Cε dV +

∫
e
(δqT )ρq̈ dV =

∫
e
(δqT )f dV.

Here, ρ is the mass density, f is the time-dependent body force, q = [u, v, w] is
the displacement vector, ε = [∂u

∂x , ∂v
∂y , ∂w

∂z , ∂u
∂y + ∂v

∂x , ∂w
∂x + ∂u

∂z , ∂v
∂z + ∂w

∂y ], and δqT and
δεT are the virtual displacement and the corresponding virtual strain vectors, and

(9) C =
E

(1 + υ)(1− 2υ)
diag (C1, C2) ,

is the well-known strain-stress relationship, where E is the Young’s modulus, υ is
the Poisson ratio and

C1 =

 1− υ υ υ
υ 1− υ υ

υ υ 1− υ

 , C2 =
(

1− 2υ

2

)
I3.

Let φi and [ui, vi, wi]T (i = 1, · · · , 4) be the linear nodal basis function and
the nodal displacement vector associated with the i-th node of the element e, re-
spectively, and let Xe = [XT

1 , XT
2 , XT

3 , XT
4 ]T , Be = [B1, B2, B3, B4] and Ne =

[N1, N2, N3, N4], where

Xi =

 ui

vi

wi

 , Ni =

 φi 0 0
0 φi 0
0 0 φi

 , Bi =



∂φi

∂x 0 0
0 ∂φi

∂y 0
0 0 ∂φi

∂z
∂φi

∂y
∂φi

∂x 0
∂φi
∂z 0 ∂φi

∂x

0 ∂φi
∂z

∂φi
∂y


.

Equation (8) can now be discretized into the following linear equations

(10)
∑

e

(∫
e
BT

e CBe dV

)
Xe+ρ

(∫
e
NT

e Ne dV

)
Ẍe =

∑
e

(∫
e
NT

e Ne dV

)
Fe,



748 Eric King-wah Chu, Tsung-Ming Huang, Wen-Wei Lin and Chin-Tien Wu

where Fe = [FT
1 , FT

2 , FT
3 , FT

4 ]T and Fi (i = 1, · · · , 4) is the i-th nodal force
vector acting on element e. In the following, we denote K =

∑
e

∫
e BT

e CBe dV , and

M =
∑
e

ρ
∫
e NT

e Ne dV . Equation (10) can now be written as

(11) KX + MẌ = ρ−1MF.

When considering the dynamic response of the solid, dissipative forces such as the
force due to frictions have to be considered. Their effect is introduced in the form of
the so-called viscous damping DẊ where D is the damping matrix. In this paper,
proportional damping proposed by Strutt (Lord Rayleigh) [55] is employed where
D is a linear combination of K and M . The equation of motion involving viscous
damping can now be written as

KX + DẊ + MẌ = ρ−1MF.

Due to the given boundary conditions on a uniform mesh, K, D and M have the
following form

G11 G12 0 · · · 0 1
κGT

m,m+1

GT
12 G22 G23 0 0

0
. . . . . . . . . . . . ...

... 0
. . . . . . . . . 0

0
. . . GT

m−2,m−1 Gm−1,m−1 Gm−1,m

κGm,m+1 0 · · · 0 GT
m−1,m Gm,m


with Gii ∈ C

ni×ni for i = 1, . . . , m. Furthermore, from the spectral modal analysis,
one considers X = X̂eiωt where ω is the frequency of the external excitation force
and X̂ is the corresponding eigenmode. Consequently, we arrive to a palindromic
eigenvalue problem (

κA1 + A0 + κ−1AT
1

)
X̂ = 0,

where A0, A1 ∈ C
n×n with n = n1 + · · ·+ nm and

[A1]ij =
{

Km,m+1 + iωDm,m+1 − ω2Mm,m+1 (if i = m and j = 1),
0 (otherwise),

(12)

[A0]ij =
{

Ki,j + iωDi,j − ω2Mi,j (if i− 1 ≤ j ≤ i + 1),
0 (otherwise).

(13)

2.1. Deflation of T-palindromic QEPS

We shall consider the deflation of zero and infinite eigenvalues in this section.
For the deflation of λ = ±1, consult [43].
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From their definitions in (12), A1 and A0 can be partitioned as

A1 =

 0 0 0
0 0 0
L 0 0

 ∈ C
n×n, A0 =

 C11 C12 0
CT

12 C22 C23

0 CT
23 C33

 ∈ C
n×n

where L ∈ Cnm×n1 , C11 = CT
11 ∈ Cn1×n1 , C33 = CT

33 ∈ Cnm×nm and C22 =
CT

22 ∈ C
�×� with 
 = n − n1 − nm. Assume that C22 is nonsingular. We have

observed that this assumption is generically valid from the numerical examples we
have encountered. Otherwise, the preprocessing procedure in [27, 43] should be
applied.

Let

Θ =

 In1 −C12C
−1
22 0

0 I� 0

0 −CT
23C

−1
22 Inm

 , Π =

 In1 0 0
0 0 Inm

0 I� 0

 .

Then, using a similarity transformation, P(λ) can be transferred to the following
form

ΠΘP(λ)ΘTΠT =

 λ(C11 − C12C
−1
22 CT

12) LT − λC12C
−1
22 C23 0

λ(λL−CT
23C

−1
22 CT

12) λ(C33 −CT
23C

−1
22 C23) 0

0 0 λC22


= diag (In1 , λInm, I�)

[ S(λ) 0
0 λC22

]
(14)

where
S(λ) =

[
λC̃11 LT − λC̃12

λL− C̃T
12 C̃22

]
with C̃11 ≡ C11 −C12C

−1
22 CT

12, C̃12 ≡ C12C
−1
22 C23 and C̃22 ≡ C33 −CT

23C
−1
22 C23.

2.2. Structure-preserving doubling algorithms

We can obtain two different versions of SDA for the solution of T-palindromic
QEPs arising from the train vibration problem. Other selected methods will be
presented in Section 4.

After swapping the row-blocks, the pencil S(λ) is equivalent to

λ

[
L 0

C̃11 −C̃12

]
+

[
−C̃T

12 C̃22

0 LT

]
,

which is in a generalized standard symplectic form (GSSF) [30]. The structure-
preserving doubling algorithm SDA1 in [30] can then be applied to solve the cor-
responding eigenvalue problem. During the iteration, some matrices are required to
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be well-conditioned. When this does not hold, Cayley transforms can be applied
to transform the corresponding symplectic matrix pair to an associated Hamiltonian
matrix and then back, introducing free two parameters against which this condition
can be optimized. For details, see [11].

In terms of accuracy and speed of convergence, SDA1 behaves similarly as
SDA2 below. However, the operation count for SDA1 doubles that of SDA2.
As a result, we shall not discuss SDA1 further. However, SDA1 is a weapon in
reserve against difficult palindromic eigenvalue problems, when some assumptions
for SDA2 are not satisfied.

