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SOME CONSEQUENCES OF A THEOREM ON FANS

David Cariolaro

Abstract. Using a fundamental identity concerning fans called “Fan Theorem”
we give new proofs of classical edge colouring theorems. We also derive from
the same identity a formula for the chromatic index of Class 2 multigraphs
(i.e. multigraphs G such that χ′(G) > ∆(G)) and a new generalization of
Vizing’s Adjacency Lemma to multigraphs, which is more general than the
one given by the author in [D. Cariolaro, On fans in multigraphs, J. Graph
Theory, 51 (4), 2006, 301–318].

1. INTRODUCTION

All graphs considered in this paper are finite and without loops but may have
multiple edges. The term “multigraph” will be used as a synonym of “graph”. We
shall use the term “simple graph” to denote graphs with no multiple edges. Let G
be a graph. We denote the degree of a vertex v in G, i.e. the number of edges
incident with v, by dG(v). The maximum degree will be denoted by ∆(G). If the
edge e joins the vertices u and v, we denote this by e ∈ uv (or e = uv, if G is a
simple graph). The number of edges joining two given distinct vertices u and v in
G is called the multiplicity of the edge uv and denoted by µG(uv). We denote the
maximum multiplicity of G (i.e. the maximum of the multiplicities of the edges of
G) by µ(G). Notation and terminology, not explicity introduced here, will follow
Bollobás [2]. For an introduction to edge colouring we refer the reader to Fiorini
and Wilson [4].

An edge colouring of a graph G is a map ϕ : E(G) → C, where C is a set
called the colour set, and ϕ has the property that ϕ(e1) �= ϕ(e2) for any pair e1, e2
of adjacent edges. If C is chosen to have the minimum cardinality, then ϕ is called
an optimal colouring and |C| is called the chromatic index of G, denoted by χ ′(G).
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It is immediate to see that χ′(G) ≥ ∆(G), where ∆(G) is the maximum degree
of G, as all the edges incident with a vertex of maximum degree must receive a
different colour. We call G Class 1 if χ′(G) = ∆(G) and Class 2 otherwise.
To establish reasonable upper bounds on the chromatic index seems to be far less
trivial than to establish lower bounds. The two main theorems in this respect are
the inequalities χ′(G) ≤ �3

2∆(G)� for any graph G (Shannon’s Theorem [8]) and
χ′(G) ≤ ∆(G) + µ(G) for any graph G (Vizing’s Theorem [9]), which are both
cornerstones in the theory of edge colouring.

Notice that Vizing’s theorem gives the sharp bound χ′(G) ≤ ∆(G) + 1 in the
case that G is a simple graph. Notwithstanding this excellent approximation, to
decide whether a simple graph G is Class 1 is NP-complete (see [6]). This fact
seems to suggest that, if we are given the information that the graph G is Class
2, then it would be somehow possible to determine χ′(G) exactly (this fact holds
trivially for simple graphs in view of Vizing’s Theorem). This is exactly what we
will achieve here by deriving an exact expression for the chromatic index of a Class 2
multigraph (unfortunately it will be seen that the computation of some of the objects
appearing in the formula itself is NP-hard). Nonetheless the formula is useful, not
only in itself, but also to derive non-trivial upper bounds on the chromatic index of
a multigraph. Our result lends credit to (but unfortunately, does not seem to imply
in any obvious way) the following well known conjecture.

Goldberg-Seymour Conjecture. Let G be a Class 2 multigraph. Then

χ′(G) = max{∆(G) + 1,max�|E(H)|/�|V (H)|/2�	},
where the maximum is extended to all submultigraphsH of G of order at least two.

