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STABILITY OF EXACT PENALTY FOR NONCONVEX
INEQUALITY-CONSTRAINED MINIMIZATION PROBLEMS

Alexander J. Zaslavski

Abstract. In this paper we use the penalty approach in order to study
inequality-constrained minimization problems with locally Lipschitz objective
and constraint functions in Banach spaces. A penalty function is said to
have the generalized exact penalty property if there is a penalty coefficient for
which approximate solutions of the unconstrained penalized problem are close
enough to approximate solutions of the corresponding constrained problem. In
this paper we show that the generalized exact penalty property is stable under
perturbations of objective functions, constraint functions and the right-hand
side of constraints.

1. INTRODUCTION

Penalty methods are an important and useful tool in constrained optimization.
See, for example, [2-5, 9, 12] and the references mentioned there. The notion
of exact penalization was introduced by Eremin [7] and Zangwill [17] for use
in the development of algorithms for nonlinear constrained optimization. Since
that time exact penalty functions have continued to play a key role in the theory
of mathematical programming [8, 10, 11, 13, 15, 19-21]. For more discussions
and various applications of exact penalization to various constrained optimization
problems see [2, 3, 5, 12].

We use the penalty approach in order to study inequality-constrained minimiza-
tion problems with locally Lipschitzian constraints in Banach spaces. A penalty
function is said to have the exact penalty property [2, 3, 5, 12] if there is a penalty
coefficient for which a solution of an unconstrained penalized problem is a solution
of the corresponding constrained problem.
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In this paper we will establish the exact penalty property for a large class of
inequality-constrained minimization problems

(Pi) f(x) → min subject to x ∈ A

where
A = {x ∈ X : gi(x) ≤ ci for all i = 1, . . . , n}.

Here X is a Banach space, ci, i = 1, . . . , n are real numbers, and the constraint
functions gi, i = 1, . . . , n and the objective function f are locally Lipschitz.

We associate with the inequality-constrained minimization problem above the
corresponding family of unconstrained minimization problems

f(z) + γ

n∑

i=1

max{gi(z) − ci, 0} → min, z ∈ X

where γ > 0 is a penalty. In this paper we establish the existence of a penalty
coefficient for which approximate solutions of the unconstrained penalized problem
are close enough to approximate solutions of the corresponding constrained problem.
This novel approach in the penalty type methods was used in [19-21]. In the present
paper we obtain a generalization of the results of [19-21]. We study the stability
of the generalized exact penalty property under perturbations of the functions f and
g1, . . . , gn and of the parameters c1, . . . , cn. The stability of the generalized exact
penalty property is crucial in practice. One reason is that in practice we deal with
a problem which is a perturbation of the problem we wish to consider. Another
reason is that the computations introduce numerical errors.

Consider a minimization problem h(z) → min, z ∈ X where h : X → R1 is
a lower semicontinuous bounded from below function. If the space X is infinite-
dimensional, then the existence of solutions of the problem is not guaranteed and
in this situation we consider δ-approximate solutions. Namely, x ∈ X is a δ-
approximate solution of the problem h(z) → min, z ∈ X , where δ > 0, if h(x) ≤
inf{h(z) : z ∈ X}+ δ.

In [19-21] and in this paper we are interested in approximate solutions of the
unconstrained penalized problem and in approximate solutions of the corresponding
constrained problem. Under certain assumptions which hold for a large class of
problems we show the existence of a constant Λ0 > 0 such that the following
property holds:

For each ε > 0 there exists δ(ε) > 0 which depends only on ε such that if x is
a δ(ε)-approximate solution of the unconstrained penalized problem whose penalty
coefficient is larger than Λ0, then there exists an ε-approximate solution y of the
corresponding constrained problem such that ||y − x|| ≤ ε.

This property implies that any exact solution of the unconstrained penalized
problem whose penalty coefficient is larger than Λ0, is an exact solution of the
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corresponding constrained problem. Indeed, let x be a solution of the unconstrained
penalized problem whose penalty coefficient is larger than Λ0. Then for any ε > 0
the point x is also a δ(ε)-approximate solution of the same unconstrained penalized
problem and in view of the property above there is an ε-approximate solution yε
of the corresponding constrained problem such that ||x − yε|| ≤ ε. Since ε is an
arbitrary positive number we can easily deduce that x is an exact solution of the
corresponding constrained problem. Therefore our results also includes the classical
penalty result as a special case.

It should be mentioned that if one uses methods in order to solve optimization
problems these methods usually provide only approximate solutions of the problems.
Therefore our results are important and useful even when optimization problems
have exact solutions.

