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ON GLOBAL PERIODICITY OF DIFFERENCE EQUATIONS

J. S. Cánovas, A. Linero Bas and G. Soler López

Abstract. We study the global periodicity of difference equations of the form
xn+1 = f(xn), xn+1 = fn(xn) and xn+2 = f(xn , xn+1). We characterize
the n-cycles in the case of first order equations and give some partial results
for the second order equation. In particular, we find some examples of 3-cycles
which are different from the equation xn+2 = c

xnxn+1
, solving a question of

[2] and [4].

1. INTRODUCTION

Given a continuous function, f : (0,∞)l → (0,∞), l ≥ 1, an (autonomous)
difference equation of order l is a expression of the form

(1) xn+l = f(xn+l−1, xn+l−2, . . . , xn), n ∈ N ∪ {0}.
If we fix l real numbers, {x0, x1, . . .xl−1}, we obtain a unique sequence (xn)
satisfying (1), the l real numbers are said to be the initial conditions of the solution
(xn). The sequence (xn) is said to be periodic if there is p ∈ N so that xn+p = xn

for any n ∈ N ∪ {0}; if moreover p is the smallest integer satisfying the previous
condition then we say that (xn) is periodic of period p or p-periodic. We will say
that (1), or the map f , is a k-cycle if any solution is periodic and moreover k is the
least common multiple of all the periods. Remark that if (1) is a k-cycle then, by
force, k ≥ l.

If now we take a sequence of continuous functions (fn), fn : (0,∞)l → (0,∞),
then

(2) xn+l = fn(xn+l−1, xn+l−2, . . . , xn), n ∈ N ∪ {0},
is said to be a non autonomous difference equation for which the concepts of initial
conditions, solution, periodicity and k-cycle can be adapted in a natural way.
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Both autonomous and non autonomous difference equations have a ubiquitous
presence in applications from Economics, Biology, ..., so the main task when dealing
them is to know the asymptotical behaviour of their solutions. In this paper we focus
our attention on the topic of the periodicity, and in particular, on k-cycles. The
problem of characterizing maps, f : (0,∞)l → (0,∞), so that (1) is a k-cycle is
too much general, extremely difficult even for l = 2 and it may depend too much on
the value of k. Thus, we begin by considering the (autonomous) difference equation
xn+1 = f(xn) (see [7, Open Problem 3.4.1]) and we obtain, in Theorem A, that if
it is a k-cycle then k ∈ {1, 2}. Moreover we give a full description of the maps
f generating k-cycles: when k = 1 f has to be the identity and if k = 2, then
we show that all the cycles are topologically conjugate to the map g(x) = 1

x , see
Theorem B. Finally, we study the same question but adding the condition that f is
differentiable and we characterize all the differentiable 2-cycles.

In a next step we study the first order non-autonomous difference equation

(3) xn+1 = fn(xn),

where each fn : (0,∞) → (0,∞) is a continuous map, n = 0, 1, ... We prove that
if (3) is a k-cycle, k ≥ 1, then the sequence of maps (fn) must be also periodic.
Even, in such a case if the sequence of maps (fn) is periodic of period p, fn is
bijective for any n and either fp−1◦· · ·◦f0 = Id|(0,∞) or f2p−1◦· · ·◦f0 = Id|(0,∞),
where Id|A denotes the identity map on A, see Theorem C. In addition, we provide
examples of non autonomous difference equations of first order such that all their
solutions are periodic, but their set of periods is infinite.

Finally we study some topics about the second order autonomous difference
equation:

(4) xn+2 = f(xn+1, xn),

where f : (0,∞)2 → (0,∞) is a continuous map. Our source of inspiration is
[7, Open Problem 3.4.2 ] where it is proposed to characterize the k-cycles with
k ≥ 3. We investigate this question when k = 3 and hence any solution of the
difference equation has period 1 or 3. In particular we study this problem for maps
of the form f(x, y) = ξ(xy) and we prove that then f(x, y) =

c

xy
, c > 0, see

Theorem D. Remark that we obtain the same maps as in [2] and then it is natural to
wonder if these maps are the only for which (4) is a 3-cycle. We answer negatively
this question by finding several families of 3-cycles different from

c

xy
, solving a

question stated in [2] and [4]. Moreover, since the method for constructing these
families provides symmetric maps (see Theorem E), we also construct in the last
subsection of the paper an example of a non-symmetric map which is also a 3-cycle
(Theorem F).
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The paper is organized as follows. Section 2 is devoted to study both one
dimensional cases: autonomous and non-autonomous. In Section 3 we study global
periodic aspects of equation (4).

2. ON CYCLES IN DIFFERENCE EQUATIONS OF ORDER ONE

In this section we study difference equations of order one of two types: au-
tonomous and non autonomous ones. In the autonomous case, we prove that there
only exist 1-cycles and 2-cycles, and we show that all 2-cycles are topologically con-
jugate to the map φ(x) = 1

x . Concerning the non autonomous case, given a positive
integer k, we can choose the sequence (fn) such that the corresponding difference
equation is a k-cycle, and then the sequence (fn) is periodic itself. Moreover, we
are able to construct non autonomous difference equations of order one holding that
all their solutions are periodic and having an infinite set of periods.

2.1. On the equation xn+1 = f(xn)

In this subsection we characterize k-cycles for first order (autonomous) differ-
ence equations for any k ∈ N. We begin by proving the following result.