We begin with a simultaneous proof of Vizing’s theorem (for simple graphs) [9]
and Vizing’s Adjacency Lemma [10, 11]. We then obtain, with a method slightly
different than the one we used in [3], a short proof of Ore’s Theorem [7] (which
implies the multigraph version of Vizing’s Theorem [9]). We then prove the exact
formula for the chromatic index mentioned above and, using this, we give a proof of
the Andersen-Goldberg upper bound on the chromatic index of a multigraph [1, 5],
which implies Shannon’s Theorem [8]. We conclude with a new generalization of
Vizing’s Adjacency Lemma to multigraphs, which extends the one given by the
author in [3], and hence is (to the best of our knowledge) more general than all the
other existing ones.

All the above results are deduced as corollaries of the same identity. We believe
that this identity is so fundamental in edge colouring that it deserves to have a
name, and we have christened it in [3] “Fan Theorem” (it appears to have been
used implicitly by other authors, e.g. Andersen [1], Goldberg [5], but has never
been stated as a theorem on its own). For details concerning the definitions and
proof of the Fan Theorem, we refer the reader to [3].
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2. PRELIMINARY RESULTS AND DEFINITIONS

An edge e of a multigraph G is called critical if χ′(G − e) < χ′(G). The
multigraph G itself is called critical if it is Class 2, has no isolated vertices, and
all its edges are critical. It is well known (and easy to prove) that every Class 2
multigraph contains a subgraph with the same chromatic index and such that, not
just one, but all the edges are critical. An e-tense colouring φ of G is a partial edge
colouring of G which assigns no colour to e and whose restriction to E(G− e) is
an optimal colouring of G−e. The colour set of φ is defined to be the colour set of
its restriction to G− e. Given an e-tense colouring φ of G with colour set C and a
vertex w ∈ V (G), we say that a colour α ∈ C is missing at w (or that w is missing
the colour α) if there is no edge, having w as an endpoint, which is assigned the
colour α by φ. The set of colours missing at w is denoted by Cw and its cardinality
is called the colour-deficiency of w and denoted by cdef(w), i.e.

cdef(w) = |Cw|.
It is easily seen that

cdef(w) = |C| − dG−e(w)

for any w ∈ V (G), and, if e is critical,

(1) cdef(w) =

{
χ′(G)− dG(w) if w = u, v

χ′(G)− 1 − dG(w) if w �= u, v

for any w ∈ V (G).
Let u ∈ V (G). A fan at u with respect to φ is a sequence of edges of the form

F = [e0, e1, e2, . . . , ek−1, ek],

where e0 = e, ei ∈ uvi, and where the vertex vi is missing the colour of the edge
ei+1, for every i = 0, 1, . . . , k−1. An edge f is called a fan edge at u if it appears
in at least one fan at u. A vertex w is called a fan vertex at u if it is joined to u by
at least one fan edge. The set of fan vertices is denoted by V (F ). A colour α ∈ C
is called a fan colour if it is the colour of a fan edge. The set of fan colours is
denoted by CF . If w is a fan vertex at u, we denote by µ∗(uw) the number of fan
edges joining u and w, and call µ∗(uw) the fan multiplicity of the edge uw. The
main contribution of [3] was the introduction of a new concept in edge colouring,
the Fan Digraph, which we now define.

Let G be a Class 2 multigraph, let e ∈ uv be a critical edge and let φ be an
e-tense colouring of G. The e-Fan Digraph at u with respect to φ is the directed
multigraph F = (V (F ), A(F ), ψF), where
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1. V (F ) = {w | w is a fan vertex at u};
2. A(F ) = CF = {α | α is a fan colour at u};
3. ψF : A(F ) → V (F )× V (F )

α 
−→ (wα, zα),

where wα is the unique fan vertex at u missing colour α and zα is the unique fan
vertex at u joined to u by an edge coloured α.

The Fan Digraph is rooted at the vertex v, endpoint of the uncoloured edge e.
Notice that the fact that wα and zα exist and are unique is not trivial at all and
follows from an important lemma due to Andersen [1] and, independently, Goldberg
[5] (see [3, Lemma 2]).