As we have already mentioned the main result of the present paper is a gen-
eralization of the results of [19-21]. In [19] we considered the problem (P i) with
one constraint function (n = 1) and established a very simple sufficient condition
for the exact penalty property. It was shown that the problem f(x) → min subject
to g(x) ≤ c possesses the exact penalty if the real number c is not a critical value
of the function g. In other words the set g−1(c) does not contain a critical point
of the function g. Note that in [19] we used the notion of a critical point of a
Lipschitz function introduced in [18]. The result of [19] was generalized in [20]
for the problem (Pi) with an arbitrary number of constraints n. Moreover, in [20]
we showed the stability of the generalized exact penalty property under perturba-
tions of the objective functions f . We considered a family of inequality-constrained
problems of type (Pi) with given real numbers c1, . . . , cn, given locally Lipschitz
constraint functions g1, . . . , gn and with objective functions f which are close (in
a certain natural sense) to a given fonction f0. In [20] we showed that all the
constrained minimization problems belonging to this family possess the generalized
exact penalty property with the same penalty coefficient which depends only on
f0, g1 . . . , gn, c1, . . . , cn. Another generalization of the result of [19] was obtained
in [21]. In [21] we assumed that g 0 is a locally Lipschitz function defined on X ,
f0 : X → R1 is a function which is Lipschitz on all bounded subsets of X and
which satisfies a growth condition, and that for a real number c0 which is not a crit-
ical value of g0, the set g−1

0 (c0) is nonempty. We considered a family of constrained
minimization problems f(x) → min subject to g(x) ≤ c where a triple (f, g, c)
is close to the triple (f0, g0, c0) in a certain natural sense. We showed that all the
constrained minimization problems belonging to this family possess the generalized
exact penalty property with the same penalty coefficient which depends only on
f0, g0, c0. Note that the proofs in [20, 21] are based on tools of variational analysis
[4, 12, 16]. In [20] in order to generalize the results of [19] we introduced a notion
of a critical point of a Lipshitz mapping with respect to a parameter κ ∈ (0, 1). In
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the proof of the stability result of [21] we used the methods and techniques of [18].
In the present paper combining the methods and techiques of [20, 21] we generalize
their results for inequality-constrained problems of type (Pi) with an arbitrary num-
ber of constraints n. We establish stability of the generalized exact penalty property
under perturbations of objective functions, constraint functions and the right-hand
side of constraints.

More precisely, we consider a family of constrained minimization problems of
type (Pi) with an objective function close to a given function f , with constraint
functions close to given functions g1, . . . , gn and with the right-hand side of con-
straints close to given constants c1, . . . , cn in a certain natural sense. Under certain
conditions on f, g1, . . . , gn, c1, . . . , cn we show that all the constrained minimiza-
tion problems belonging to this family possess the generalized exact penalty property
with the same penalty coefficient which depends only on f , g1, . . . , gn, c1, . . . , cn.

2. PRELIMINARIES

Let (X, || · ||) be a Banach space and let (X ∗, || · ||∗) be its dual space. For each
x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ||x− y|| ≤ r}.

Assume that f : U → R1 be a Lipschitz function which is defined on a nonempty
open set U ⊂ X . For each x ∈ U let

f0(x, h) = lim sup
t→0+,y→x

[f(y + th) − f(y)]/t, h ∈ X

be the Clarke generalized directional derivative of f at the point x [4], let

∂f(x) = {l ∈ X∗ : f0(x, h) ≥ l(h) for all h ∈ X}

be Clarke’s generalized gradient of f at x [4] and set

Ξf (x) = inf{f0(x, h) : h ∈ X and ||h| = 1}

[18].
A point x ∈ X is called a critical point of f if 0 ∈ ∂f(x) [18].
A real number c ∈ R1 is called a critical value of f if there is a critical point

x ∈ U of f such that f(x) = c.
In order to consider a constrained minimization problem with several constraints

we need to use a notion of a critical point for a Lipschitz mapping F : X → Rn

introduced in [20].
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Assume that n is a natural number, U is a nonempty open subset of X and that
F = (f1, . . . , fn) : U → Rn is a locally Lipschitz mapping.

Let κ ∈ (0, 1). For each x ∈ U set [20]

(2.1) ΞF,κ(x) = inf{||
n∑

i=1

(αi1ηi1 − αi2ηi2)|| :

ηi1, ηi2 ∈ ∂fi(x), αi1, αi2 ∈ [0, 1], i = 1, . . . , n

and there is j ∈ {1, . . . , n} such that αj1αj2 = 0 and |αj1| + |αj2| ≥ κ}.
It is known [4, Chapter 2, Sect. 2.3] that for each x ∈ U and all i = 1, . . . , n,

(2.2) ∂(−fi)(x) = −∂fi(x).

This equality implies that

(2.3) Ξ−F,κ(x) = ΞF,κ(x) for each x ∈ U.