Theorem A. Consider the difference equation xn+1 = f(xn), where f :
(0,∞) → (0,∞) is continuous. If f is a k-cycle, then k ∈ {1, 2}. Moreover, if f
is not the identity map on (0,∞), then

f(x) =




f0(x) if x ∈ (0, x0),

x0 if x = x0,

f−1
0 (x) if x ∈ (x0,∞),

where x0 > 0 and f0 : (0, x0) → (x0,∞) is a continuous strictly decreasing map
such that limx→x0 f0(x) = x0.

Proof. Assume that f is a k-cycle. First, we are going to prove that f is
bijective. To this end, notice that if z /∈ f(0,∞), then the sequence (z, f(z), ...)
cannot be periodic and hence f has to be surjective. On the other hand, if f would
not be injective and f(z1) = f(z2) for two different points z1, z2 ∈ (0,∞), then the
sequences (z1, f(z1), ...) and (z2, f(z2), ...) are equal except for the first element
and hence both of them cannot be periodic. This proves that f is injective.

Now suppose that f is strictly increasing. If x < f(x) for some x ∈ (0,∞)
then x < f(x) < f 2(x) < .... and consequently (x, f(x), f2(x), . . . ) cannot be
periodic, hence x ≥ f(x). If x > f(x) then x > f(x) > f2(x) > .... and
(x, f(x), f2(x), . . .) cannot be periodic, therefore x = f(x) for all x ∈ (0,∞).
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Finally, suppose that f is strictly decreasing. Then f 2 is strictly increasing
and xn+1 = f2(xn) is either a k-cycle (if k odd) or a k/2-cycle (if k even). We
apply the argument of the above paragraph to f2 and we obtain f 2(x) = x for all
x ∈ (0,+∞). Then by [6, Lemma 15.2, page 290] we deduce the result.

Remark 1. We must point out that different versions of Theorem can be found
in [1] and [5]. However, our proof is slightly different from those and we decide to
include it for the sake of completeness. In addition, Theorem solves Open Problem
3.4.1 from [7].

Two maps, f, g ∈ C[(0,∞), (0,∞)] are said to be topologically conjugate if
there exists a homeomorphism ϕ : (0,∞) → (0,∞) such that ϕ ◦ f = g ◦ ϕ.
We write f ∼ g if and only if they are topologically conjugate. Clearly ∼ is an
equivalence relationship. In Theorem A we see that there exists a unique map,
the identity, which is a 1-cycle. The following result shows that there is only an
equivalence class on the set of 2-cycles.

Theorem B. Any 2-cycle f ∈ C[(0,∞), (0,∞)] is topologically conjugate to
the map φ(x) = 1/x.

Proof. We are going to define a homeomorphism ϕ : (0,∞) → (0,∞) such
that

(5) ϕ ◦ f = φ ◦ ϕ.
Notice that equality (5) can be rewritten for any x ∈ (0,∞) as

(6) ϕ(f(x)) = 1/ϕ(x).

Let x0 ∈ (0,∞) be the unique point such that f(x0) = x0. Then (6) gives us
ϕ(x0) = 1/ϕ(x0), and hence ϕ(x0) = 1. Now, define ϕ : (0, x0] → (0, 1] to
be strictly increasing, continuous and such that limx→0 ϕ(x) = 0. We extend this
map to (x0,∞) as follows. Let x ∈ (x0,∞) and let y = f(x) ∈ (0, x0). Define
ϕ(x) := 1/ϕ(y) = 1/ϕ(f(x)). Notice that since ϕ(x) �= 0 for all x ∈ (0, x0] and

lim
x→x0
x>x0

ϕ(x) = lim
x→x0
x<x0

1/ϕ(x) = 1,

the map ϕ is continuous. Now, we prove that ϕ : (0,∞) → (0,∞) is a homeomor-
phism. Since

lim
x→∞ϕ(x) = lim

x→0
1/ϕ(x) = ∞,

we conclude that ϕ is surjective. Now, we finish by proving that ϕ is strictly
increasing. To this end, note that ϕ(x) < ϕ(y) for any x ∈ (0, x0], y ∈ (x0,∞) by
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definition. If x > y > x0, then since f is strictly decreasing f(x) < f(y). Then
ϕ(f(x)) < ϕ(f(y)) and therefore ϕ(x) = 1/ϕ(f(x)) > 1/ϕ(f(y)) = ϕ(y), which
finishes the proof.

When the map f of Theorem A is of class C1 the following additional condition
must be satisfied.

Proposition 2. Let f be as in Theorem A, f �= Id|(0,∞). If f is a C1-map then
f ′(x0) = −1, where x0 is the fixed point of f .

Proof. Since f is of C1-class and f 2(x) = x, we have that

f ′(f(x))f ′(x) = 1,

for any x ∈ (0,∞). In particular, for the fixed point x0 it is held f ′(x0)2 = 1.
Since f is decreasing, the result follows.

It is a simple task to check that the following C1 maps are 2-cycles:

f1(x) =
c

x
, c > 0,

f2(x) =




−1
e

log x if x ∈
(
0,

1
e

]
,(

1
e

)ex

if x ∈
(1
e
,∞

)
.

2.2. On the equation xn+1 = fn(xn)

Now, we will investigate Equation (3) and study what properties have to satisfy
the sequence of continuous maps (fn) in order to be a k-cycle. We adopt the
following notation

f j
i := fi+j−1 ◦ · · · ◦ fi+1 ◦ fi

for any i ∈ N ∪ {0} and j ∈ N. Hence, we assume that f0 : (0,∞) → f0(0,∞)
and for n ≥ 1, fn : fn−1

0 (0,∞) → fn
0 (0,∞).