For SDA2, assume that C̃22 is invertible. Define a new λ-matrix S̃(λ) as
follows:

(15)

S̃(λ) ≡
[

In1 −LT C̃−1
22

0 In3

]
S(λ)

[
In1 0

C̃−1
22 C̃T

12 In3

]

=

[
λ(C̃11 − LT C̃−1

22 L− C̃12C̃
−1
22 C̃T

12) + LT C̃−1
22 C̃T

12 −λC̃12

λL C̃22

]

and let
[
x̃T , ỹT

]T be an eigenvector of S̃(λ); i.e.,

λ
[
(C̃11 − LT C̃−1

22 L− C̃12C̃
−1
22 C̃T

12)x̃− C̃12ỹ
]

+ LT C̃−1
22 C̃T

12x̃ = 0,(16a)

λLx̃ + C̃22ỹ = 0.(16b)

Since C̃22 is invertible, from (16b) ỹ can be represented as

(17) ỹ = −λC̃−1
22 Lx̃.

Substituting (17) into (16a), we get the following new small size palindromic
quadratic eigenvalue problem:

(18) Pd(λ)x̃ ≡ (λ2Ad1 + λAd0 + AT
d1)x̃ = 0,

where

Ad1 = C̃12C̃
−1
22 L ∈ C

n1×n1 ,(19)

Ad0 = C̃11 − LT C̃−1
22 L− C̃12C̃

−1
22 C̃T

12 ∈ C
n1×n1 .(20)

Suppose that X is nonsingular. Rewrite Pd(λ) in (18) as

Pd(λ) = (λAd1 −X)X−1(λX − AT
d1) + λ(Ad1X

−1AT
d1 + X + Ad0).
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It follows that Pd(λ) can be factorized (or square-rooted) as

Pd(λ) = (λAd1 −X)X−1(λX −AT
d1)

for some nonsingular X if and only if X is satisfied following nonlinear matrix
equation with the plus sign (NME):

(21) Ad1X
−1AT

d1 + X + Ad0 = 0.

We can easily prove the following lemma on the existence of the solutions of the
NME:

Lemma 2.1. Let (Λ1 ⊕ Λ2, [Y1, Y2]) be an eigenpair of Pd(λ) in the sense that

Ad1YiΛ2
i + Ad0YiΛi + AT

d1Yi = 0 (i = 1, 2),

where Yi ∈ C
n1×n1 for i = 1, 2. Suppose that Ad1 and Yi (i = 1, 2) are invertible.

Then the corresponding NME (21) has the solutions X = AT
d1YiΛ−1

i Y −1
i (i = 1, 2).

Evidently, there are many solutions to the NME, each will facilitate the fac-
torization of Pd(λ) we aim for. Assume that there are no eigenvalues on the unit
circle. Consequently, we can partition the spectrum into Λs ⊕ Λ−1

s , with Λs con-
taining the stable eigenvalues (inside the unit circle). The SDA will seek a stable
solution Xs ≡ AT

d1YsΛ−1
s Y −1

s , where Ys contains the eigenvectors corresponding
to Λs. Note that Xs is unique as it is independent of the order of the eigenvalues
in Λs.

The structure-preserving doubling algorithm SDA2 in [41] can then be applied to
solve the NME, and subsequently the palindromic eigenvalue problem. We require
the invertibility of the matrices Qk − Pk . This is the case for large values of k, as
indicated by Corollary 2.1.

2.3. Convergence of SDA

The behaviour of the SDAs are well-documented in [12, 21, 30, 31, 41]. How-
ever, these results are mostly written for real problem with real variables and
have to be modified for our situation. Following the development in [41], let
M− λL ∈ C

2n×2n be a T-symplectic pencil, in the sense that

(22) MJMT = LJLT , J =
[

0 I
−I 0

]
.

Define the nonempty null set

N (M,L)

≡
{

[M∗,L∗] :M∗,L∗∈C
2n×2n, rank [M∗, L∗]=2n, [M∗, L∗]

[ L
−M

]
=0

}
.
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For any given [M∗, L∗] ∈ N (M,L), define

M̂ =M∗M, L̂ = L∗L.

The transformation M− λL → M̂ − λL̂ is a doubling transformation. Below is
an adaptation of [41, Theorem 2.1]:

Theorem 2.1. Let M̂ − λL̂ be a doubling transformation of a T-symplectic
pencilM− λL. Then we have:

(a) The pencil M̂ − λL̂ is still T-symplectic.

(b) If M
[

U
V

]
= L

[
U
V

]
S, where U, V ∈ Cn×m and S ∈ Cm×m, then

M̂
[

U

V

]
= L̂

[
U

V

]
S2.

(c) If the pencil M− λL has the Kronecker canonical form

(23) WMZ =
[

Jr 0
0 I2n−r

]
, WLZ =

[
Ir 0
0 N2n−r

]
where W, Z are nonsingular, Jr a Jordan matrix corresponding to the finite
eigenvalues ofM−λL and N2n−r a nilpotent Jordan matrix corresponding
to the infinite eigenvalues ofM−λL, then there exists a nonsingular matrix
Ŵ such that

(24) ŴM̂Z =
[

J2
r 0
0 I2n−r

]
, Ŵ L̂Z =

[
Ir 0
0 N 2

2n−r

]
.

It is easy to verify that NME (21) has a symmetric nonsingular solution X if
and only if X satisfies

M
[

I
X

]
= L

[
I
X

]
S

for some S ∈ C
n×n, where

M≡
[

AT
d1 0

−Ad0 −I

]
, L ≡

[
0 I

Ad1 0

]
.

Note that M− λL is in the second standard symplectic form (SSF-2) [41].
For the convergence of the SDA, we have the following adaptation of [41,

Theorem 4.1]:
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Theorem 2.2. Let X be a symmetric invertible solution of (21) and let S =
X−1Ad1. Then the matrix sequences {Rk}, {Qk} and {Pk} generated by SDA2
satisfy

(a) Rk = (X − Pk)S2k;
(b) Qk − Pk = (X − Pk) + RT

k (X − Pk)−1Rk;
(c) Qk −X = (ST )2

k
(X − Pk)S2k;

provided that all the required inverses of Q k − Pk exist.

Note that Theorem 2.2 provides only the algebraic expressions for Rk, Qk−Pk

and Qk −X . Convergence to the unique symmetric stable solution Xs, which the
SDA seeks, is summarized in the following Corollary.

Corollary 2.1. When S is stable, Rk → 0 and Qk → X quadratically as
k →∞.

3. OTHER APPLICATIONS

There are many applications involving palindromic eigenvalue problems and we
shall describe selected ones in this Section. For other examples, please consult [42].

3.1. Surface acoustic wave filters

We shall present a summary of the treatment of surface acoustic wave (SAW)
filters in [58].

SAW filters are important in the telecommunication industry. These filters are
built on the physical property of piezoelectric materials, that electrical charges in-
duce mechanical deformations and vice versa. The main component (or cell) of an
SAW filter composes of a piezoelectric substrate and the input and output inter-
digital transducers (IDT). An input electrical signal from the input IDT produces
a surface acoustic wave, travelling through a gap and the output IDT picks up the
output electrical signal. Depending on the material used and geometry of the gap,
some frequencies are then stopped or filtered off. An associated palindromic QEP
characterizes this filtering process.

