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A SEPARATION APPROACH TO VECTOR QUASI-EQUILIBRIUM
PROBLEMS: SADDLE POINT AND GAP FUNCTION

Giandomenico Mastroeni, Barbara Panicucci,
Mauro Passacantando and Jen-Chih Yao*

Abstract. The image space approach is applied to the study of vector quasi-
equilibrium problems. Exploiting separation arguments in the image space,
Lagrangian-type optimality conditions and gap functions for vector quasi-
equilibrium problems are derived.

1. INTRODUCTION

The theory of equilibrium problems provides a general framework for the anal-
ysis of several topics in optimization: from the classical optimality conditions for
constrained extremum problems to the equilibrium conditions for network flow,
economic and mechanical engineering problems [3, 7, 14]. Recently, equilibrium
problems, that were first introduced in a scalar form, have been generalized to the
vector case, following similar developments in the field of variational inequalities
[12, 6].

In this paper, by making use of the image space analysis, we consider a separation
approach to a vector quasi-equilibrium problem (for short, VQFE P) and deepen the
theory of Lagrangian-type optimality conditions and gap functions [4, 15] associated
with a VQFE P which consists in finding € K (x) such that:

f(x,y) £covioy 0, Vy € K(x),

where f : X x X — RP, K : X — 2%, X is a Banach space, and C is a
convex cone in RP such that ¢/C' is a pointed cone; in the definition of VQE P we
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have used the notation: = 2¢ y iff z —y ¢ C. When K(z) = K is a constant
multifunction, then VQEP is called vector equilibrium problem and denoted by
VEP;whenp =1,C =R, and K(z) = K, then VQE P collapses to the classic
equilibrium problem (E P):

find z€ K st f(x,y) >0, VyeK.

It is easy to see that vector optimization problems and vector variational inequal-
ities can be formulated as a VQE P choosing a suitable function f(x, y).
Recall that, given the vector optimization problem:
mine g0y h(z) st z €K, (P)
where h : X — RP, 2* € K is said a vector minimum point (for short v.m.p.) for
(P) iff the following system is impossible:

h(z*) - h(y) € C\ {0}, yeK.
The quasi (Stampacchia) vector variational inequality (QV 'V I) consists in finding
vt e K(x*) st F(a")(y—2") £ovgoy 0, Yy € K(z7),

where F': X — RP*™,

QV VI collapses to the vector variational inequality when K (z) = K.

The quasi Minty vector variational inequality (QMVVI) consists in finding
x* € K(x*) such that

F(y)(z* —y) 2c\ 10y 0, Vy € K(2%).

The following result is an immediate consequence of the definition of an op-
timal solution of a vector optimization problem and the definitions of QV'V I and
QMVVI.

Proposition 1.1. 1. Let f(z,y) := h(y) — h(z), then z* is a v.m.p. for (P)
iff z* is a solutionto VEP.

2. Let f(z,y) := F(z)(y—x); then =* is a solution of QVVI iff = * is a solution
to VQEP.

3. Let f(z,y) := F(y)(y — z); then z* is a solution of MQVVI iff z* is a
solutionto VQEP.

The image space analysis has shown to be a unifying scheme for studying
constrained extremum problems, variational inequalities, and, more generally, can
be applied to any kind of problem, say it P, that can be expressed under the form
of the impossibility of a parametric system [8].
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In this approach, the impossibility of such a system is reduced to the disjunction
of two suitable subsets I and H of the image space associated with P. I is defined
by the image of the functions involved in P, while H is a convex cone that depends
only on the type of conditions (equalities, inequalities, etc) on the class of problems
to which P belongs. The disjunction between K and H can be proved by showing
that they lie in two disjoint level sets of a suitable separating functional, which leads
one to obtain Lagrangian-type optimality conditions for P.

In this paper, we aim at applying the image space approach to the analysis of
VQEP, and, in particular, of saddle point conditions and gap functions associated
with VQFEP. The gap function approach has been widely studied in the field of
variational inequalities (see e.g. [4, 3, 23]). One of the main feature of such kind of
approach is that variational inequalities can be equivalently formulated in terms of
an optimization problem. Recently, gap function theory has been extended to V'V I
and VQEP [3, 15]. A gap function for VQEP ¢ : K — R is a function that
is non negative, for every 2 € K := {zx € X : € K(x)}, and that fulfils the
condition ¢(z) = 0 if and only if x is a solution of VQEP. It is immediate to
see that solving VQEP is equivalent to find a minimum point of ¢ on the set K°,
provided that the optimal value of ¢ is zero. An analogous definition has been given
in [15, 11] for a generalized VQFE P, the only difference being in the fact that ¢ is
non positive for every € K°. The analysis developed in [15, 11] is concerned with
particular classes of generalized VQFE P that, anyway, do not collapse, as particular
cases, to the class considered in the present paper.

The paper is organized as follows. In Section 2, we will analyse the general
features of the image space approach for VQE P giving particular attention to linear
separation arguments. In Section 3, we will characterize the linear separation, in
the image space, in terms of saddle point and Kuhn-Tucker type conditions for a
suitable Lagrangian function associated with VQE P. In Section 4, following the
approach introduced in [7], we will show how the separation tecniques in the image
space, allow us to define a gap function for a VQEP.