Theorem C. Assume that Equation (3) is a k-cycle. Then:

(i) fi is bijective for any i ∈ N ∪ {0}.
(ii) (fn) is periodic.
(iii) If p is the period of (fn) then either fp−1◦...◦f0 = Id|(0,∞) or f2p−1◦...◦f0 =

Id|(0,∞).
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Proof. Since any solution (x0, x1, x2, . . . ) from (3) is periodic of period less
than or equal to k and its period has to divide k then

(7) xi = xi+kj for any i ∈ N ∪ {0} and any j ∈ N.

Therefore fk
hk = Id|(0,∞) for any h ∈ N ∪ {0}.

We begin by proving (i). From fk
0 = fk−1 ◦ · · · ◦ f1 ◦ f0 = Id|(0,∞) we

deduce that f0 is injective and, consequently, strictly monotone. Since f0 is also
surjective, it is bijective. Now fk−1 ◦ . . . f2 ◦ f1 = f−1

0 and we can repeat the
previous argument to prove that f1 is bijective. Reasoning in this way we have
fk−1◦· · ·◦fi+1◦fi = (fi−1◦· · ·◦f0)−1 and each fi is bijective, i ∈ {1, 2, . . . , k−1}.
Using the relations f k

hk = Id|(0,∞), h ∈ N, in the same way it is easy to prove that
fi is bijective for any i ∈ N.

Next we prove (ii). Let x ∈ (0,∞) and i ∈ N ∪ {0} then there is a solution
(x0, x1, . . . ) of (3) so that xi = x: it suffices to take x0 = x if i = 0 and
x0 = f−1

0 ◦ f−1
1 ◦ · · · ◦ f−1

i−1(x) if i > 0. From (7) we have

fi+lj(x) = fi+lj(xi) = fi+lj(xi+lj) = xi+lj+1 = xi+1 = fi(xi) = fi(x)

for any j ∈ N, thus (fn) is periodic.
Finally we prove (iii). Let p be the period of (fn) and note that any solution of

(8) xn+1 = fp
0 (xn)

has the form (xpn) where (xn) is a solution of (3). Thus (8) is a h-cycle for some
h ≤ k and by Theorem A, h ∈ {1, 2}. If h = 1 then fp

0 = Id|(0,∞), otherwise
(fp

0 )2 = f2p
0 = Id|(0,∞).

Example 3. Consider the sequence (fn), where f2n+1(x) = x, and f2n(x) =
1/x, n ≥ 0. Then (3) is a 4-cycle and (fn) has period 2. If for instance we consider
α > 1, f2n+1(x) = αx and f2n(x) = 1

αx, we obtain that all the solutions of (3)
have period 2 and (3) is a 2-cycle, moreover (fn) has period 2.

Example 4. Let k, r ∈ N, Ik := [k, k + 1] and pr
Ik
, qr

Ik
: Ik → Ik defined

by pr
Ik

(x) = k + (x − k)r and qr
Ik

(x) = k + (x − k)1/r. Clearly (prIk
)−1 = qr

Ik
,

pr
Ik

(k) = qr
Ik

(k) = k and pr
Ik

(k+ 1) = qr
Ik

(k+ 1) = k + 1.
Now we are going to define a sequence (fn) of continuous maps so that any

solution of (3) is periodic and the set of periods of (3) is N. We define any fn by
pieces as follows:

• fn|(0,1] = Id|(0,1];

• If t = 2s for some s ∈ N then we take (fn|It) to be periodic of period t+ 1,
f2h|It = ph+2

It
if 0 ≤ h < s, f2h+1|It = qh+2

It
if 0 ≤ h < s and f2s|It = Id|It .
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• If t = 2s + 1 for some s ∈ N ∪ {0}, then we take (fn|It) to be periodic of
period t+ 1, f2h|It = ph+2

It
if 0 ≤ h ≤ s, f2h+1|It = qh+2

It
if 0 ≤ h ≤ s.

In order to clarify the previous definition of (fn) we introduce the below table
where we write the definition of the maps f0, f1, . . . f9 when restricted to (0, 7].

I0 I1 I2 I3 I4 I5 I6

f0 Id|I0 p2
I1

p2
I2

p2
I3

p2
I4

p2
I5

p2
I6

f1 Id|I0 q2I1 q2I2 q2I3 q2I4 q2I5 q2I6
f2 Id|I0 p2

I1
Id|I2 p3

I3
p3

I4
p3

I5
p3

I6

f3 Id|I0 q2I1 p2
I2

q3I3 q3I4 q3I5 q3I6
f4 Id|I0 p2

I1
q2I2 p2

I3
Id|I4 p4

I5
p4

I6

f5 Id|I0 q2I1 Id|I2 q2I3 p2
I4

q4I5 q4I6
f6 Id|I0 p2

I1
p2

I2
p3

I3
q2I4 p2

I5
Id|I6

f7 Id|I0 q2I1 q2I2 q3I3 p3
I4

q2I5 p2
I6

f8 Id|I0 p2
I1

Id|I2 p2
I3

q3I4 p3
I5

q2I6
f9 Id|I0 q2I1 p2

I2
q2I3 Id|I4 q3I5 p3

I6

Let (xn) be a solution of (3), then it is easy to check: (i) if x0 ∈ (0, 1]∪N then
(xn) is 1-periodic; (ii) if t ∈ N and x0 ∈ (t, t+ 1) then (xn) is (t+ 1)-periodic.

