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SOME INCLUSION PROPERTIES OF CERTAIN CLASS
OF ANALYTIC FUNCTIONS

Jacek Dziok and Janusz Sokól/

Abstract. We use a property of the Bernardi operator in the theory of the Briot–
Bouquet differential subordinations to prove several theorems for some classes
of analytic functions defined by using the Dziok-Srivastava operator. Some of
these results we obtain applying the convolution property due to Rusheweyh.
We take advantage of the Miller–Mocanu differential subordinations.

1. INTRODUCTION

Let A denote the class of functions f of the form:

(1) f(z) = z +
∞∑

n=2

anzn

which are analytic in U = U(1), where U(r) = {z : z ∈ C and |z| < r}.
For analytic functions

f(z) =
∞∑

n=0

anzn and g(z) =
∞∑

n=0

bnzn (z ∈ U) ,

by f ∗ g we denote the Hadamard product or convolution of f and g, defined by

(f ∗ g) (z) =
∞∑

n=0

anbnzn.
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Moreover, we say that a function f is subordinate to a function g, and write f(z) ≺
g(z), if and only if there exists a function ω, analytic in U such that

ω(0) = 0, |ω(z)| < 1 (z ∈U) ,

and
f(z) = g(ω(z)) (z ∈ U) .

In particular, if g is univalent in U , we have the following equivalence

(2) f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Let K denote the class of convex function defined by

K :=
{

f ∈ A : Re
(

1 +
zf ′′(z)
f ′(z)

)
> 0, z ∈ U

}
.

Moreover we recall the class of function introduced by Janowski [6]

(3) S∗
[
1 + az

1 + bz

]
:=

{
f ∈ A :

zf ′(z)
f(z)

≺ 1 + az

1 + bz
, z ∈ U

}
(−1≤b<a≤1) .

In particular we have the class of starlike functions S∗ := S∗
[

1+z
1−z

]
. In this paper

we take advantage of S∗
[

1+az
1+bz

]
to define other class of functions.

Let q, s ∈ N = {1, 2, ...} , q ≤ s + 1. For complex parameters a1, . . . , aq and
b1, . . . , bs, (bj �= 0,−1,−2, . . . ; j = 1, . . . , s), the generalized hypergeometric
function qFs(a1, . . . , aq; b1, . . . , bs; z) is defined by

qFs(a1, . . . , aq; b1, . . . , bs; z) =
∞∑

n=0

(a1)n · . . . · (aq)n

(b1)n · . . . · (bs)n

zn

n!
(z ∈ U),

where (λ)n is the Pochhammer symbol defined by

(λ)n =

{
1 (n = 0)

λ(λ + 1) · . . . · (λ + n − 1) (n ∈ N) .

Let us consider the Dziok–Srivastava operator [4] (see also [3] and [5])

H : A → A

such that

Hf(z) = H(a1, . . . , aq; b1, . . . , bs)f(z) = {z · qFs(a1, . . . , aq; b1, . . . , bs; z)} ∗f(z).
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We observe that for a function f of the form (1), we have

(4) H(a1, . . . , aq; b1, . . . , bs)f(z) = z +
∞∑

n=2

Ananzn,

where

(5) An =
(a1)n−1 · . . . · (aq)n−1

(b1)n−1 · . . . · (bs)n−1 · (n − 1)!
.

The Dziok-Srivastava operator H(a1, . . . , aq; b1, . . . , bs) includes various other
linear operators which were considered in earlier works (see [11], [12] and [13]).
In particular we recall the Bernardi integral operator [1]

Jν : A → A,

defined by

(6) Jν [f(z)] =
ν + 1
zν

z∫
0

tν−1f(t)dt (ν ∈ C ).

For f ∈ A of the form (1) we have

(7) Jν [f(z)] = z +
∞∑

n=2

ν + 1
ν + n

anzn.

The Bernardi operator and the Dziok–Srivastava operator are connected in the fol-
lowing way

Jν[f(z)] = H(1 + ν, 1; ν + 2)f(z).
Let suppose

(8) −1 ≤ B ≤ 0 and |A| < 1 (A ∈ C) .

We denote by V (q, s; A, B) the class of functions f of the form (1) which satisfy
the following condition:

(9)
z [Hf(z)]′

Hf(z)
≺ 1 + Az

1 + Bz
(z ∈ U) .

By (8) we have Re
(

1+Az
1+Bz

)
> 0 for z ∈ U , Thus

(10) f ∈ V (q, s; A, B) ⇒ Hf(z) ∈ S∗.

Moreover for −1 ≤ B < A ≤ 1 this means that Hf(z) belongs to the class
S∗

[
1+Az
1+Bz

]
defined by (3). After some calculations we obtain

(11) aiH(ai + 1)f(z) = zH′f(z) + (ai − 1)Hf(z), i = 1, ..., q,
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where, for convenience,

H(ai + m)f(z) = H(a1, . . . , ai + m, . . . , aq; b1, . . . , bs)f(z), i = 1, ..., q.