The definition of the Fan Digraph may at first look cumbersome. However, if
we postulate the existence of the Fan Digraph, it is extremely easy to define and
handle fans based at a given vertex. Indeed it was shown in [3] that we can simply
define fans based at a vertex u as directed trails in the corresponding Fan Digraph
F having as initial vertex the root v of F . Moreover, every property of the ordinary
fans is reflected in the property of these directed trails and it is much more easily
understood in the framework of the Fan Digraph. Technically speaking, for the
purposes of this paper we shall only use the following double identity concerning
the Fan Digraph (proved in [3]).

Theorem 1. (The Fan Theorem). Let φ be a tense colouring of a Class 2 graph
having a critical edge e ∈ uv. Let V (F ) be the set of fan vertices at u. Then∑

w∈V (F)

cdef(w) =
∑

w∈V (F)

µ∗G(uw) − 1 = |CF |.

If G is simple, the fan multiplicities µ∗
G(uw) which appear in Theorem 1 are

all equal to 1 and hence we have the following, from which it is easily seen that F
is a tree in this case.

Corollary 1. (Fan Theorem, simple graphs). Under the hypotheses of Theorem
1, let G be a simple graph. Then∑

w∈V (F)

cdef(w) = |V (F )| − 1 = |CF |.

We shall need also the following lemma, whose easy proof can be found in [5].

Lemma 1. Let n1 ≥ n2 ≥ . . . ≥ nk be positive integers, with k ≥ 2. Then
the following inequality holds:

(2) �n1 + n2 + . . .+ nk

k
+
k − 2
k

� ≤ �n1 + n2

2
�.
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3. SOME COROLLARIES OF THE FAN THEOREM

Our first objective is to give a short and simultaneous proof of Vizing’s Theorem
and Vizing’s Adjacency Lemma for simple graphs (from which it will be clear that
these are related, and yet independent, results).

Unified proof of Vizing’s Theorem (simple graphs) and Vizing’s Adjacency
Lemma. Let G be a simple graph. Without loss of generality we may assume that
G is Class 2 (i.e. χ′(G) > ∆(G)). Furthermore, by possibly removing edges from
G successively without decreasing the chromatic index, we may assume that G is
critical. Let φ be a tense colouring with respect to an edge e = uv. It follows from
Corollary 1 that

(3)
∑

w∈V (F)\{v}
cdef(w) = |V (F )| − 1 − cdef(v).

As a consequence of (3) and the fact that cdef(w) is a nonnegative integer for any
w, there are at least cdef(v) vertices w in V (F)\{v} such that cdef(w) = 0.
(Notice that, by (1) and the assumption on G, cdef(v) = χ′(G)−dG(v) ≥ ∆(G)+
1 − dG(v)). For any such vertex w we have

(4)
0 = cdef(w) = χ′(G)− dG(w)− 1

≥ (∆(G) + 1) − dG(w) − 1 = ∆(G)− dG(w) ≥ 0.

Hence all the inequality signs can be replaced by equality signs in (4) and we
deduce that

• χ′(G) = ∆(G) + 1 , i.e. Vizing’s Theorem;

• dG(w) = ∆(G), i.e. Vizing’s Adjacency Lemma.

In the multigraph case there are some additional complications, but arguing as
above we can do as follows. First we introduce the following notation. For any fan
vertex w at u, we call fan degree the quantity

d∗G(w) = dG(w) + µ∗G(uw).

Let ∆∗(F ) be defined by

∆∗(F ) = max
w∈V (F)

{d∗G(w)}.
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Assume χ′(G) ≥ ∆∗(F ). Write, for each fan vertex w,

(5) s(w) = cdef(w)− µ∗G(uw) + 1.

With this notation we can express the Fan Theorem (Theorem 1) as∑
w∈V (F)

s(w) = |V (F )| − 1,

or

(6)
∑

w∈V (F)\{v}
s(w) = |V (F )| − 1 − s(v).

Notice that, by (5) and (1), we have

(7) s(w) =




χ′(G)− d∗G(w) if w �= v

χ′(G)− d∗G(v) + 1 if w = v.