Assuming that large number of equally spaced cells are placed along a straight
line. Because of symmetry, a 2-dimensional model can be applied. We want to
solve the (undamped) 2-D harmonic wave equation with periodic coefficients in the
direction of the wave propagation x1, for u(x, t) in

divx(a(x)∇xu(x, t)) = utt(x, t) , a(x1 + p, x2) = a(x1, x2)

The positive function a describes the periodic properties of the material in the x1-
direction. With separation of variables, assuming the form of the solution u(x)eiωt,
we aim to solve
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−div(a∇u(x)) = ω2u(x)

Applying the Floquet-Bloch theory [58, Theorem 4.4.1], the equation is solved in a
domain containing only one cell in the domain Ωp = [0, p], with appropriate periodic
boundary conditions on the boundaries ΓL and ΓR on the left and the right. The
corresponding weak or variational formulation has the form, for some test function
v(x): ∫

Ωp

divx(a(x)∇u(x)) · v(x) dx−
∫

Ωp

ω2u(x)v(x) dx = 0

The usual process of integration-by-parts, incorporating the boundary conditions,
yields the formulation for u:

(25) a1(u, v)− ω2a0(u, v) = 〈w, v〉

where the bilinear forms a0 and a1 and the inner product w, v〉 are defined by

a0 ≡
∫

Ωp

u(x)v(x) dx , a1 ≡
∫

Ωp

a(x)∇u(x)∇Tv(x) dx , 〈w, v〉

≡
(∫

ΓL

w̃l(x)v(x) dx

)
·
(∫

ΓR

w̃r(x)v(x) dx

)
After applying the quasi-periodic condition

(26) ur = γul

a finite element discretization of the domain Ωp produces the system of equations

(27) (K − ω2M)u = w

where

K=

 Kii Kil Kir

Kli Kll Klr

Kri Krl Krr

 , M=

 Mii Mil Mir

Mli Mll Mlr

Mri Mrl Mrr

 , u=

 ui

ul

γul

 , w=

 0
wl

−γwl


Here the subscripts i, l and r referred the interior, the left and the right of the domain
Ωp. It is easy to see that mass and stiffness matrices M and K are respectively
constructed using the bilinear forms a0 and a1. Consequently, M , K , Mjj and
Kjj (j = i, l, r) are symmetric and positive definite. Furthermore, the lack of
direct interaction between the left and the right boundaries ΓL and ΓR implies that
Klr = Krl and Mlr = Mrl vanishes.

We are interested in the relationship between the frequency ω and the propa-
gation factor γ . For a given γ , (27) can be considered a rectangular constrained
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eigenvalue problem for (ω2, u), with w the result of the boundary conditions (see
also Section 3.2 below). For a given ω, denote

K̂(ω) ≡ K − ω2M =

 K̂ii K̂il K̂ir

K̂li K̂ll K̂lr

K̂ri K̂rl K̂rr

 =

[
K̂ii K̂ib

K̂bi K̂bb

]

with the subscript b referring to the boundary ΓL ∪ ΓR.
There are three possible approaches in [58]. To obtain a T-palindromic QEP,

Approach 1 (Schur complement method) eliminates ui from (27) to produce[
γ2S12 + γ(S11 + S22) + ST

12

]
ul = 0

where the symmetric matrix

S =

[
S11 S12

ST
12 S22

]
= K̂bb − K̂biK̂

−1
ii K̂ib

With a small amount of attenuation (with a small α), the propagation factor γ =
eα+iβ ≈ eiβ , we are interested in the eigenvalues λ = γ near the unit circle. Without
attenuation, we are looking for eigenvalues λ = γ = eiβ on the unit circle. Note that
the inversion of K̂ii can be expensive as there are usually more internal variables
in ui than other variables.

From the quasi-periodic condition (26), the multiplication of γ and γ−1 respec-
tively represent the propagation of signals to the right or the left. This, and similar
considerations in other applications, correspond to the reciprocity in (5) and (6).

In Approach 2, with γ = eiβ and recognizing that

u =

 ui

ul

γul

 = T ũ , T ≡

 Ii 0
0 Il

0 γIl

 , ũ ≡
[

ui

ul

]

and T Hw = 0, we obtain the generalized eigenvalue problem(
THKT − ω2THMT

)
ũ = 0

Here both THKT and T HMT are complex, Hermitian, positive definite and de-
pendent on γ ∈ C. For the general attenuated case, the right-hand-side w in (27)
is annihilated by the pre-multiplication of T H

1 = Ii ⊕
[
Il, γ−1Il

]
to produce a

non-Hermitian eigenvalue problem (TH
1 KT − ω2TH

1 MT )ũ = 0.
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Approach 3 (inner-node-matrix or INM method) starts from an equivalent form
of (27):

K̃(ω) =

 K̂ii K̂il + γK̂ir

K̂li K̂ll + γK̂lr

K̂ri K̂rl + γK̂rr

 ũ = w

Similar to Approach 2, pre-multiplcation by Ii ⊕ [γIl, Il] annihilates w and yields
the generalized eigenvalue problem(

γ

[
0 K̂ir

K̂T
il K̂ll + K̂rr

]
+

[
K̂ii K̂il

K̂T
ir 0

])
ũ = 0

as K̂lr = 0. The pencil is in the form A− λB where

(28) A =
[

M1 G
FT 0

]
, B =

[
0 −F
−GT −M2

]
with symmetric M1 and M2. The form of the pencil in (28) is new and can easily
be proved to possess a spectrum satisfying the reciprocity property (5).

For the damped problem, (27) is modified, by Rayleigh damping or otherwise,
to

(K − iωC + ω2M)u = w

with C being symmetric. Subsequent development will then produce a complex
symmetric K̂(ω).

For the purpose of filtering, the eigen-curves or dispersion diagram β(ω) are
required, making our problem more than the task of solving the eigenvalue problems.
For the continuation of the curve βk(ω), we have to calculate the derivatives ∂βk

∂ω
([1]), in a structure-preserving way.

3.2. Rectangular eigenvalue problems

Some eigenvalue problem for differential operators with various boundary condi-
tions, similar to the one in Section 3.1, can be discretized to an algebraic eigenvalue
problem with constraints. These in turn can be rewritten as rectangular eigenvalues
[10].

Projecting onto the orthogonal complement of w, (27) can be written as a rect-
angular eigenvalue problem (REVP) [5, 54]

(29) (A− λB)x = 0

with rectangular A and B. REVPs are closely related to QEPs. For example, a
necessary condition for (29) is v(BH+λAH)(A−λB)v = 0, involving a generalized
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palindromic QEP (H-odd-anti-palindromic, with Q(λ)H = −rev Q(−λ). Similarly,
another necessary condition (A − λB)T (λA − B)x = 0 is a T-palindromic QEP.
More interestingly, a necessary condition for the minimal perturbation approach in
the treatment of (29) [5] involved the H-palindromic QEP (BH+λA)(A−λB)v = 0.
Note that a infinitesimally small perturbation to A or B changes various invariant
subspaces and the nature or existence of the solutions of (29). Consequently, REVPs
can only be considered sensibly by looking for the nearest neighbouring problem
to (29) for which solutions exist. Another possibility is to look for (λ, x) so that
(29) is satisfied in the least squares or minimal residual sense [10]. Using Lagrange
multipliers, a necessary condition for the solution will be

xH
[
−α2AHB + αβ(AHA + BHB)− β

2
BHA

]
x = 0

involving a H-palindromic QEP. For other applications involving REVPs, see [5,
10, 54].