It is an open question to know whether autonomous difference equations such
that all their solutions are periodic and having an infinite set of periods can exist.

Before finishing this section we assume that the sequence (fn) converges to a
continuous map f . Then if xn+1 = f(x)n is a k-cycle (with k ∈ {1, 2} by Theo-
rem A) it is interesting to know if the solutions of (3) are necessarily asymptotically
periodic. In the following two remarks we answer negatively this question for both
the pointwise and the uniform convergence.

Remark 5. [Pointwise convergence]. Let fn(x) = anx, where an is a sequence
converging to 1. Then clearly fn converges to f(x) = x and:

• If we take an < 1 for any n, then fn
0 (x) =

∏n−1
i=0 aix converges to 0 because∏n−1

i=0 ai converges to 0. Then the solutions of (3) are asymptotically periodic.

• However if we choose an > 1 for any n, then fn
0 (x) =

∏n−1
i=0 aix converges

to ∞ because
∏n−1

i=0 ai converges to ∞ and then the solutions of (3) are not
asymptotically periodic.

• If we choose a2n · a2n+1 = 1 for any n, then fn
0 (x) = x if n is odd and

fn
0 (x) = anx if n is even. In both cases fn

0 (x) converges to x and the
solutions of (3) are asymptotically periodic.
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Remark 6. [Uniform convergence] Let (an) be a sequence of real numbers
converging to 0 and so that an > −1 for any n. Let fn(x) = x+ an if x ∈ [1,∞)
and fn(x) = x(1+an) when x ∈ (0, 1). Then it is easy to check that fn uniformly
converges to f(x) = x. Moreover:

• if an = − 1
n+1 then any solution of (3) converges to 0 and then is asymptoti-

cally periodic;

• if an = 1
n+1 then any solution of (3) converges to ∞ and then it is not

asymptotically periodic.

3. ON THE EQUATIONxn+2 = f(xn+1, xn)

Let f : (0,∞)2 → (0,∞) be a continuous map separating variables, that is,
f(x, y) = f1(x)f2(y) for some continuous maps f1, f2 : (0,∞) → (0,∞). Then it
is known, see [2], that the unique 3-cycles of the form

(9) xn+2 = f1(xn+1)f2(xn),

are given by

(10) xn+2 =
c

xnxn+1
, n = 0, 1, 2, ..., c > 0.

However it is an open problem, cf. [4], to know whether the above cycles are or
not the unique 3-cycles of the form (9) for general continuous maps f : (0,∞)2 →
(0,∞).

The aim of this section is answering this question. We will build difference
equations which are 3-cycle different to (10). In fact we will construct 3-cycles for
which the corresponding maps f(x, y) are symmetric (i.e. f(x, y) = f(y, x)) and
non-symmetric (i.e. f(x, y) �= f(y, x)). Nevertheless, we will see that if f(x, y) =
ξ(xy), where ξ : (0,∞) → (0,∞) is a C1 map, then necessarily ξ(z) = c

z , where
c is an arbitrary positive real constant.

3.1. The unique 3-cycle of the form xn+2 = ξ(xn+1xn)

We begin by recalling some results from [2] when f separates the variables.

Proposition 7. Let (9) be a 3-cycle and let f(x, y) = f1(x)f2(y). Then:

(i) ϕu = ψu for any u > 0, where ϕu and ψu are the fiber maps defined by
ϕu(x) = f(u, x) and ψu(x) = f(x, u) for any x > 0.

(ii) limx→∞ϕu(x) = 0 for all u > 0.

(iii) The one-dimensional map h(x) = f(x, x) is a decreasing homeomorphism.
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(iv) There is a unique λ ∈ (0,∞) such that f(λ, λ) = λ.

(v) x = f(f(x, y), y) and y = f(x, f(x, y)), for all x, y > 0.

Doing the derivatives in the second equality from Proposition 7(v) we obtain:

Lemma 8. If f : (0,∞)2 → (0,∞) is a symmetric differentiable map and (9)
is a 3-cycle, then

1 =
∂f

∂y
(a, f(a, b))

∂f

∂y
(a, b),

0 =
∂f

∂x
(a, f(a, b))+

∂f

∂y
(a, f(a, b))

∂f

∂x
(a, b).

As a direct consequence,

∂f

∂x
(a, b)

∂f

∂y
(a, b)

= −∂f
∂x

(a, f(a, b)).

Now we are in position to prove:

Theorem D. Assume that f : (0,∞)2 → (0,∞) is a differentiable map having
the form f(x, y) = ξ(xy). Then (9) is a 3-cycle if and only if

f(x, y) =
c

xy
,

for some positive constant c > 0.

Proof. Let α > 0 and define Kα = f(α, α). Then it is easily seen that

f(x,
α2

x
) = ξ(α2) = Kα for any x > 0.

Hence,

0 =
∂f

∂x
(x,

α2

x
) − α2

x2

∂f

∂y
(x,

α2

x
) and

α2

x2
=

∂f

∂x
(x,

α2

x
)

∂f

∂y
(x,

α2

x
)
.

According to Lemma 8, we obtain

α2

x2
=

∂f

∂x
(x,

α2

x
)

∂f

∂y
(x,

α2

x
)

= −∂f
∂x

(x, f(x,
α2

x
)) = −∂f

∂x
(x,Kα) = −ϕ′

Kα
(x).
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As a consequence,

ϕKα(x) =
α2

x
+ c, c ∈ R.