In the sequel we assume that U = X .
A point x ∈ X is called a critical point of F with respect to κ if ΞF,κ(x) = 0

[20].
A vector c = (c1, . . . , cn) ∈ Rn is called a critical value of F with respect to κ

if there is a critical point x ∈ X of F with respect to κ such that F (x) = c.

Remark 2.1. Let n = 1. Then x ∈ X is a critical point of F with respect to
κ if and only if 0 ∈ ∂F (x). Therefore x is a critical point of F in our sense if and
only if x is a critical point of F the sense of [19]. It is clear that in this case the
notion of a critical point does not depend on κ.

Remark 2.2. Assume that fi ∈ C1, i = 1, . . . , n and Dfi(x) is the Frechet
derivative of fi at x ∈ X , i = 1, . . . , n. If x ∈ X is a critical point of F with
respect to κ, then Dfi(x), i = 1, . . . , n are linear dependent.

The following proposition was proved in [20, Proposition 1.1].

Proposition 2.1. Assume that {xk}∞k=1 ⊂ X , x = limk→∞xk in the norm
topology and that lim inf k→∞ ΞF,κ(xk) = 0. Then ΞF,κ(x) = 0.

Let M be a nonempty subset of X . We say that the mapping F : X → Rn

satisfies Palais-Smale (P-S) condition on M with respect to κ if for each bounded
with respect to the norm topology sequence {xi}∞i=1 ⊂ M such that {F (xi)}∞i=1

is bounded and lim infi→∞ ΞF,κ(xi) = 0 there exists a convergent subsequence of
{xi}∞i=1 in X with the norm topology [1, 14, 18].
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For each function h : X → R1 and each nonempty set A ⊂ X put

inf(h) = inf{h(z) : z ∈ X}, inf(h;A) = inf{h(z) : z ∈ A}.

For each x ∈ X and each B ⊂ X put

d(x, B) = inf{||x− y|| : y ∈ B}.

We assume that the sum over empty set iz zero.

3. MAIN RESULTS

Denote by M the set of all continuous functions h : X → R1. We equip the
set M with the uniformity determined by the following base:

(3.1)

E(M, q, ε)={(f, g)∈M×M : |f(x)− g(x)|≤ε for all x∈B(0,M)}
∩{(f, g) ∈ M×M : |(f − g)(x)− (f − g)(y)| ≤ q||x− y||

for each x, y ∈ B(0,M)},
where M, q, ε are positive numbers. It is not difficult to see that this uniform space
is metrizable and complete.

Let n be a natural number, f ∈ M, G = (g1, . . . , gn) with gi ∈ M for all
i = 1, . . . , n and let c = (c1, . . . , cn) ∈ Rn.

Put

(3.2) A(G, c) = {x ∈ X : gi(x) ≤ ci for all i = 1, . . . , n}
and consider the following constrained minimization problem

(P ) f(x) → min subject to x ∈ A(G, c).

We associate with the problem (P) the corresponding family of unconstrained min-
imization problems

(Pλ) f(x) +
n∑

i=1

λi max{gi(x)− ci, 0} → min, x ∈ X,

where λ = (λ1, . . . , λn) ∈ (0,∞)n.
For each κ ∈ (0, 1) set

(3.3)
Ωκ = {x = (x1, . . . , xn) ∈ Rn :

xi ≥ κ for all i = 1, . . . , n and max
i=1,...,n

xi = 1}.
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Let φ : [0,∞) → [0,∞) be an increasing function such that

(3.4) lim
t→∞φ(t) = ∞

and ā be a positive number. Denote by Mφ the set of all functions h ∈ M such
that

(3.5) h(x) ≥ φ(||x||)− ā for all ∈ X.

Assume that

(3.6) f̄ ∈ Mφ

is Lipschitz on all bounded subsets of X , Ḡ = (ḡ1, . . . , ḡn) : X → R1 is a locally
Lipschitz mapping and that c̄ = (c̄1, . . . , c̄n) ∈ Rn.

We assume that A(Ḡ, c̄) �= ∅ and fix

(3.7) θ ∈ A(Ḡ, c̄).

In view of (3.4) there exists a number M0 such that

(3.8) M0 > 2 + ||θ|| and φ(M0 − 2) > f̄(θ) + ā + 4.

For each x ∈ A(Ḡ, c̄) put

(3.9) I(x) = {i ∈ {1, . . . , n} : c̄i = ḡi(x)}.
Fix κ ∈ (0, 1). In this paper we use the following assumptions.