3.3. Crack modelling

We shall summarized how palindromic QEPs can be derived from the problem
of crack modelling, following the approach in [17] (see also [2, 4, 6, 37, 50] for
similar formulations).

We are interested in the solution of a linear-elasticity problem in non-smooth
domains, like cracks or sudden changes of the type of boundary conditions and
material properties. In the simplest case of a canonical point in R

3 the solution is
given as an asymptotical expansion:

u =
∑

i

ki∑
k=0

Kikr
λi lnk(r)fik(θ, ϕ)

where (r, θ, ϕ) are the spherical coordinates at the singular point. The singularity
exponents λi and the angular functions fik only depend on the local geometry and the
material properties, but not on the applied loads, unlike the corner intensity factors
Kik. To estimate or understand the behaviour of the solution u, we require the orders
and the corresponding modes λi and fi = (fi1, · · · , fi,ki)

T , or the eigenvalues and
eigenvectors of the associated nonlinear eigenvalue problem. For example, for crack
propagation, uθθ and uϕϕ has to be maximized.

The eigenvalue problem can be approximated, after the separation of spatial and
time variables, through a finite element discretization for (θ, ϕ) on the unit sphere
in R2. In the domain Ωε

O (typically a wedge or cone of the unit sphere), we are
seeking u which satisfies

L(u) ≡ ∆u +
1

1− 2ν
∇(∇ · u) = 0
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together with various boundary condition. In its variation or weak formulation, we
have to solve

B(u, v) ≡
∫

Ωε
O

σT (u)ε(v) dΩ = 0

for some stress and strain tensors ε and σ, respectively, and test function v. By
separation of variables, we choose u = rλU(θ, ϕ) and v = Φ(r)V (θ, ϕ) where
Φ(r) has a compact support in r. Approximated by finite elements, we have

(30) B(uh, vh) = 0

where

uh
i (r, θ, ϕ) = rλN (θ, ϕ)L−1

i di , vh
i (r, θ, ϕ) = Φ(r)N (θ, ϕ)L−1

i gi

with N (θ, ϕ) = (1, θ, ϕ)⊕ (1, θ, ϕ)⊕ (1, θ, ϕ) and

Li =

 N (θ1, ϕ1)
N (θ2, ϕ2)
N (θ3, ϕ3)


The corresponding strain vectors can be obtained by

(31)
ε(uh

i ) = rλ−1Tε [F0(θ, ϕ) + λF1(θ, ϕ)]L−1
i di , ε(vh

i )

= Tε

[
Φ(r)

r
F0(θ, ϕ) + Φ′(r)F1(θ, ϕ)

]
L−1

i gi

with the Boolean matrix

Tε =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0


and F0 =

[
F̂0, F̂0, F̂0

]
, F1 =

[
F̂1, F̂1, F̂1

]
and

F̂0 =

 0 cos ϕ cos θ − sinϕ
sin θ

0 sinϕ cos θ cosϕ
sin θ

0 − sin θ 0

, F̂1 =

 sin θ cosϕ θ sin θ cos ϕ ϕ sin θ cosϕ

sin θ sinϕ θ sin θ sinϕ ϕ sinθ sin ϕ
cos θ θ cos θ ϕ cos θ


From the relationship between stresses and strains given by σ(uh

i ) = Cε(uh
i ) with

C from (9), we obtain the stress vector

(32) σ(uh
i ) = rλ−1CTε [F0(θ, ϕ) + λF1(θ, ϕ)]L−1

i di



Palindromic Eigenvalue Problems 759

Substituting (31) and (32) into (30), we obtain

N∑
i=1

dT
i kigj = 0 , ∀gj, j = 1, · · · , M

which is equivalent to

(33)
N∑

i=1

kT
i di = 0

with

(34) ki = L−1
i BiL

−1
i , Z = T T

ε CTε

and

Bi =
∫

Ωi

rλ−1(F0 + λF1)T Z

[
Φ(r)

r
F0 + Φ′(r)F1

]
r2 sin θ dr dθ dϕ

=
∫

Ωi

rλ+1Φ′(r)(F0 + λF1)TZF1 sin θ dr dθ dϕ

+
∫

Ωi

rλΦ(r)(F0 + λF1)TZF0 sin θ dr dθ dϕ

The integration is carried out over Ωε = {(r, θ, ϕ) ∈ [0, ε)×∆i}. Integrating the
first integral by parts with respect to r, we have

I
∫ ε

0

rλ+1Φ′(r) dr = I
[
rλ+1Φ(r)

]ε
0
− I

∫ ε

0

(λ + 1)rλΦ(r) dr ,

I ≡
∫

∆i

(F0 + λF1)TZF1 sin θ dθ dϕ

Because Φ(r) has a local support in [0, ε), the integral-free term vanishes and we
obtain

Bi = −c

∫
∆i

[
(λ + 1)(F0 + λF1)TZF1 + (F0 + λF1)TZF0

]
sin θ dθ dϕ ,

c ≡
∫ ε

0
rλΦ(r) dr

Substituting into (34), we obtain

ki = L−1
i BiL

−1
i = c

[
(Ki −Di) + λ(DT

i −Di −Mi)− λ2Mi

]
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with
LT

i MiLi ≡
∫

∆i

FT
1 ZF1 sin θ dθ dϕ ,

LT
i DiLi ≡

∫
∆i

FT
0 ZF1 sin θ dθ dϕ ,

LT
i KiLi ≡

∫
∆i

FT
0 ZF0 sin θ dθ dϕ

Substituting back into (33) and ignoring the constant c, we obtain the QEP[
λ2M + λ(M −D + DT ) + (DT −K)

]
d = 0

where M ≡ ∑N
i=1 Mi, D ≡ ∑N

i=1 Di and K ≡ ∑N
i=1 Ki, with M and K are

symmetric.
Finally, with the shift µ = λ + 1

2 , we have the QEP

Q̃(λ)d = 0 , Q̃(λ) ≡ µ2R + µQ + P

with

R = −M = RT , Q = D −DT = −QT , P = K +
1
4
M − 1

2
(D + DT ) = PT

Note that Q̃(µ) is T-even [43] or Q̃T (−µ) = Q̃(µ), with µ ∈ σ(Q̃(λ)) implying
−µ ∈ σ(Q̃(λ)). Two T-palindromic QEPs are produced from the Cayley transforms

Q̂−(µ) ≡ (µ + 1)2Q̃
(

µ− 1
µ + 1

)
, Q̂+(µ) ≡ (1− µ)2Q̃

(
1 + µ

1− µ

)

3.4. Optimal control of discrete-time systems

Consider the discrete-time optimal control problem

min
{uj}

∞∑
j=0

[
xj

uj

]H [
Q S
SH R

][
xj

uj

]

with QH = Q, Mi ∈ F
n×n, S, B ∈ F

n×n and RH = R ∈ F
m×m, for some scalar

field F, subject to the discrete-time control

2l∑
i=0

Mixi+l = Bui

for given x0, x1, · · · , x2l−1. There are more than one way to produce some higher
order *-palindromic polynomials [7, 28] and we shall present an old approach in
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[42]. The discrete-time control system or difference equation associated with our
problem corresponds to the matrix polynomial