Since limx→∞ ϕKα(x) = 0 (see Proposition 7), we find c = 0 and so

ϕKα(x) =
α2

x
,

or equivalently ϕf(α,α)(x) = α2

x , x > 0. Using the notation h(z) := f(z, z), the
above equality is rewritten as

ϕh(α)(x) =
α2

x
, x > 0.

Taking into account Proposition 7(v), for any u > 0 we write

ϕu(x) =
[h−1(u)]2

x
, x > 0.

At the same time, the symmetry of f yields

[h−1(u)]2

x
= ϕu(x) = ϕx(u) =

[h−1(x)]2

u
,

so [h−1(u)]2

[h−1(x)]2
=
x

u
, for any x, u > 0.

By Proposition 7(iv), let λ ∈ (0,∞) be the unique equilibrium point of the
equation. Then if u = λ, h(λ) = λ = h−1(λ), we obtain

λ2

[h−1(x)]2
=
x

λ
, that is, h−1(x) =

√
λ3

x
, x > 0.

Finally,

f(x, y) = ϕy(x) =
[h−1(y)]2

x
=

λ3

y

x
=
λ3

xy
,

which ends the proof.

3.2. New symmetric 3-cycles

In this subsection we construct new 3-cycles, different to xn+2 = c
xn+1xn

, by
making use of a typical strategy appearing in the setting of discrete dynamical
systems; namely we deal with topological conjugations of the map Fc : (0,∞)2 →
(0,∞)2 given by Fc(x, y) = (y, c

xy ). We precise this idea in Theorem E.
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First we clarify the relationship between difference equations and (discrete)
dynamical systems. We call associated dynamical system to (1) to the map

(11)
F : (0,∞)l → (0,∞)l

F (x1, ..., xl−1, xl) = (x2, ..., xl−1, f(xl, xl−1, ..., x1)).

Conversely (1) is said to be the associated difference equation to the dynamical
system (11). Now it is a simple task to prove the following result (we leave the
details to the reader).

Lemma 9. If (1) is a k-cycle and F is its associated dynamical system, then
F k = Id|(0,∞)l. Conversely, if F is given by (11) and k is the smallest positive
integer such that F k = Id|(0,∞)l then its associated difference equation is a k-cycle.

Theorem E. Assume that (1) is a k-cycle (k ≥ l) and let α : (0,∞) → (0,∞)
be a homeomorphism. Then

xn+l = α
(
f [α−1(xn+l−1), α−1(xn+l−2), ..., α−1(xn+1), α−1(xn)]

)
is also a k-cycle.

Proof. Let F : (0,∞)l → (0,∞)l be the associated dynamical system to (1).
Then F k = Id|(0,∞)l by Lemma 9. Now take H : (0,∞)l → (0,∞)l defined by
H(x1, x2, ..., xl) = (α(x1), α(x2), ..., α(xl)) and considerG = H ◦F ◦H−1. Using
that H−1(x1, x2, ..., xl) = (α−1(x1), α−1(x2), ..., α−1(xl)), it is a simple matter to
check that

G(x1, x2, ..., xl) =
(
x2, ..., xl, α(f [α−1(xl), α−1(xl−1), ..., α−1(x2), α−1(x1)])

)
.

Moreover

(12) Gk = H ◦ F k ◦H−1 = Id|(0,∞)l.

Then, by Lemma 9,

xn+l = α(f
[
α−1(xn+l−1), α−1(xn+l−2), ..., α−1(xn+1), α−1(xn)

]
)

is a new k-cycle.

As an easy consequence of the above result we obtain:

Example 10. The following difference equations are 3-cycles:

• xn+2 = exp
(

c

log(xn + 1) log(xn+1 + 1)

)
− 1, c ∈ (0,∞);
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• xn+2 =

(
−1+

√
1+ 4

xn+1

)2(
−1+

√
1+ 4

xn

)2

4c

[
4c+

(
−1+

√
1+ 4

xn+1

)(
−1+

√
1+ 4

xn

)] , c ∈ (0,∞).

Indeed, both equations are obtained from the 3-cycle xn+2 = c
xnxn+1

, c ∈ (0,∞),
by applying Theorem E. The first one is got by taking α(x) = ex − 1. For the
second one we have chosen α(x) = 1

x(1+x)
.

It is interesting to point out that the maps generating the above 3-cycles are
symmetric and neither are of the form ξ(xy) nor separate variables.

Example 11. The difference equation

xn+3 = xn

(
xn+2

xn+1

)Φ

,

where Φ ∈ {φ,−φ−1} and φ = 1+
√

5
2 is the golden number, is a 5-cycle. In fact

the only one which has the form xn+3 = xnρ(xn+1, xn+2), see [3]. Then if we
take α(x) = ex − 1 we obtain the following 5-cycle

xn+3 = (1 + xn+2)
(

log(1+xn+1)

log(1+xn)

)Φ

− 1.

Remark 12. It is interesting to emphasize that Theorem E partially solves the
open problem proposed in the last section of [4]. For instance, in that paper it is
shown that for an odd positive integer l, the difference equations

(13) xn+l =
c

xnxn+2 · · ·xn+l−1
, for some c > 0

and

(14) xn+l =

(l+1)/2∏
j=1

xn+2j−2

(l−1)/2∏
j=1

xn+2j−1

are the only (l + 1)-cycles with the form

xn+l = fl−1(xn+l−1) · · ·f1(xn+1)f0(xn).