(A1) If x ∈ A(Ḡ, c̄), q ≥ 1 is the cardinality of a subset {i1, . . . , iq} of I(x) with
i1 < i2 < · · · < iq and if x is a critical point of the mapping

(ḡi1, . . . , ḡiq) : X → Rq

with respect to κ, then f̄(x) > inf(f̄ ;A(Ḡ, c̄)).
(A2) There is γ∗ > 0 such that for each finite strictly increasing sequence of natural

numbers {i1, . . . , iq} which satisfies {i1, . . . , iq} ⊂ {1, . . . , n} the mapping
(ḡi1, . . . , ḡiq) : X → Rq satisfies (P-S) condition on the set

∩j∈{i1,...,iq}(ḡ
−1
j ([c̄j − γ∗, c̄j + γ∗]))

with respect to κ.
(A3) For each ε > 0 there is xε ∈ A(Ḡ, c̄) such that f̄(xε) ≤ inf(f̄ ;A(Ḡ, c̄)) + ε

and if I(xε) �= ∅, then zero does not belong to the convex hull of the set

∪i∈I(xε)∂ḡi(xε).
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In the present paper we establish the existence of exact penalty under assump-
tions (A1)-(A3). Usually this existence is related to calmness of the perturbed
constraint mapping. Here we use the assumptions of the different nature. Note
that (A1) holds if any solution of the optimization problem is not a critical point
of the correspoding constraint mapping. Assumption (A2) is a version of the clas-
sical Palais-Smale condition. Assumption (A3) holds if there is a solution of the
optimization problem which is not a critical point of the corresponding constaint
maping.

The following theorem is our main result.

Theorem 3.1. Let (A1), (A2) and (A3) hold and let q > 0. Then there exist
positive numbers Λ0, r > 0 such that for each ε > 0 there exists δ ∈ (0, ε) such
that the following assertion holds:

If f ∈ Mφ satisfies
(f, f̄) ∈ E(M0, q, r),

if G = (g1, . . . , gn) : X → Rn satisfies

gi ∈ µ and (gi, ḡi) ∈ E(M0, r, r) for all i = 1, . . . , n,

if γ = (γ1, . . . , γn) ∈ Ωκ, λ ≥ Λ0, c = (c1, . . . , cn) ∈ Rn satisfies

|c̄i − ci| ≤ r for all i = 1, . . . , n

and if x ∈ X satisfies

f(x)+
n∑

i=1

λγi max{gi(x)−ci, 0}≤ inf{f(z)+
n∑

i=1

λγi max{gi(z)−ci, 0} : z ∈ X}+δ,

then there is y ∈ A(G, c) such that

||x− y|| ≤ ε and f(y) ≤ inf(f ;A(G, c))+ ε.

Theorem 3.1 easily implies the following result.

Theorem 3.2. Let (A1), (A2) and (A3) hold and let q > 0. Then there exist
positive numbers Λ0, r such that for each f ∈ Mφ satisfying (f, f̄) ∈ E(M0, q, r),
each mapping G = (g1, . . . , gn) : X → Rn which satisfies

(3.10) gi ∈ M and (gi, ḡi) ∈ E(M0, r, r) for all i = 1, . . . , n,

each c = (c1, . . . , cn) ∈ Rn satisfying

(3.11) |c̄i − ci| ≤ r for all i = 1, . . . , n,
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each γ = (γ1, . . . , γn) ∈ Ωκ, each λ ≥ Λ0 and each sequence {xk}∞k=1 ⊂ X which
satisfies

lim
k→∞

[f(xk) +
n∑

i=1

λγi max{gi(xk) − ci, 0}]

= inf{f(z) +
n∑

i=1

λγi max{gi(z) − ci, 0} : z ∈ X}

there is a sequence {yk}∞k=1 ⊂ A(G, c) such that

lim
k→∞

||yk − xk|| = 0 and lim
k→∞

f(yk) = inf(f ;A(G, c)).

Corollary 3.1. Let (A1), (A2) and (A3) hold and let q > 0. Then there exist
positive numbers Λ0, r such that if f ∈ Mφ satisfies (f, f̄) ∈ E(M0, q, r), if a
mapping G = (g1, . . . , gn) : X → Rn satisfies (3.10), if c = (c1, . . . , cn) ∈ Rn

satisfies (3.11), if γ = (γ1, . . . , γn) ∈ Ωκ, λ ≥ Λ0 and if x ∈ X satisfies

f(x) +
n∑

i=1

λγi max{gi(x) − ci, 0}

= inf{f(z) +
n∑

i=1

λγi max{gi(z) − ci, 0} : z ∈ X},

then x ∈ A(G, c) and f(x) = inf(f ;A(G, c)).

4. PROOF OF THEOREM 3.1

For each f ∈ Mφ, each G = (g1, . . . , gn) : X → Rn, each c = (c1, . . . , cn) ∈
Rn and each λ = (λ1, . . . , λn) ∈ (0,∞)n define for all z ∈ X

(4.1) ψ
(f,G)
λ,c (z) = f(z) +

n∑

i=1

λi max{gi(z)− ci, 0}.