Ps(λ) = λ2l

 0 M0 0
M∗

2l 0 0
0 0 0

+λ2l−1

 0 M1 0
M∗

2l−1 Q 0
0 S∗ 0

+λ2l−2

 0 M2 0
M∗

2l−2 0 0
0 0 0



+ · · ·+ λ2

 0 M2l−2 0
M∗

2 0 0
0 0 0

+ λ

 0 M2l−1 0
M∗

1 0 0
−B 0 0

 +

 0 M2l −B

M∗
0 0 S

0 0 R


Multiply Ps(λ) on the left and the right, respectively, by diag(λl−1In, In, λlIm) and
diag(In, λ1−lIn, Im), we produce the *-palindromic polynomial

Pp(λ) = λ2l

 0 M0 0
M∗

2l 0 0
0 S∗ 0

+ λ2l−1

 0 M1 0
M∗

2l−1 0 0
0 0 0



+ · · ·+ λl+2

 0 Ml−2 0
M∗

l+2 0 0
0 0 0

+ λl+1

 0 Ml−1 0
M∗

l+1 0 0
−B 0 0


+λl

 0 Ml 0
M∗

l Q 0
0 0 R

 + λl−1

 0 Ml+1 −B

M∗
l−1 0 0
0 0 0


+λl−2

 0 Ml+2 0
M∗

l−2 0 0
0 0 0

+ · · ·+ λ

 0 M2l−1 0
M∗

1 0 0
0 0 0

+

 0 M2l 0
M∗

0 0 S

0 0 0


Since det Pp(λ) = λlm detPs(λ), the two polynomials share the same finite eigen-
values (counting multiplicities) except for the additional lm zero eigenvalues for
Pp(λ).

3.5. Computation of Crawford numbers

Consider the Crawford number [16]

γ(A, B) ≡ min
z∈Cn,‖z‖2=1

√
(zHAz)2 + (zHBz)2

for two Hermitian matrices A, B ∈ Cn×n. From [42], the problem of computing
the Crawford number is reduced to computing

max {λmin (M(z)) : |z| = 1}
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where M(z) ≡ (z−1C + zCH )/2 is Hermitian for z on D and C = A + iB. With

det (M(z)− ξI) = 0⇔ det(C − 2ξzI + z2CH) = 0

for ξ ∈ R and z ∈ D, a bisection search search can be devised. For any ξ ∈ R,
calculate all the unimodular eigenvalues zi of the H-palindromic quadratic pencil
C − 2ξziI + z2

i CH and the corresponding λmin (M(zi)). If λmin (M(zi)) = ξ

then γ(A, B) ≥ λ min (M(zi)); otherwise γ(A, B) < λ min (M(zi)).

4. OTHER NUMERICAL METHODS

We have presented the SDAs in Section 2.2 (which will be generalized in Sec-
tion 5) for the T-palindromic QEPs arisen from the train vibration problems. We
shall describe other selected methods in this Section. The linearization approach in
Section 4.1 is easy to apply but there is a lack of structure-preserving methods for the
resulting (palindromic) linearizations. For some palindromic QEPS, a generalized
Patel method is applicable and will be described in Section 4.2. For a particu-
lar palindromic eigenvalue problem, it may have to be quadratized [39, 40] before
SDAs or generalized Patel methods can be applied. Ultimately, methods have to be
selected or designed appropriate to the particular structures of the application at hand
and the amount of information sought from the associated palindromic eigenvalue
problem.

4.1. Linearization

It is well-known that QEPs can be solved using various linearizations, such as[
0 I
−A1 −A0

] [
x

λx

]
= λ

[
I 0
0 AT

1

][
x

λx

]
or [

−A1 0
0 I

][
x

λx

]
= λ

[
A0 AT

1

I 0

] [
x

λx

]
The standard QZ algorithms can then be applied. However, QZ cannot preserve the
symplectic structure, producing no significant figures in numerical experiments.

In [7, 23, 43, 44, 45, 42], a palindromic linearization of the form

(35) λZ + ZT

with

Z =

[
AT

1 A0 − A1

AT
1 AT

1

]
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was discovered for the palindromic QEP. This linearization preserves symplectic-
ity of our problem to some extent but the accuracy of the eigenpairs from the
non-structure-preserving QZ algorithm was still not good enough for application
purposes. Scaling [18] improves the accuracy slightly but is not effective for gen-
eral large ill-conditioned problems. Note that the pencil is 2n × 2n and the QZ
algorithm requires O((2n)3) flops. Relatively cheaper and numerically much more
accurate and better behaved, the doubling algorithm in [14] and Section 2.2 works
with n × n matrices and performs well for the T-palindromic QEP arisen from the
train vibration problem.

For structure-preserving algorithms, attempts have been made to transform Z
in (35) to an anti-triangular Schur form (Mackey/Mackey/Mehl/Mehrmann 2007,
Schröder 2007)

λZ + ZT −→ λ


×

× ×
× × ×

× × × ×

+


×

× ×
× × ×

× × × ×


Congruence transformations in terms of unitary matrices have been used. However,
the Jacobi-like method is inefficient, suffering from convergence problem. The QR-
like method has n4 complexity and is not competitive in efficiency, unless Z is given
in Hessenberg form. The efficient transformation of Z to Hessenberg form is still
an open problem. Also, a backward stable URV-based method has been proposed.
See [29] for the details on the equivalence of the URV-method and the generalized
Patel method for palindromic QEPs.

As for other palindromic linearizations other than (35), start from the companion
linearization

λL−M ≡ λ

[
I 0

A0 AT
1

]
−
[

0 I
−A1 0

]
One step of doubling produces

τL̂− M̂ = τ

[
AT

1 0
A0 AT

1

]
+
[

A1 A0

0 A1

]
with τ = λ2 and the same eigenvector (xT , λxT )T .

Scaling the first row-blocks by −A−1
1 and the second column-blocks by A−T

1 ,
then swap the roles of L̂ and M̂ , we have a SSF form

τ

[
I G
0 AT

]
−
[

A 0
−H I

]
with A ≡ −A−1

1 AT
1 , H ≡ −A0 = HT , G ≡ A−1

1 A0A
−T
1 = GT .
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The SDA can then be applied.
Similarly, another doubling step produces

(τZ + ZT )y = 0 , τ = λ4

with

Z =

[ −AT
1 A−1

1 A0 −AT
1 A−1

1 AT
1

AT
1 − A0A

−1
1 A0 −A0A

−1
1 AT

1

]

4.2. Generalized Patel algorithms

From [49, 29], the Patel algorithm [48] was generalized for the T-palindromic
QEP, resulting in a backward-stable algorithm.

First, the matrices

M =
[

A1 0
−A0 −I

]
, L =

[
0 I

AT
1 0

]
define a T -symplectic pencilM− λL, with

MJMT = LJLT , J =
[

0 I
−I 0

]
Next we define the S + S−1 transformation:

M̂ − λL̂ ≡ (MJLT + LJMT )− λLJLT

A matrix H ∈ C2n×2n is T-skew-Hamiltonian, if (HJ )T = −HJ . We have

M̂ − λL̂ =
[
A1 −AT

1 A0

−A0 A1 − AT
1

]
− λ

[
0 −A1

AT
1 0

]
=
([

A0 AT
1 −A1

A1 − AT
1 A0

]
− λ

[−A1 0
0 −AT

1

])
J

≡ (K− λN )J

Both K and N are T -skew-Hamiltonian. In other words, the upper-right and
lower-left blocks of both K or N are anti-symmetric and negative of each other,
and the transpose of the upper-left block equal the lower-right block. To maintain
the skew-Hermitian structure in both K and N , the transformations applied have

the form U =
[

U1 U2

−U2 U1

]
. Consequently, the diagonals of the upper-right and

lower-left blocks in the transformed pencil remain zero.
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See [29] for the details on how the generalized Patel method is generalized for
large and sparse palindromic QEPs, coupled with Arnaldi-type techniques in the
�SHIRA and G�SHIRA algorithms.