By our initial assumption, s(w) ≥ 0 for all w ∈ V (F ) and s(v) > 0. Using (6)
and the fact that s(w) is a nonnegative integer for each w ∈ V (F ), there exist at
least s(v) = χ′(G) − d∗G(v) + 1 fan vertices w �= v such that s(w) = 0. For each
of these we have

(8) 0 = s(w) = χ′(G)− d∗G(w) ≥ ∆∗(F )− d∗G(w) ≥ 0,

where we have used the initial assumption and the definition of ∆∗(F ). But then
all the inequalities in (8) are equalities and in particular we have

1. χ′(G) = ∆∗(F );
2. d∗G(w) = ∆∗(F ).

Notice that (1.) above is a slightly stronger version than Ore’s Theorem [7]
(and in particular is stronger than Vizing’s Theorem) and (2.) is essentially the
multigraph version of Vizing’s Adjacency Lemma given by Andersen [1].

In the above argument the initial hypothesis that χ′(G) ≥ ∆∗(F ) is quite strong.
Without using this assumption we can nonetheless obtain a formula for χ′(G) as
follows. Using (1) we write

(9)
∑

w∈V (F)

cdef(w) = χ′(G)|V (F )|+ 1 −
∑

w∈V (F)

(dG(w) + 1).

Using (9) and Theorem 1 we have

χ′(G)|V (F )|+ 1−
∑

w∈V (F)

(dG(w) + 1) =
∑

w∈V (F)

µ∗G(uw)− 1.
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Hence

(10) χ′(G)|V (F )| =
∑

w∈V (F)

(dG(w) + 1 + µ∗G(uw))− 2.

Using the notation d∗G(w) = dG(w) + µ∗G(uw) introduced earlier and rearranging
the terms at the right-hand side of (10), we can rewrite (10) as

(11) χ′(G)|V (F )| =
∑

w∈V (F)

d∗G(w) + |V (F )| − 2.

The above identity yields the following exact formula for the chromatic index
of G:

(12) χ′(G) =
1

|V (F )|
∑

w∈V (F)

d∗G(w) +
|V (F )| − 2
|V (F )| .

The expression 1
|V (F)|

∑
w∈V (F) d

∗
G(w) represents the “average fan degree” and,

accordingly, we denote it by d∗(F ). With this notation we can express (12) as

(13) χ′(G) = d∗(F ) +
|V (F )| − 2
|V (F )| .

We have thus proved the following.

Theorem 2. Let G be a Class 2 graph. Let φ be an e-tense colouring of G,
where e ∈ uv is a critical edge of G. Let V (F ) be the set of fan vertices at u. Let
d∗(F ) = 1

|V (F)|
∑

w∈V (F)(dG(w) + µ∗G(uw)) be the average fan degree. Then

(14) χ′(G) = d∗(F ) +
|V (F )| − 2
|V (F )| .

Corollary 2. With the notation and assumptions of Theorem 2 we have

(15) χ′(G) = �d∗(F )	;

(16)
∑

w∈V (F)

d∗G(w) ≡ 2 (mod |V (F )|);

(17) |V (F )| = 2
d∗(F ) + 1 − �d∗(F )	.
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Proof. Since |V (F )| ≥ 2 (see [3, Lemma 4]), the quantity |V (F)|−2
|V (F)| satisfies

(18) 0 ≤ |V (F )| − 2
|V (F )| < 1

and, since χ′(G) is an integer, we have from (14) and (18) that

χ′(G) = �d∗(F )	,

which proves (15). From (14), or equivalently, from (11) we deduce (16). Finally
the expression (17) can be obtained using (14) and (15).

Another important corollary of Theorem 2 is the following theorem of Andersen
[1] and Goldberg [5] .

Corollary 3. Let w1 maximize d∗G(w) over V (F ) and let w2 maximize d∗G(w)
over V (F ) \ {w1}. Then

(19) χ′(G) ≤ �1
2
(d∗G(w1) + d∗G(w2))�.