We show that there exist positive numbers Λ0, r such that the following property
holds:

(P1) For each ε ∈ (0, 1) there exists δ ∈ (0, ε) such that for each f ∈ Mφ

satisfying
(f, f̄) ∈ E(M0, q, r),

each G = (g1, . . . , gn) : X → Rn satisfying

gi ∈ M and (gi, ḡi) ∈ E(M0, r, r) for all i = 1, . . . , n,
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each γ = (γ1, . . . , γn) ∈ Ωκ, each λ ≥ Λ0, each c = (c1, . . . , cn) ∈ Rn satisfying

|ci − c̄i| ≤ r, i = 1, . . . , n

and each x ∈ X satisfying

ψ
(f,G)
λγ,c (x) ≤ inf(ψ(f,G)

λγ,c ) + δ

we have
{y ∈ B(x, ε) ∩A(G, c) : ψ(f,G)

λγ,c (y) ≤ ψ
(f,G)
λγ,c (x)} �= ∅.

It is not difficult to see that (P1) implies the validity of Theorem 3.1.
Let us assume that there are no Λ0 > 0, r > 0 such that the property (P1) holds.

Then for each natural number k there exist εk ∈ (0, 1), f (k) ∈ Mφ satisfying

(4.2) (fk, f̄) ∈ E(M0, q, k
−1),

G(k) = (g(k)
1 , . . . , g

(k)
n ) : X → Rn satisfying

(4.3) g
(k)
i ∈ M and (g(k)

i , ḡi) ∈ E(M0, k
−1, k−1) for all i = 1, . . . , n,

(4.4) γ(k) = (γ(k)
1 , . . . , γ(k)

n ) ∈ Ωκ, λk ≥ k,

c(k) = (c(k)
1 , . . . , c

(k)
n ) ∈ Rn satisfying

(4.5) |c(k)
i − c̄i| ≤ k−1, i = 1, . . . , n,

and xk ∈ X such that

(4.6) ψ
(f (k),G(k))

λkγ(k),c(k) (xk) ≤ inf(ψ(f (k),G(k))

λkγ(k),c(k) ) + 2−1εkk
−2,

(4.7) {y ∈ B(xk, εk) ∩ A(G(k), c(k)) : ψ(f (k),G(k))

λkγ(k),c(k) (y) ≤ ψ
(f (k),G(k))

λkγk,c(k) (xk)} = ∅.

For each natural number k set

(4.8) ψk = ψ
(f (k),G(k))

λkγ(k),c(k) .

Set

(4.9) ψ̄ = ψ
(f̄ ,Ḡ)

λkγ(k) ,c(k) .

Let k be a natural number. It follows from (4.6) and Ekeland’s variational principle
[6] that there exists yk ∈ X such that

(4.10) ψk(yk) ≤ ψk(xk),
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(4.11) ||yk − xk|| ≤ (2k)−1εk,

(4.12) ψk(yk) ≤ ψk(z) + k−1||z − yk|| for all z ∈ X.

By (4.7), (4.8), (4.10) and (4.11)

(4.13) yk �∈ A(G(k), c(k)) for all natural numbres k.

For each natural number k set

(4.14)

Ik = {i ∈ {1, . . . , n} : g(k)
i (yk) = c

(k)
i },

Ik+ = {i ∈ {1, . . . , n} : g(k)
i (yk) > c

(k)
i },

Ik− = {i ∈ {1, . . . , n} : g(k)
i (yk) < c

(k)
i }.

By (4.13), (4.14) and (3.2),

(4.15) Ik+ �= ∅ for all integers k ≥ 1.

Extracting a subsequence and re-indexing we may assume without loss of generality
that for all natural numbers k,

(4.16) Ik = I1, Ik+ = I1+, Ik− = I1−.

We continue the proof with the two steps.

Step 1. We will show that for all suffciently large natural numbers k

A(G(k), c(k)) �= ∅, ||yk|| ≤M0 − 2

and that

lim sup
k→∞

f (k)(yk) ≤ lim sup
k→∞

inf(f (k);A(G(k), c(k))) ≤ inf(f̄ ;A(Ḡ, c̄)).

Let δ0 ∈ (0, 2−1). By (A3) there exists

(4.17) z0 ∈ A(Ḡ, c̄)

such that:

(4.18) f̄(z0) ≤ inf(f̄ ;A(Ḡ, c̄)) + δ0;

(4.19)
if I(z0) �= ∅, then 0 does not belong to the convex hull of the set
∪i∈I(z0)∂ḡi(z0).
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By (4.17), (4.18) and (3.7),

(4.20) f̄(z0) ≤ f̄(θ) + 1.