We shall explain how the generalized Patel method works using an n = 4 ex-
ample, in which the changing pattern in K and N during the algorithm is presented.

At the beginning of the algorithm, we have the T -skew-Hamiltonian pencil K
and N :

K N

× × × × 0 × × ×
× × × × × 0 × ×
× × × × × × 0 ×
× × × × × × × 0

0 × × × × × × ×
× 0 × × × × × ×
× × 0 × × × × ×
× × × 0 × × × ×





× × × × 0 0 0 0
× × × × 0 0 0 0
× × × × 0 0 0 0
× × × × 0 0 0 0

0 0 0 0 × × × ×
0 0 0 0 × × × ×
0 0 0 0 × × × ×
0 0 0 0 × × × ×


Annihilate the strictly lower triangular part of N (1 : 4, 1 : 4):

K ← QKZ N ← QNZ

× × × × 0 × × ×
× × × × × 0 × ×
× × × × × × 0 ×
× × × × × × × 0

0 × × × × × × ×
× 0 × × × × × ×
× × 0 × × × × ×
× × × 0 × × × ×





× × × × 0 0 0 0
0 × × × 0 0 0 0
0 0 × × 0 0 0 0
0 0 0 × 0 0 0 0

0 0 0 0 × 0 0 0
0 0 0 0 × × 0 0
0 0 0 0 × × × 0
0 0 0 0 × × × ×


Annihilate K(6, 1) using the rotations of columns (2,3) and rows (6,7):

K ← QKZ N ← QNZ

× × × × 0 × × ×
× × × × × 0 × ×
× × × × × × 0 ×
× × × × × × × 0

0 0 × × × × × ×
0 0 × × × × × ×
× × 0 × × × × ×
× × × 0 × × × ×





× × × × 0 0 0 0
0 × × × 0 0 0 0
0 ⊗ × × 0 0 0 0
0 0 0 × 0 0 0 0

0 0 0 0 × 0 0 0
0 0 0 0 × × ⊗ 0
0 0 0 0 × × × 0
0 0 0 0 × × × ×
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The zeroes at the (3,2) and (6,7) positions in N , indicated by ⊗ are filled in but
are annihilated again similar to the earlier steps.

Similarly, annihilateK(7, 1) using the rotations of columns (3,4) and rows (7,8):

K ← QKZ N ← QNZ

× × × × 0 × × ×
× × × × × 0 × ×
× × × × × × 0 ×
× × × × × × × 0

0 0 0 × × × × ×
0 0 × × × × × ×
0 × 0 × × × × ×
× × × 0 × × × ×





× × × × 0 0 0 0
0 × × × 0 0 0 0
0 0 × × 0 0 0 0
0 0 ⊗ × 0 0 0 0

0 0 0 0 × 0 0 0
0 0 0 0 × × 0 0
0 0 0 0 × × × ⊗
0 0 0 0 × × × ×


The zeroes at the (4,3) and (7,8) positions in N , indicated by ⊗ are filled in but
are annihilated again similar to the earlier steps.

Similarly, annihilate K(8, 1) using the rotations of columns and rows (4,8):

K ← QKZ N ← QNZ

× × × × 0 × × ×
× × × × × 0 × ×
× × × × × × 0 ×
× × × × × × × 0

0 0 0 0 × × × ×
0 0 × × × × × ×
0 × 0 × × × × ×
0 × × 0 × × × ×





× × × × 0 0 0 ×
0 × × × 0 0 0 ×
0 0 × × 0 0 0 ×
0 0 0 × × × × 0

0 0 0 0 × 0 0 0
0 0 0 0 × × 0 0
0 0 0 0 × × × 0
0 0 0 0 × × × ×


Notice that the upper-right block starts to fill in but it will be of no consequence.

Then annihilate K(4, 1) using the rotations of rows (3,4) and columns (7,8):

K ← QKZ N ← QNZ

× × × × 0 × × ×
× × × × × 0 × ×
× × × × × × 0 ×
0 × × × × × × 0

0 0 0 0 × × 0 0
0 0 × × × × × ×
0 × 0 × × × × ×
0 × × 0 × × × ×





× × × × 0 × × ×
0 × × × × 0 × ×
0 0 × × × × 0 ×
0 0 ⊗ × × × × 0

0 0 0 0 × 0 0 0
0 0 0 0 × × 0 0
0 0 0 0 × × × ⊗
0 0 0 0 × × × ×
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Then annihilate K(3, 1) using the rotations of rows (2,3) and columns (5,6):

K ← QKZ N ← QNZ

× × × × 0 × × ×
× × × × × 0 × ×
0 × × × × × 0 ×
0 × × × × × × 0

0 0 0 0 × × 0 0
0 0 × × × × × ×
0 × 0 × × × × ×
0 × × 0 × × × ×





× × × × 0 × × ×
0 × × × × 0 × ×
0 ⊗ × × × × 0 ×
0 0 0 × × × × 0

0 0 0 0 × 0 0 0
0 0 0 0 × × ⊗ 0
0 0 0 0 × × × 0
0 0 0 0 × × × ×


Finally, repeat the above process for the smaller blocks, ignoring their first rows

and columns, we obtain the final form:

K ← QKZ N ← QNZ

× × × × 0 × × ×
× × × × × 0 × ×
0 × × × × × 0 ×
0 0 × × × × × 0

0 0 0 0 × × 0 0
0 0 0 0 × × × 0
0 0 0 0 × × × ×
0 0 0 0 × × × ×





× × × × 0 × × ×
0 × × × × 0 × ×
0 0 × × × × 0 ×
0 0 0 × × × × 0

0 0 0 0 × 0 0 0
0 0 0 0 × × 0 0
0 0 0 0 × × × 0
0 0 0 0 × × × ×


The palindromic QEP is thus square-rooted, with the pencils on the upper-left and
lower-right corners in Hessenberg-triangular form for reciprocal eigenvalues. Note
that the Patel method is numerical backward stable.

5. g-PALINDROMIC QEPs

In this section, we first present the g-palindromic QEP, a unified framework
including several palindromic QEPs. Results are quoted without proofs from [13].

Definition 5.1. A function g : Cn×n → Cn×n is called a (∗, ε)-homomorphism
if g(α1Φ1 + α2Φ2) = α∗

1g(Φ1) + α∗
2g(Φ2) and g(Φ1Φ2) = εg(Φ2)g(Φ1), for

all Φ1, Φ2 ∈ Cn×n and α1, α2 ∈ C. Furthermore, g preserves the singularity,
i.e., det(Φ) = 0 ⇔ det(g(Φ)) = 0. Here “∗” denotes “H” (Hermition/conjugate
transpose) or “T” (transpose) and ε = ±1.
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Proposition 5.1. Let g be a (∗, ε)-homomorphism. Then it holds (i) g(0) = 0
(ii) g(I) = εI (iii) g(Φ−1) = g(Φ)−1.