If we consider an arbitrary homeomorphism α : (0,∞) → (0,∞), then according
to Proposition E we can obtain a new family of (l+ 1)-cycles

xn+l = α
[
fl−1(α−1(xn+l−1)) · · · · · f2(α−1(xn+2)) · f1(α−1(xn+1))

]
,

different to (13) and (14).
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3.3. Non-symmetric 3-cycles

The aim of this subsection is to construct a continuous non-symmetric map f̃ :
(0,∞)2 → (0,∞) such that the associated difference equation xn+2 = f̃(xn+1, xn)
is a 3-cycle. In particular we will prove the following theorem at the end of this
subsection.

Theorem F. There exists a continuous map F̃ : (0,∞)2 → (0,∞)2, with
the form F̃ (x, y) = (y, f̃(x, y)), that holds F̃ 3 = Id|(0,∞)2. Moreover f̃ is non-
symmetric.

Consequently, the difference equation associated to F̃ is a non-symmetric 3-
cycle.

We are going to introduce several technical results in order to prove Theorem .
We begin by defining F : (0,+∞)2 → (0,+∞)2 as

F (x, y) = (y, f(x, y)), where f(x, y) =
1
xy
.

Notice that for all x, y > 0 we have

(15) F 2(x, y) = (f(x, y), x) and F 3(x, y) = (x, y).

The main idea of the construction is to modify F in a suitable way on an appropriate
rectangle R and its iterates. Later we consider the new map F̃ (x, y) = (y, f̃(x, y))
which agrees with F outside the rectangle R and its iterates.

As usual, if A ⊂ R
2 then ∂A and IntA denote the boundary and the interior of

A, respectively.

Lemma 13. There exists a rectangle R = [a, b]× [c, d] such that R∩F (R) =
R ∩ F 2(R) = F (R) ∩ F 2(R) = ∅.

Proof. Notice that

(16) F (R) = {(v, w) : c ≤ v ≤ d,
1
bv

≤ w ≤ 1
av

},

(17) F 2(R) = {(v, w) : a ≤ w ≤ b,
1
dw

≤ v ≤ 1
cw

}.

So it suffices to take R =
[

1
500 ,

1
100

] × [
1
10 ,

1
5

]
.

In the sequel R will denote the rectangle

R = [a, b]× [c, d] :=
[

1
500

,
1

100

]
×

[
1
10
,
1
5

]
.
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Now we modify the difference equation xn+2 = 1
xnxn+1

, or equivalently the map
F, in the sets R, F (R) and F 2(R).

We will define homeomorphisms

F1 : R→ F (R), F2 : F (R) → F 2(R), F3 : F 2(R) → F 3(R) = R,

such that F1, F2 and F3 coincide with F on the boundary of their respective domains
and satisfying

Fi(x, y) = (y, fi(x, y)), 1 ≤ i ≤ 3,

for suitable maps fi : Ci → (0,+∞), Ci = F i−1(R), i = 1, 2, 3.

Proposition 14. The map f1 : R → R given by

(18) f1(x, y) =
1
xy

+
(

1
ay

− 1
xy

)
(x− a)2(b− x)2(d− y)2(y − c)2,

satisfies:

(i) ∂f1
∂x (x, y) < 0 for all (x, y) ∈ R.

(ii) ∂f1
∂y (x, y) < 0 for all (x, y) ∈ R.

Proof. (i). It is straightforward to check that

∂f1
∂x

(x, y)

=
1

−x2y

(
1
2
− 1

2
(x − a)2 (b− x)2 (d− y)2 (y − c)2

)

+
1
y

{
(d− y)2 (y − c)2 (x− a) (b− x)×[

(x− a) (b− x)
2x2

+ 2
(

1
a
− 1
x

)
(a+ b− 2x)

]
− 1

2
1
x2

}
=: D +

1
y
E.

Since D < 0 for all (x, y) ∈ R, we will prove that E is also negative. Notice
that

(19) (d− y)2 (y − c)2 (x − a) (b− x)
(x− a) (b− x)

2x2
<

1
2

1
2x2

.

On the other hand, we claim that

(20)
∣∣∣∣2 (d− y)2 (y − c)2 (x− a) (b− x)

(
1
a
− 1
x

)
(a+ b− 2x)

∣∣∣∣ < 1
2

1
2x2
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for all (x, y) ∈ R. It is a simple matter to check that |(x− a) (b− x)| ≤ (b−a)2

4 .
Hence ∣∣∣∣2 (d− y)2 (y − c)2 (x− a) (b− x)

(
1
a
− 1
x

)
(a+ b− 2x)

∣∣∣∣
≤ 2 (0.1)4

(b− a)2

4

(
1
a
− 1
x

)
0.008.

The task now is to deduce that

2 (0.1)4
(0.008)2

4

(
1
a
− 1
x

)
0.008 <

1
2

1
2x2

,

or equivalently

1
a
<

1
x

+
1013

210

1
x2
, that is 500x2 − x− 1013

210
< 0.

But it is easily seen that the last inequality holds for all x ∈ R (the details are left
to the reader). This completes the proof of (20).

Finally, from (19) and (20) we deduce that E < 0 for all (x, y) ∈ R, and
consequently ∂f1

∂x < 0 in R.
(ii). Similarly to the first part, we compute

∂f1
∂y

(x, y) =
−1
y2x

[
1
2
− (x− a)2 (b− x)2 (d− y)2 (y − c)2

]

−1
2

1
xy2

− 1
ay2

(x− a)2 (b− x)2 (d− y)2 (y − c)2

+2
(

1
ay

− 1
xy

)
(x− a)2 (b− x)2 (d− y) (y − c) (c+ d− 2y) .