Proof. By (14) we have

(20) χ′(G) =
1

|V (F )|
∑

w∈V (F)

d∗G(w) +
|V (F )| − 2
|V (F )| .

Using (20) and Lemma 1, with V (F ) = {w1, w2, . . . , wk} and d∗G(w1) ≥ d∗G(w2) ≥
. . . ≥ d∗G(wk), we have

χ′(G) ≤ �1
2
(d∗G(w1) + d∗G(w2))�,

which proves the corollary.

From (19), using

d∗G(w1) + d∗G(w2) ≤ µG(uw1) + dG(w1) + µG(uw2) + dG(w2)

≤ dG(u) + dG(w1) + dG(w2) ≤ 3∆(G)

we deduce immediately Shannon’s Theorem [8].
To obtain a stronger version of the Adjacency Lemma we write

σ(w) = cdef(w)− µ∗(uw).
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We can then express the Fan Theorem as∑
w∈V (F)

σ(w) = −1

or, substracting σ(v) from both sides,

(21)
∑
w �=v

σ(w) = −1 − σ(v).

Notice that, by (1), if w ∈ V (F ) then

σ(w) =

{
χ′(G)− d∗G(w) − 1 if w �= v

χ′(G)− d∗G(v) if w = v.

We distinguish two cases.

Case 1. σ(v) ≥ 0, i.e. χ′(G) ≥ d∗G(v).
In this case the right-hand side of (2) is negative. Let

X = {w ∈ V (F ) | w �= v, σ(w)< 0}.

Then X �= ∅ and ∑
w∈X

σ(w) ≤ −1 − σ(v),

or, reversing the sign of inequality,

(22)
∑
w∈X

(−σ(w)) ≥ σ(v) + 1.

Using formula (22) we can write

X = {w ∈ V (F ) | w �= v, χ′(G) ≤ d∗G(w)}

and we can write (23) as∑
w∈X

(d∗G(w)− χ′(G) + 1) ≥ χ′(G)− d∗G(v) + 1,

which is precisely the generalization of Vizing’s Adjacency Lemma that we obtained
in [3] (by different means).

Case 2. σ(v) < 0, i.e. χ′(G) ≤ d∗G(v)− 1.
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In this case the quantity on the right-hand side of (21) is nonnegative and, by
letting

Y = {w ∈ V (F ) | w �= v, σ(w) ≥ 0}
we have Y �= ∅ and

(23)
∑
w∈Y

σ(w) ≥ −1 − σ(v).

Notice that Y = {w ∈ V (F ) | w �= v, χ′(G) ≥ d∗G(w) + 1} and (24) can be
rewritten as ∑

w∈Y

(χ′(G)− d∗G(w)− 1) ≥ d∗G(v)− χ′(G) − 1.

We have thus proved the following.

Theorem 3. Let G be a Class 2 graph and let e ∈ uv be a critical edge. Let
φ be an e-tense colouring and let F be the corresponding Fan Digraph. Let, for
any w ∈ V (F ), d∗G(w) = dG(w) + µ∗G(uw). Then one of the two following cases
occurs.

1. χ′(G) ≥ d∗G(v).

Let X = {w ∈ V (F ) | w �= v, χ′(G) ≤ d∗G(w)}. Then X �= ∅ and∑
w∈X

(d∗G(w)− χ′(G) + 1) ≥ χ′(G)− d∗G(v) + 1.

2. χ′(G) < d∗G(v).
Let Y = {w ∈ V (F ) | w �= v, χ′(G) > d∗G(w)}. Then Y �= ∅ and

∑
w∈Y

(χ′(G)− d∗G(w)− 1) ≥ d∗G(v)− χ′(G)− 1.

Theorem 3 extends [3, Theorem 8] and hence, as proved in [3], it is more
general than all the other known generalizations of Vizing’s Adjacency Lemma to
multigraphs.
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