In view of (4.20), (3.6), (3.5) and (3.8),

(4.21) ||z0|| ≤M0 − 2.

Define z1 ∈ X as follows.

(4.22) If I(z0) = ∅, then set z1 = z0.

Assume that

(4.23) I(z0) �= ∅.
Choose δ1 ∈ (0, 1) such that

(4.24) c̄i > ḡi(z0) + 4δ1 for all integers i ∈ {1, . . . , n} \ I(z0).
By (4.19) and (4.23) there exists

(4.25) η ∈ X such that ||η|| = 1 and δ2 ∈ (0, 1)

such that

(4.26) l(η) ≤ −2δ2 for all l ∈ ∪i∈I(z0)∂ḡi(z0).

In view of (4.26),

(4.27) ḡ0
i (z0, η) ≤ −2δ2 for all i ∈ I(z0).

Since the function f̄ is Lipschitz on bounded subsets of X and the functions ḡ 0
i (·, η),

i = 1, . . . , n are upper semicontinuous it follows from (4.24) and (4.27) that there
exist a number δ3 ∈ (0,min{1, δ1}) such that

(4.28) ḡ0
i (z, η) ≤ −(3/2)δ2 for all i ∈ I(z0) and all z ∈ B(z0, δ3),

(4.29) c̄i > ḡi(z) + 3δ1 for all i ∈ {1, . . . , n} \ I(z0) and all z ∈ B(z0, δ3),

(4.30) |f̄(z)− f̄(z0)| ≤ δ0 for all z ∈ B(z0, δ3).

Put

(4.31) z1 = z0 + δ3η.
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By (4.31), (4.29) and (4.25),

(4.32) c̄i > ḡi(z1) + 3δ1 for all i ∈ {1, . . . , n} \ I(z0).

Let j ∈ I(z0). By the mean value theorem [4, Theorem 2.3.7], (4.25) and (4.28)
there exist

s ∈ [0, δ3] and l ∈ ∂ḡj(z0 + sη)

such that

ḡj(z0+δ3η)− ḡj(z0) = l(δ3η) ≤ ḡ0
j (z+sη, δ3η) = δ3ḡ

0
j (z0+sη, η) ≤ δ3(−3/2)δ2.

Combined with (3.9) and (4.31) this implies that

(4.33) ḡj(z1) ≤ c̄j − (3/2)δ2δ3 for all j ∈ I(z0).

Relations (4.32) and (4.33) imply that

(4.34) ḡj(z1) ≤ c̄j − (3/2)δ2δ3 for all j ∈ {1, . . . , n}.

By (4.30), (4.31), (4.25) and (4.18),

(4.35) f̄ (z1) ≤ f̄ (z0) + δ0 ≤ inf(f̄ ;A(Ḡ, c̄)) + 2δ0.

In view of (4.31), (4.25) and (4.21),

(4.36) ||z1|| ≤ ||z0||+ δ3 ≤M0 − 1.

Now we conclude that in both cases which were considered separately (I(z0) = ∅;
I(z0) �= ∅) we have defined z1 ∈ X such that

(4.37) ḡj(z1) < c̄j, j = 1, . . . , n.

(4.38) f̄(z1) ≤ inf(f̄ ;A(Ḡ, c̄)) + 2δ0,

(4.39) ||z1|| ≤M0 − 1

(see (4.34)-(4.36), (4.22), (4.21), (4.17) and (4.18)). It follows from (4.37), (4.39),
(4.3), (4.5), (3.2) and (3.1) that there exists a natural number k0 such that

(4.40) z1 ∈ A(G(k), c(k)) for all integers k ≥ k0.

In view of (3.5), (4.8), (4.1), (4.10), (4.6), (4.40), (4.39), (4.2) and (4.48) for any
integer k ≥ k0
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(4.41)

φ(||yk||)− ā ≤ f (k)(yk) ≤ ψk(yk) ≤ ψk(xk) ≤ inf(ψk) + (2k2)−1

≤ inf(ψk;A(G(k), c(k)))+(2k2)−1 =inf(f (k);A(G(k), c(k)))+2−1k−2

≤ f (k)(z1) + 2−1k−2 ≤ f̄(z1) + k−1 + 2−1k−2

≤ inf(f̄ ;A(Ḡ, c̄)) + 2δ0 + 2k−1.

By (4.41), the inequality δ0 < 1/2, (3.7) and (3.8) for all integers k ≥ k0

(4.42) φ(yk) − ā ≤ f̄(θ) + 2, ||yk|| ≤M0 − 2.