Definition 5.2. The QEP in (3) is called a g-palindromic QEP if there is a
(∗, ε)-homomorphism g such that g(B) = A, g(C) = C and g(A) = B. Moreover,
C is called g-symmetric and A and B are said to be g-related, denoted by A

g∼ B.

Under the above definitions, we have the following property of symmetry in the
spectrum for the above g-palindromic quadratic pencil Q(λ).

Theorem 5.1. Let Q(λ) be a g-palindromic quadratic pencil. We have λ ∈
σ(Q(λ)) if and only if 1/λ∗ ∈ σ(Q(λ)). Here we follow the convention that 0 and
∞ are reciprocal to each other.

A (g-palindromic) quadratic pencil can be rewritten as

λ2B + λC + A = (λB + X)X−1(λX + A) = λ2B + λ(X + BX−1A) + A.

Then we introduce a g-nonlinear matrix equation (g-NME)

X + BX−1A = C, A
g∼ B, g(C) = C.(36)

If we can find a solution X for (36) structurally, then the g-palindromic QEP is
factorized. We then need only to solve the eigenvalue problem for the factor λB+X ,
with the reciprocal eigenvalues for λX + A obtained free.

For a given g-NME (36), we define

M =
[

A 0
C −I

]
, L =

[ −D I
B 0

]
.(37)

It is easy to see that the pencilM−λL is a linearization of g-palindromic QEP (3)
with D = 0. Based on the SDA algorithm proposed in [41], one can also develop
a g-SDA algorithm for solving the g-NME.

For M− λL given in (37), we compute

M∗ =
[

A(C −D)−1 0
−B(C −D)−1 I

]
, L∗ =

[
I −A(C −D)−1

0 B(C −D)−1

]
(38)

which satisfiesM∗L = L∗M. Direct calculations give rise to

M̂ ≡M∗M =

[
Â 0
Ĉ −I

]
, L̂ ≡ L∗L =

[
−D̂ I

B̂ 0

]
,(39)

where

Â = A(C −D)−1A, B̂ = B(C −D)−1B,(40a)

Ĉ = C − B(C −D)−1A, D̂ = D + A(C −D)−1B.(40b)
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Theorem 5.2. (i) The pencil M̂ − λL̂ has the doubling property, i.e., if

M
[

U

V

]
= L

[
U

V

]
S,

where U, V ∈ C
n×m and S ∈ C

m×m, then

M̂
[

U

V

]
= L̂

[
U

V

]
S2.

(ii) The quadratic pencil λ2B̂ + λĈ + Â corresponding to M̂ − λL̂ is still a
g-palindromic quadratic pencil.

5.1. Convergence of g-SDA

First consider the special case that B = AT ∈ R
n×n and C is real symmetric

positive definite in the g-NME (36). If (M,L) in (37) has no unimodular eigen-
values and the g-NME (36) has a symmetric positive solution, then the convergence
of the g-SDA is quadratic [41]. If (M,L) has unimodular eigenvalues with even
partial multiplicities and the g-NME (36) has a symmetric positive solution, then
the convergence is globally linear with rate 1/2 [9].

In this section, we shall discuss the convergence of the g-SDA for the general
case of the g-NME. The quadratic convergence of the g-SDA algorithm, when
no eigenvalues of the matrix pair (M,L) in (37) lies on the unit circle, follows
from Theorem 5.2. We shall concentrate on the more general case, assuming the
following:

(H) The partial multiplicities of (M,L) corresponding to each unimodular eigen-
value are all even with the same sizes.

Definition 5.3. A solution X for the g-NME (36) is called to have property (P),
if (i) ρ(X−1A) ≤ 1, (ii) if ρ(X−1A) = 1, then the partial multiplicities of each
unimodular eigenvalue of X−1A is half of that of the corresponding unimodular
eigenvalue of the associated pair (M,L) in (37).

If Xd is a solution for the dual g-NME satisfying

Xd + AX−1
d B = C.(41)

Then we have [
0 I

B 0

][
I

Y

]
=

[
A 0
C −I

] [
I

Y

]
Rd,(42)
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where Y ≡ C−Xd. That is span
{[

I, Y T
]T} forms a deflating subspace of (L,M)

corresponding to Rd ≡ X−1
d A.

The convergence of the g-SDA algorithm, iterating as indicated by (40a) and
(40b) with (A0, B0, C0, D0) = (A, B, C, 0), is summarized in the following theo-
rem.

Theorem 5.3. Assume that the g-NME (36) and the dual g-NME (41) have
the solutions X and Y with properties (P), respectively. Suppose the sequence
{Ak, Bk, Ck, Dk} generated by g-SDA is well-defined. Then it holds

(i) ‖Ak‖ = O(ρ(Js)2
k
) + O(2−k)→ 0, as k →∞,

(ii) ‖Bk‖ = O(ρ(Js)2
k
) + O(2−k)→ 0, as k →∞,

(iii) ‖Ck −X‖ = O(ρ(Js)2
k+1

) + O(2−k)→ 0, as k→∞,

(iv) ‖Dk − Y ‖ = O(ρ(Js)2
k+1

) + O(2−k)→ 0, as k →∞.

Furthermore, X and Y are g-symmetric, i.e., g(X) = X and g(Y ) = Y .

We have shown that the convergence of the g-SDA is quadratic when no eigen-
values of the matrix pair (M,L) in (37) lies on the unit circle.

Remark 5.1. Comparing the results in [9] with Theorem 5.3, we have the
following comments.

(i) For the existence of the unique weakly stable deflating subspace of (M,L)
in (37), we have assumed that (a) the partial multiplicities of (M,L) corre-
sponding to each unimodular eigenvalues are all even, and (b) if {λ1, λ2} are
unimodular eigenvalues of (M,L) with λ1 = λ2, then the partial multiplicity
of λ1 must be equal to that of λ2. In [9], only assumption (a) was required.

(ii) If the NME in [9] has a symmetric positive solution, then the matrices se-
quence produced by the SDA algorithm are well-defined and the convergence
is globally linear with rate 1/2. To guarantee the linear convergence of the
g-SDA algorithm in Theorem 5.3, we need to add the assumptions that the
solution of the dual g-NME exists and the iterates from the g-SDA algorithm
are well-defined.

5.2. Application to g-palindromic QEP

5.2.1. T- and H-(anti-)palindromic QEPs
If the (∗, ε)-homomorphism is defined by g(Φ) = Φ∗. Then the g-palindromic

QEP (3) becomes
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(i) T-palindromic QEP (∗ = “T”):

(λ2AT + λC + A)x = 0 with CT = C.(43)

(ii) H-palindromic QEP (∗ = “H”):

(λ2AH + λC + A)x = 0 with CH = C.(44)

If the (∗, ε)-homomorphism is defined by g(Φ) = −Φ∗. Then the g-palindromic
QEP becomes

(iii) T-anti-palindromic QEP (∗ = “T”):

(λ2AT + λC −A)x = 0 with C = −CT .(45)

(iv) H-anti-palindromic QEP (∗ = “H”):

(λ2AH + λC −A)x = 0 with C = −CH .(46)

For cases (i) and (ii), the g-SDA can be simplified to

A0 = A, C0 = C = C∗, D0 = 0,

Ak+1 = Ak(Ck −Dk)−1Ak,

Ck+1 = Ck − A∗
k(Ck −Dk)−1Ak,

Dk+1 = Dk + Ak(Ck −Dk)−1A∗
k.