By (11) the condition (9) is for each ai, i = 1, ..., q equivalent the following subor-
dination

(12) ai
H(ai + 1)f(z)

Hf(z)
+ 1− ai ≺ 1 + Az

1 + Bz
(z ∈ U) .

Therefore we use following alternatively notation

V (q, s; A, B) = V (ai; A, B).

Dziok and Srivastava [4] making use of the generalized hypergeometric function,
have introduced a class of analytic functions with negative coefficients. They consid-
ered the class V (q, s; A, B) defined by condition (12) where parameters a1, . . . , aq,
b1, . . . , bs are positive real and -1≤ A < B ≤ 1 . Some inclusion for this class was
given in [2].

The main object of this paper is to investigate a inclusion properties of the
classes V (q, s; A, B).

2. MAIN RESULTS

We begin with a lemma, which will be useful later on.

Lemma 1. [8]. Let ν, A ∈ C and B ∈ [−1; 0] satisfy either

(13) Re
[
1 + AB + ν(1 + B2)

] ≥| A + B + B(ν + ν̄) | for B ∈ (−1; 0],

or

(14) 1 + A > 0 and Re[1 − A + 2ν] ≥ 0 for B = −1

If f ∈ A and F (z) = Jν [f(z)] is given by (6), then F ∈ A and

zf ′(z)
f(z)

≺ 1 + Az

1 + Bz
⇒ zF ′(z)

F (z)
≺ 1 + Az

1 + Bz
.

Lemma 1 in the more general case is in [8], p. 111.

Lemma 2. If the function f is of the form (1), then

(15) Hf(z) = Jai−1 [H(ai + 1)f(z)] (i = 1, 2, ..., q) ,

where Jai−1 is the Bernardi operator (6).
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Proof. From (4) and from (5) we have

Hf(z) = z +
∞∑

n=2

(a1)n−1 · . . . · (aq)n−1

(b1)n−1 · . . . · (bs)n−1 · (n − 1)!
anzn

= z +
∞∑

n=2

(a1)n−1 · . . . · ai
ai+n−1 · (ai + 1)n−1 · . . . · (aq)n−1

(b1)n−1 · . . . · (bs)n−1 · (n − 1)!
anzn

=

[ ∞∑
n=1

ai

ai + n − 1
zn

]
∗ [H(ai + 1)f(z)]

=

[ ∞∑
n=1

(ai − 1) + 1
(ai − 1) + n

zn

]
∗ [H(ai + 1)f(z)] .

Thus by (7) with ν = ai + 1 we obtain (15).

Theorem 1. If m ∈ N and i ∈ {1, ..., q}, then

(16) V (ai + m; A, B) ⊆ V (ai; A, B),

whenever A, B satisfy either (13) or (14) with ν = a i − 1.

Proof. It is clear that it is sufficient to prove (16) only for m = 1. Let
f ∈ V (ai + 1; A, B), then from (9) we have

z[H(ai + 1)f(z)]′

H(ai + 1)f(z)
≺ 1 + Az

1 + Bz
(z ∈ U) .

Applying Lemma 1 and Lemma 2, by (9) we obtain that f ∈ V (ai; A, B).

It is natural to ask about the inclusion relation (16) when m is not positive
integer. Using a different method we will give a partial answer to this question. We
will need the following lemma.

Lemma 3. [10]. If f ∈ K, g ∈ S∗, then for each analytic function h in U ,

(f ∗ hg)(U)
(f ∗ g)(U)

⊆ coh(U),

where coh(U) denotes the closed convex hull of h(U).

Theorem 2. If G(z) =
∞∑

n=0

(ai)n

(ãi)n
zn+1 ∈ K, then V (ãi; A, B) ⊂V (ai; A, B).
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Proof. Let f ∈ V (ãi; A, B). By the definition of the subordination we have

(17)
z[H(ãi)f(z)]′

H(ãi)f(z)
=

1 + Aω(z)
1 + Bω(z)

:= φ[ω(z)] (z ∈ U),

where φ is convex univalent mapping of U and |ω(z)| < 1 in U with ω(0) = 0 =
φ(0) − 1. Moreover, Re[φ(z)] > 0, z ∈U . Applying (17) and the properties of
convolution we get

(18)

z[H(ai)f(z)]′

H(ai)f(z)
=

z

[ ∞∑
n=0

(ai)n

(ãi)n
zn+1 ∗ H(ãi)f(z)

]′
∞∑

n=0

(ai)n

(ãi)n
zn+1 ∗ H(ãi)f(z)

=
G(z) ∗ zH ′(z)
G(z) ∗ H(z)

=
G(z) ∗ φ[ω(z)]H(z)

G(z) ∗ H(z)
=: g(z).