It follows from (4.30) and (4.42) that for all sufficiently large natural numbers k

(4.43) A(G(k), c(k)) �= ∅, ||yk|| ≤M0 − 2.

By (4.41),

lim sup
k→∞

f (k)(yk) ≤ lim sup
k→∞

inf(f (k), A(G(k), c(k))) ≤ inf(f̄;A(Ḡ, c̄)) + 2δ0.

Since δ0 is an arbitrary element of the interval (0, 1/2) we conclude that

(4.44) lim sup
k→∞

f (k)(yk) ≤ lim sup
k→∞

inf(f (k), A(G(k), c(k))) ≤ inf(f̄ ;A(Ḡ, c̄)).

Step 2. In this step we will complete the proof of the theorem. It follows from
(4.41), the inequality δ0 ∈ (0, 1/2), (4.8), (4.1), the inclusion f (k) ∈ Mφ and (3.5)
that for each integer k ≥ k0 and each i ∈ I1+

−ā+ λkγ
(k)
i max{g(k)

i (yk) − c
(k)
i , 0} ≤ inf(f̄ ;A(Ḡ, c̄)) + 2.

Together with (4.4) and (3.3) this implies for each integer k ≥ k0 and each i ∈ I1+

(4.45) g(k)
i (yk)−c(k)

i =max{g(k)
i (yk)−c(k)

i , 0}≤k−1κ−1(inf(f̄ ;A(Ḡ, c̄))+2+ā).

Then for all sufficiently large natural numbers k

0 ≤ g
(k)
i (yk)− c

(k)
i ≤ γ∗/2 for all i ∈ I1+.

Together with (4.14), (4.16), (4.3), (4.5) and (4.43) this implies that for all suffi-
ciently large natural numbers k

(4.46) −γ∗ ≤ ḡi(yk) − c̄i ≤ γ∗ for all i ∈ I1+ ∪ I1.
Since f̄ is Lipschitz on bounded subsets of X there exists a number L0 > 1 such
that

(4.47) |f̄(u1) − f̄(u2)| ≤ L0||u1 − u2|| for each u1, u2 ∈ B(0,M0).
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Let k ≥ k0 be an integer. It follows from (4.42), (4.14) and (4.16) that there exists
an open neighborhood V of yk in X such that for each y ∈ V

(4.48)
g

(k)
i (y) > c

(k)
i for all i ∈ I1+, g

k)
i (y) < c

(k)
i for all i ∈ I1−,

V ⊂ B(0,M0 − 1).

It follows from (4.14), (4.16), (4.1), (4.8) and (4.48) that for each z ∈ V

f (k)(yk)+λk

∑

i∈I1+

γ
(k)
i (g(k)

i (yk) − c
(k)
i )+λk

∑

i∈I1

γ
(k)
i max{g(k)

i (yk) − c
(k)
i , 0}

= f (k)(yk) +
n∑

i=1

λkγ
(k)
i max{g(k)

i (yk)− c
(k)
i , 0}

= ψ
(fk,G(k))

λkγ(k),ck
= ψk(yk) ≤ ψk(z) + k−1||z − yk||

= ψ
(f (k),G(k))

λkγ(k),c(k) (z) + k−1||z − yk||

= f (k)(z) + λk

∑

i∈I1+

γ
(k)
i (g(k)

i (z) − c
(k)
i )

+λk

∑

i∈I1

γ
(k)
i max{g(k)

i (z)− c
(k)
i , 0}+ k−1||z − yk||.

By the relation above, (4.48) and the properties of Clarke’s generalized gradient [4,
Chapter 2, Sect. 2.3],

(4.49)

0 ∈ ∂f (k)(yk) + λk

∑

i∈I1+

γ
(k)
i ∂g

(k)
i (yk)

+λk

∑

k,i∈I1

γ
(k)
i (∪{α∂g(k)

i (yk) : α∈ [0, 1]}) + k−1{l∈X∗ : ||l||∗ ≤ 1}.

In view of the properties of Clarke’s generalized gradient [4, Chapter 2, Sect. 2.3],
(4.42), (4.2) and (3.1),

(4.50)
∂f (k)(yk) = ∂(f̄ + (f (k) − f̄))(yk) ⊂ ∂f̄(yk) + ∂(f (k) − f̄)(yk)

⊂ ∂f̄(yk) + q{l ∈ X∗ : ||l||∗ ≤ 1}.
By the properties of Clarke’s generalized gradient [4, Chapter 2, Sect. 2.3], (4.42),
(4.3) and (3.1) for all i ∈ I1 ∪ I1+,

(4.51)
∂g

(k)
i (yk) = ∂(ḡi + (g(k)

i − ḡi))(yk) ⊂ ∂ḡi(yk) + ∂(g(k)
i − ḡi)(yk)