If we prove that∣∣∣∣2
(

1
ay

− 1
xy

)
(x− a)2 (b− x)2 (d− y) (y − c) (c+ d− 2y)

∣∣∣∣ < 1
2

1
xy2

,

we will obtain that ∂f1
∂y (x, y) < 0 in R. To see it, notice that

∣∣∣∣2
(

1
ay

− 1
xy

)
[(x− a)2 (b− x)2]{(d− y) (y − c)} (c+ d− 2y)

∣∣∣∣
<

2
y

(
1
a
− 1
x

)
(b− a)4

16
(d− c)2

4
(d− c) =

2
y

(
1
a
− 1
x

)
(0.008)4 (0.1)3

64
.
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So, it suffices to prove that

2
y

(
1
a
− 1
x

)
(0.008)4 (0.1)3

64
<

1
2

1
xy2

,

or equivalently

1
a
<

1
x

+
1015

28

1
xy
, i.e. 500x < 1 +

1015

28

1
y
.

This last inequality holds since 1+ 1015

28
1
y ≥ 1+51015

28 > 5 ≥ 500x, which completes
the proof of the second part of the result.

Next, we define the map F1 : R → F1(R) by

(21) F1(x, y) = (y, f1(x, y)).

Lemma 15. It holds
F1(R) = F (R).

Proof. First notice that F1(R) ⊂ F (R). To see it, take a point (p, q) ∈ F1(R),
(p, q) = F1(x, y) = (y, f1(x, y)) for some (x, y) ∈ R. Then y = p ∈ [c, d] and also

1
bp

≤ q ≤ 1
ap

since the inequalities

1
by

≤ 1
xy

+
(

1
ay

− 1
xy

)
(x− a)2(b− x)2(d− y)2(y − c)2 ≤ 1

ay

hold. By (16) we deduce that (p, q) ∈ F (R).
To obtain the reverse inclusion consider a point (v, w) ∈ F (R), so (v, w) =

F (x̃, ỹ) = (ỹ, f(x̃, ỹ)) for some (x̃, ỹ) ∈ R. We are going to show that (v, w) ∈
F1(R). Taking into account that f1(a, ỹ) = f(a, ỹ), f1(b, ỹ) = f(b, ỹ) and ap-
plying Proposition 14(i), we deduce the existence of a point x′ ∈ (a, b) such that
f1(x′, ỹ) = f(x̃, ỹ). Finally F1(x′, ỹ) = (ỹ, f1(x′, ỹ)) = (ỹ, f(x̃, ỹ)) = (v, w).
Therefore (v, w) ∈ F1(R), as desired.

Proposition 16. The map F1 : R→ F (R) is a homeomorphism satisfying

(F1)|∂R = F |∂R.
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Proof. From the definition of F1 and F we deduce that (F1)|∂R = F |∂R.
Lemma 15 yields the surjectivity of F1. Moreover, F1 is injective, since

F1(x, y) = F1(x′, y′) implies (y, f1(x, y)) = (y′, f1(x′, y′)), so y = y′, f1(x, y) =
f1(x′, y). Now Proposition 14 leads to x = x′. Hence (x, y) = (x′, y′).

Since F1 is continuous, bijective and it is defined on a compact set of the plane,
we conclude that it is a homeomorphism.

We now present the second modification of F on F (R). We define

F2 : F (R) → F2(F (R)),

F2(x, y) = (y, f ◦ F ◦ F−1
1 (x, y)).

Remark 17. From the definitions, we have

(F2)|∂F (R) = F |∂F (R) and F2(∂F (R)) = ∂(F 2(R)).

Lemma 18. F2 is an injective map.

Proof. Suppose that F2(x, y) = F2(x′, y′) for some (x, y), (x′, y′) ∈ F (R).
Then

(y, f ◦ F ◦ F−1
1 (x, y)) = (y′, f ◦ F ◦ F−1

1 (x′, y′)),

so y = y′ and f ◦ F ◦ F−1
1 (x, y) = f ◦ F ◦ F−1

1 (x′, y).
Let F−1

1 (x, y) = (u, x) and F−1
1 (x′, y) = (v, x′). Then:

f ◦ F ◦ F−1
1 (x, y) = f ◦ F (u, x) = f(x, f(u, x)) = u,

f ◦ F ◦ F−1
1 (x′, y) = f ◦ F (v, x′) = f(x′, f(v, x′)) = v.

Hence u = v, and from (x, y) = F1(u, x) = (x, f1(u, x)), (x′, y) = F1(v, x′) =
(x′, f1(v, x′)), we obtain f1(u, x) = f1(v, x′) = f1(u, x′). Finally by Proposi-
tion 14(ii) we deduce that x = x′.

Proposition 19. F2 is a homeomorphism from F (R) into F 2(F (R)) and

(22) F2(F (R)) = F 2(R).

Proof. Since F2 is continuous, bijective (see Lemma 18) and it is defined on a
compact set, we deduce that F2 is a homeomorphism from F (R) onto F2(F (R)).
Next, we are going to prove (22). From Remark 17 and the fact that F2 is a
homeomorphism, we deduce F2 (∂F (R)) = F2(F (∂R)) = ∂(F 2(R)) = F 2(∂R),
that is
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(23) F2(F (∂R)) = F 2(∂R).

Moreover, γ := F2(∂R) is a Jordan’s curve.
Since F2(Int(F (R))) is an open set in R2 by the theorem of invariance of

domain (see [8, p. 475]), we find

∂(F2(F (R))) ∩ F2(Int(F (R))) = ∅, ∂(F2(F (R))) ⊆ F2(∂F (R)) = ∂F 2(R).