Because H(z) ∈ S∗, G(z) ∈ K and φ is convex univalent, then by Lemma 3 we
obtain that for z ∈ U the quantity (18) lies in coφ[ω(U)]. By (2) and from the
above-mentioned properties of φ we conclude that g defined by(18) is subordinated
to φ. Thus, by (9) we have that H(ai)f(z) ∈ S∗

[
1+Az
1+Bz

]
⊆ S∗ and finally f ∈

V (ai; A, B).

Lemma 4. [9]. If either 0 < a ≤ c and c ≥ 2 when a, c are real number, or
Re[a + c] ≥ 3, Re[a] ≤ Re[c] and Im[a] = Im[c] when a, c are complex, then the
function

f(z) =
∞∑

n=0

(a)n

(c)n
zn+1 (z ∈ U)

belongs to the class K of convex functions.

Lemma 4 is a special case of Theorem 2.12 or Theorem 2.13 contained in [9].

Theorem 3. Let i ∈ {1, 2, ..., q} . If ai, ãi are real number such that

0< ai ≤ ãi and ãi ≥ 2

or ai, ãi are complex number such that

Re[ai + ãi ] ≥ 3 , Re[ai ] ≤ Re[ãi ] and Im[ai ] = Im[ãi ],

then
V (ãi; A, B) ⊆ V (ai; A, B).
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Proof. Since H(ãi)f(z) ∈ S∗, by Lemma 4 the function

G(z) =
∞∑

n=0

(ai)n

(ãi)n
zn+1 (z ∈ U)

belongs to the class of convex functions K. Using Theorem 1 we obtain that
f ∈ V (ai; A, B).

Lemma 5. ([8], p.240). If a, b, c are real and satisfy −2 ≤ a < 0, b �= 0,
−1 ≤ b and c > M(a, b), where

M(a, b) = max{2 + |a + b|, 1− ab},
then the Gaussian hypergeometric function

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn

is convex in U .

Lemma 6. Let −1 ≤ ai < 1, i ∈ {1, ..., q}. If ãi > 3 + |ai|, then

∞∑
n=0

(ai)n

(ãi)n
zn+1 ∈ K.

Proof. Let we chose b = 1, a = ai − 1, c = ãi − 1 in Lemma 5. Then we
obtain that the function

F (z) =
∞∑

n=0

(ai − 1)n

(ãi − 1)n
zn

is convex for −2 ≤ ai − 1 < 0 and ãi − 1 > M(a, b) = 2 + |ai|. It is clear that
G(z) = ãi−1

ai−1 [F (z) − 1] ∈ K. After some calculations we obtain that

G(z) =
∞∑

n=0

(ai)n

(ãi)n
zn+1

and this ends the proof.

Theorem 4. Let −1 ≤ ai < 1, i ∈ {1, ..., q}. If ãi > 3 + |ai|, then

V (ãi; A, B) ⊆ V (ai; A, B).

Proof. The proof runs as the proof of Theorem 3 by using Lemma 6.
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Theorem 5. Let m ∈ N, i ∈ {1, ..., q}. If Re ai > 1, then

(19) V (ai + m; A, B) ⊆ V (ai; A, B).

Proof. It is clear that it is sufficient to prove (19) only for m = 1. If f ∈
V (ai +1; A, B), then by (10) we have H(z) :=H(ai +1)f(z) ∈ S∗

[
1+Az
1+Bz

]
⊆ S∗.

Let us denote
zH ′(z)
H(z)

=
1 + Aω(z)
1 + Bω(z)

:= φ[ω(z)] (z ∈ U),

where φ is convex univalent and |ω(z)| < 1 in U with ω(0) = 0 = φ(0) − 1
Moreover Re[φ(z)] > 0. If Re ai > 1, then the function

G(z) =
∞∑

n=1

(ai − 1) + 1
(ai − 1) + n

zn (z ∈ U)

belongs to the class of convex functions K, (Ruscheweych,[9]). Recall that

f(z) ∗ G(z) = J1,ai−1 [f(z)] ,

where Jai−1 is the Bernardi operator defined by (6). From the proof of Lemma 2
we have

H(ai)f(z) = G(z) ∗ H(ai + 1)f(z).

Thus
z[H(ai)f(z)]′

H(ai)f(z)
=

[G(z) ∗ zH(z)]′

G(z) ∗ H(z)
=

G(z) ∗ zH ′(z)
G(z) ∗ H(z)

=
G(z) ∗ φ[ω(z)]H(z)

G(z) ∗H(z)
∈ coφ(U).

For the same reasons as in the proof of Theorem 2 we obtain that f ∈ V (ai; A, B).
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