⊂ ∂ḡi(yk) + k−1{l ∈ X∗ : ||l||∗ ≤ 1}.
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Relations (4.49), (4.4), (4.50), (4.51), (3.3) and (4.4),

(4.52)

0∈λ−1
k ∂f (k)(yk)+

∑

i∈I1+

γ
(k)
i ∂g

(k)
i (yk) +

∑

i∈I1

γ
(k)
i (∪{α∂g(k)

i (yk) :

α ∈ [0, 1]})+ k−2{l ∈ X∗ : ||l||∗ ≤ 1}

⊂ λ−1
k ∂f̄(yk) + k−1q{l ∈ X∗ : ||l||∗ ≤ 1}

+
∑

i∈I1+

γ
(k)
i [∂ḡi(yk) + k−1{l ∈ X∗ : ||l||∗ ≤ 1}]

+
∑

i∈I1

γ
(k)
i (∪{α∂ḡi(yk) + αk−1{l ∈ X∗ : ||l||∗ ≤ 1} : α ∈ [0, 1]})

+k−2{l ∈ X∗ : ||l||∗ ≤ 1}

⊂ λ−1
k ∂f̄(yk)+

∑

i∈I1+

γ
(k)
i ∂ḡi(yk)+

∑

i∈I1

γ
(k)
i (∪{α∂ḡi(yk) : α∈ [0, 1]})

+(q/k + n/k + n/k + k−2){l ∈ X∗ : ||l||∗ ≤ 1}.

It follows from (4.52) that there exists l∗ ∈ X∗ satisfying

(4.53)
||l∗||∗ ≤ 1,

l0 ∈ ∂f̄(yk), li ∈ ∂ḡi(yk), i ∈ I1+ ∪ I1, αi ∈ [0, 1], i ∈ I1

such that

0 = k−1(q + 2n+ k−1)l∗ + λ−1
k l0 +

∑

i∈I1+

γ
(k)
i li +

∑

i∈I1

αiγ
(k)
i li.

Combined with (4.53), (4.42) and (4.47) this implies that

(4.54) ||
∑

i∈I1+

γ
(k)
i li +

∑

i∈I1

αiγ
(k)
i li|| ≤ k−1(q + 2n+ 1) + k−1L0.

In view of (4.15) and (4.16) there exists a finite strictly increasing sequence of
natural numbers i1 < · · · < iq, where q ≥ 1 is an integer, such that

{i1, . . . , iq} = I1+ ∪ I1.

Consider a mapping G = (ḡi1, . . . , ḡiq) : X → Rq. By (4.54), (4.53), (2.1), (4.15),
(4.16), (3.3) and (4.4),

(4.55) ΞG,κ(yk) ≤ k−1(q + 2n+ 1 + L0) for each natural number k ≥ k0.
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It follows from (4.55), (A2), (4.46) and (4.42) that there exists a subsequence
{ykp}∞p=1 of the sequence {yk}∞k=1 which converges to y∗ ∈ X in the norm topology:

(4.56) lim
p→∞ ||ykp − y∗|| = 0.

By (4.55), (4.56) and Proposition 2.1

(4.57) ΞG,κ(y∗) = 0.

In view of (4.56), (4.5), (4.3), (4.42), (4.45), (4.14) and (4.16) for s ∈ {1, . . . , q}

(4.58) ḡis(y∗) − c̄is = lim
p→∞(ḡis(ykp) − c

(kp)
is

) = lim
p→∞(g(kp

is
(ykp) − c

(kp)
is

) = 0.

For any
j ∈ {1, . . . , n} \ {i1, . . . , iq},

we have j ∈ I1− and by (4.14), (4.16), (4.56), (4.42) and (4.3),

ḡj(y∗) = lim
p→∞ ḡj(ykp) = lim

p→∞ g
(kp

j )(ykp) ≤ lim
p→∞ c

(kp)
j = c̄j.

Together with (4.58) this implies that

(4.59) y∗ ∈ A(Ḡ, c̄).

In view of (4.58),

(4.60) {i1, . . . , iq} ⊂ I(y∗).

By (4.56), (4.42), (4.2) and (4.44)

f̄(y∗) = lim
p→∞ f̄(ykp) = lim

p→∞fkp(ykp) ≤ inf(f̄ ;A(Ḡ, c̄)).

Combined with (4.59), (4.57) and (4.60) this implies that

y∗ ∈ A(Ḡ, c̄), f̄(y∗) = inf(f̄ ;A(Ḡ, c̄)), ΞG,κ(y∗) = 0.

Together with (4.60) this contradicts (A1). The contradiction we have reached
proves that there exist Λ0, r > 0 such that the property (P1) holds. This completes
the proof of Theorem 3.1.
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