Being F2(F (R)) a bounded set, we have ∂(F2(F (R))) = F2(∂F (R)) = ∂F 2(R).
In that case, either F2(Int(F (R))) = A (here A is the bounded region inside γ)
or F2(Int(F (R))) = B (where B is the unbounded region outside γ). By noticing
that F2(F (R)) is bounded, we obtain

(24) F2(Int(F (R))) = A.

From (23) and (24) we conclude that F2(F (R)) = F 2(R).

Lemma 20. For any (x, y) ∈ R, F 2(x, y) = (f(x, y), x) and F2 ◦ F1(x, y) =
(f1(x, y), x).

Proof. Given a point (x, y) ∈ R it is clear that F 2(x, y) = (f(x, y), x) and

F2 ◦ F1(x, y)

= F2(y, f1(x, y)) = (f1(x, y), f ◦ F ◦ F−1
1 (y, f1(x, y)))

= (f1(x, y), f ◦ F (x, y)) = (f1(x, y), f(y, f(x, y))) = (f1(x, y), x).

Finally we make a third modification of F on F2(R). We define the map F3

as:

(25)
F3 : F 2(R) → F3(F 2(R)),

F3(x, y) =
(
y, f ◦ F 2 ◦ (F2 ◦ F1)−1(x, y)

)
.

Lemma 21. F3 is injective.

Proof. Consider two elements (v, w), (ṽ, w̃) from F 2(R) and suppose that
F3(v, w) = F3(ṽ, w̃). According to (25) w = w̃. Proposition 19 and Lemma 15
yield F2(R) = F2(F (R)) = F2(F1(R)), so there are (x, y), (x̃, ỹ) ∈ R such that
(v, w) = F2 ◦ F1(x, y) and (ṽ, w̃) = F2 ◦ F1(x̃, ỹ). Then using Lemma 20:

f ◦ F 2 ◦ (F2 ◦ F1)−1[F2 ◦ F1(x, y)] = f ◦ F 2(x, y) = f((f(x, y), x)) = y,

f ◦ F 2 ◦ (F2 ◦ F1)−1[F2 ◦ F1(x̃, ỹ)] = f ◦ F 2(x̃, ỹ) = f((f(x̃, ỹ), x̃)) = ỹ.
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Consequently,

F3(v, w) = F3(F2 ◦ F1(x, y)) = (w, f ◦ F 2 ◦ (F2 ◦ F1)−1[F2 ◦ F1(x, y)])

= (w, y),

F3(ṽ, w̃) = F3(F2 ◦ F1(x̃, ỹ)) = (w̃, f ◦ F 2 ◦ (F2 ◦ F1)−1[F2 ◦ F1(x̃, ỹ)])

= (w̃, ỹ) = (w, ỹ).

Since F3(v, w) = F3(ṽ, w̃) we have y = ỹ and using Lemma 20:

F2 ◦ F1(x, y) = (f1(x, y), x) = (v, w), F2 ◦ F1(x̃, ỹ) = (f1(x̃, ỹ), x̃) = (ṽ, w̃).

Therefore x = x̃ and finally (v, w) = (ṽ, w̃), which proves the injectivity of F3.

Proposition 22. R = F3(F 2(R)), F3 is a homeomorphism and satisfies

F 3(x, y) = (F3 ◦ F2 ◦ F1)(x, y) = (x, y) for all (x, y) ∈ R.

Proof. First we obtain F 3(x, y) = (F3 ◦ F2 ◦ F1)(x, y), (x, y) ∈ R. Indeed, a
straightforward calculation gives (we use Lemma 20 and (15))

(F3 ◦ F2 ◦ F1)(x, y) = F3(f1(x, y), x)

= (x, (f ◦ F 2 ◦ (F2 ◦ F1)−1[F2 ◦ F1(x, y)])

= (x, (f ◦ F 2)(x, y))=(x, f(f(x, y), x))=(x, y)=F 3(x, y).

From F3|R = F3 ◦F2 ◦F1, Proposition 16 and (22) it follows R = F3(F 2(R)).
F3 is bijective (use Lemma 21), then it is a homeomorphism from F2(R) onto

R since F 2(R) is compact and F3 is continuous.

Proof of Theorem F. Define the map F̃ : (0,∞)2 → (0,∞)2 by

F̃ (x, y) =




F (x, y), if (x, y) /∈ R ∪ F (R) ∪ F 2(R),

F1(x, y), if (x, y) ∈ R,

F2(x, y), if (x, y) ∈ F (R),

F3(x, y), if (x, y) ∈ F 2(R).

Since f̃ |R = f1 it is clear that f̃ is not symmetric. Moreover applying Propo-
sitions 16, 19, 22 and (15) we obtain F̃ 3 = Id|(0,∞)2 . Finally by Lemma 9 the
associated difference equation to f̃ is a 3-cycle.
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4. FINAL REMARKS

We have studied the topic of global periodicity of difference equations of first
and second order. Given a k-cycle we have shown a general method based in the
topological conjugation for constructing new k-cycles. Moreover, by translating
the study of the dynamics of a difference equation to the study of the associated
dynamical system, we were able to do a suitable modification on a symmetric 3-cycle
in order to obtain new non-symmetric 3-cycles linked to it. It has been proved that
any 2-cycle of first order is topologically conjugated to xn+1 = 1

xn
. However, it is

an open problem to know whether any 3-cycle of second order is or not topologically
conjugate to xn+2 = 1

xnxn+1
.
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