For cases (iii) and (iv), the g-SDA can be simplified to

A0 = A, C0 = C = −C∗, D0 = 0,

Ak+1 = Ak(Ck −Dk)−1Ak,

Ck+1 = Ck + A∗
k(Ck −Dk)−1Ak,

Dk+1 = Dk −Ak(Ck −Dk)−1A∗
k.

5.2.2. *-palindromic 2 QEPs
We now consider the ∗-palindromic 2 QEP

(λ2A∗ + λC −A)x = 0 with C∗ = C,(47)

and the ∗-anti-palindromic 2 QEP

(λ2A∗ + λC + A)x = 0 with C∗ = −C.(48)
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The quadratic pencil in (47) can be factorized by

λA∗ + λC −A = (λA∗ + X)X−1(λX − A)

where X satisfies

X −A∗X−1A = C, C∗ = C.(49)

The quadratic pencil in (48) can be factorized by

λA∗ + λC + A = (λA∗ + X)X−1(λX + A)

where X satisfies

X + A∗X−1A = C, C∗ = −C.(50)

If we perform one step of g-SDA on (49), then X in (49) satisfies

X + Â∗X−1Â = Ĉ, Ĉ∗ = Ĉ,(51)

where

Â = AC−1A, Ĉ = C −A∗C−1A, D̂ = AC−1A∗.(52)

The g-NME in (51) corresponds to the ∗-palindromic QEP

(λ2Â∗ + λĈ + Â)x = 0, Ĉ∗ = Ĉ.(53)

If we perform one step of g-SDA on (50), then X in (50) satisfies

X − Â∗X−1Â = Ĉ, Ĉ∗ = −Ĉ,(54)

where

Â = AC−1A, Ĉ = C + A∗C−1A, D̂ = −AC−1A∗.(55)

The g-NME in (54) corresponds to the ∗-anti-palindromic QEP

(λ2Â∗ + λĈ − Â)x = 0, Ĉ∗ = −Ĉ.(56)

The g-SDA can then be applied to (53) and (56) as in Section 4.1.

5.2.3. ∗-even and odd QEPs
We now consider the ∗-even and ∗-odd QEPs, respectively:

Q(λ)x ≡ (λ2M + λG + K)x = 0, M∗ = M, K∗ = K, G∗ = −G,(57)



Palindromic Eigenvalue Problems 773

and

Q(λ)x ≡ (λ2M + λG + K)x = 0, M∗ = −M, K∗ = −K, G∗ = G.(58)

It is well-known that Q(λ) has the factorization

Q(λ) = (λM + MS + G)(λI − S)(59)

if and only if S is a solution of the quadratic matrix equation

MS2 + GS + K = 0.(60)

If λ ∈ σ(Q(λ)), then −λ∗ ∈ σ(Q(λ)). If xi and yi are, respectively, the right and
left eigenvectors corresponding to λi of S, i.e.,

Sxi = λixi, y∗i S = λiy
∗
i ,(61)

then xi and (λiM + MS + G)−∗yi are eigenvectors corresponding to λi and −λ∗
i ,

respectively, of the QEP (57) or (58).
It seems difficult to find the solution S of (60) directly whose eigenvalues are

on the right half-plane. Instead, the Cayley transformation S = (I + Y )(I − Y )−1

is used. Equation (60) then becomes

εA∗Y 2 + CY + A = 0,(62)

where A = M + K + G, C = 2(M − K), ε = 1 for (57) and ε = −1 for (58).
With Y = −X−1A in (62), we have the NME:

X + εA∗X−1A = C,(63)

to which the g-SDA or Algorithm 2.1 can be applied.

5.3. Other palindromic QEPs

Interestingly, the simplest palindromic QEP (λ2A + λB + A)x = 0, a g-
palindromic QEP with g(Φ) = Φ and property (5), has not been considered by
anyone after being defined in [43]. Of course, the problem can be solved by g-
SDA as indicated earlier. Similar to the palindromic linearization approach in [44]
(see also Section 4.1 earlier), the QEP can be solved via the structure-preserving
linearization

(λZ + PZP )v = 0 , Z =
[

A A

B − A A

]
, P =

[
0 I

I 0

]
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with PZP =
[

A B − A

A A

]
. More generally, a similar and even more general

P-conjugate P-palindromic (PCP) QEP [19]:

(λ2A + λB + ΠAΠ)x = 0 , ΠBΠ = B , Π2 = Π

has property (5) and a similar structure-preserving linearization

(λZ + PZP )v = 0 , Z =
[

A A
B − ΠAΠ A

]
, P =

[
0 Π
Π 0

]
With the notation Ã ≡ ΠAΠ, B̃ ≡ ΠBΠ and Z̃ ≡ PZP , we have

λZ + Z̃ = λ

[
A A

B − Ã A

]
+
[

Ã B̃ − A

Ã Ã

]
With Π = I , the PCP-QEP degenerates back into the palindromic QEP. For more
results on the structure-preserving linearizations and an associated Schur-like de-
composition constructed using PQZ [12], see [19]. Also, see [33] for an application
of PCP-QEPs in delay-differential equations.

It is not clear how the structure-preserving linearization or the corresponding
PCP-QEP can be solved in a structure-preserving manner. Some preliminary results
for a generalized SDA for the PCP-QEP can be found in [38].

For g-palindromic QEPs, several numerical examples can be found in [13],
showing that the g-SDA algorithm converges to the desired solutions efficiently and
reliably.

6. FUTURE WORK

There is no lack of possibilities in terms of future work involving palindromic
eigenvalue problems and we shall speculate on a few in this Section.

For the train vibration problems, more accurate 3-D finite element models can
be constructed. The resulting large and sparse T-palindromic QEP has to be solved
using SDAs and the generalized Patel method, possibly coupled with an adaptation
of some Arnaldi technique. Design parameters for the train and rail system can then
be optimized and the associated model reduction problem can be attempted. Notice
that the eigenvalue problem has to be solved for many values of the speed parameter
ω and the associated refinement and updating problems will be of interest.

For the SAW filter problem, finite element models have to be constructed and
refined, and the associated T-palindromic QEPs attempted for various frequencies
ω so that the dispersion diagram β(ω) can be sketched. For practical purposes, we
are interested in the “ill-conditioned” eigenvalues near the unit circle, which will
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present difficulties and challenges for any numerical methods. Similar challenges
also exist for the crack propagation and prediction problem.

For discrete-time optimal control problems and the associated higher-order palin-
dromic eigenvalue problems, different applications present different structures and
properties. Much work has to be done before an appropriate approach can be found
for their solution, although the quadratization approach [39] is a promising possi-
bility.

For the simplest first order palindromic eigenvalue problem associated with
λZ +Z∗, it is not clear how it can be solved in a structure-preserving manner. One
possibility in terms of the *-Riccati equation is discussed in [8].

Finally, we are still looking for structured numerical methods for the class of
PCP-QEPs [38] from Section 5.3.
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