We remark that an important peculiarity of our analysis is that we explicitely
define the constraint mapping K : X — 2X by

K(z):={y € X : g(x,y) € D}, 1)

where g : X x X — R™, D is a closed convex cone in R™. Such a defi-
nition allows us to have a more handly expression of the gap function, from the
computational point of view.

We recall the main notations and definitions that will be used in the sequel. The
closure, the interior,the relative interior, the boundary, the relative boundary and the
convex hull of a set M C R™ are denoted by ciM, int M, ri M, bd M, rbd M,
and conv M, respectively. af f M and linM will denote the smallest affine variety
and the smallest subspace in R"™ that contains M, respectively.
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Lety € RP, y:= (y1,-- %) Y-y = (Y2, ¥p)

y(z_) = (y17 e Yi—1, Yitls - '7yp)' 1= 27' BERY 2 11 y(p—) = (y17 .- '7yp—1) .
(-,-) is the scalar product in R?, y > 0 iff y; > 0,i=1,...,p. RE :={z e RP:
x > 0}.

Let D C R™ be a convex cone, the positive polar of D is the set D* := {z* € R™ :
(x*,x) > 0, Vo € D}. A closed convex cone D is said pointed if DN (—D) = {0}.

Let g: X — R™. g is said D-function on the convex set K C X iff:
g Az + (1= N)ag) — Ag(z1) — (1 = N)g(ze) € D, Vay,z9€ K, YA€ (0,1).

We observe that if D = R, then a D—function is a componentwise concave
function. It is easy to show that if g is a D-function on K, then the set g(K) — D
is convex.

2. A SEPARATION APPROACH TO VECTOR QUASI-EQUILIBRIUM PROBLEMS

The image space analysis can be applied everytime the problem, we want to
deal with, is expressed under the form of the impossibility of a suitable generalized
system. In particular, if we let K (z) be defined by (1), then z* € X is a solution
to VQEP iff 2* € K(x*) and the following system is impossible:

—f(z*,y) € C\ {0}, g(z*,y)e D, yeX. S(x*)

The space RP*™ in which the function (f(z,-), g(x,-)) runs, is called the image
space (for short, 1S) associated with VQE P. By Proposition 1.1, it is immediate to
see that vector optimization problems and quasi vector variational inequalities can
be formulated as the impossibility of the system S(z*) choosing a suitable function

f(z,y).

The impossibility of S(z*) is stated by means of separation arguments in the IS,
proving that two suitable subsets of the IS lie in disjoint level sets of a separating
functional.

Let us consider the following subsets of the IS:

K(a®) = {(u,0) ERP™ s u=—f(z"y), v=g("y), yeX}
H = {(u,v) € RPFT™ . 4 € C\ {0}, wve D}

K(x*) is called the image associated with VQE P (or, equivalently, to S(x*)). The
impossibility of S(z*) can be formulated in terms of the disjunction of the sets
K(x*) and H.
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Proposition 2.1. z* € X is a solution to QVEP iff x* € K(z*) and
K(z*)NnH = 0. )

Let us introduce the set £(x*) := K(z*) — cl’H, which is called the extended
image associated with VQFE P. The extended image plays a key role in the image
space analysis: first of all, it provides an equivalent formulation of the optimality
condition (2).

Proposition 2.2. If the cone H fulfils the condition H = H + cI'’H, then (2) is
equivalent to the condition

E(x*)NH =0. @)

Proof. It is a consequence of the following relations:

E@")—H=K(@") —cdH—-H=K(z") — (dlH+H) = K(z*) — H. [

Remark 2.1. In [2] it has been proved that if C' is an open or closed convex
cone, then H = H + cl’H, provided that D is a closed convex cone.
Moreover, it is known ([8], Lemma 3.1) that £(x*) is a convex set when g(z*, -) is
a D—function and — f(z*, -) is a (cIC)-function, for a fixed z* € X.

Condition (3) can be proved showing that £(z*) and H lie in two disjoint level
sets of a suitable functional; when such a functional can be chosen linear we say
that £(z*) and H admit a linear separation.

Definition 2.1. The sets £(z*) and H admit a linear separation iff 3(u*, \*) €
C* x D*, (p*, \*) # 0, such that

(u*,uy + (A", v) <0, V(u,v) € E(x™), 4)
or,equivalently,

(W, =f(a*,y)) + (A", g(z%,y) <0, VyeX. (5)

The equivalence between (4) and (5) is proved by next result that shows that a
linear functional separates /C(z*) and H iff it separates £(z*) and H.

Proposition 2.3. Let (u*, \*) € C* x D*, (u*, A*) # 0. Then (4) is equivalent
to
(u*,u) + (A", 0) <0, V(u,v) € K(z¥). (6)
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Proof. Suppose that (6) holds. Let (h1, hs) € ¢l
, H. Since
<M*7 _h1> + <)‘*7 _h2> S 07
then
(i, u—hy) + (N, v —he) <0, V(u,v) € K(z¥),
and (4) holds.
It is obvious that (4) implies (6), since KC(z*) C E(z*). [ ]

The following result has been proved in [10]. We recall that £(z*) and H
are said to be properly linearly separated if they admit a linear separation, and,
moreover, they are not both contained in the separating hyperplane.

Theorem 2.1. £(z*) and H are properly linearly separable iff
0 & ri conv(E(z™)). (7

The existence of a separating hyperplane doesn’t guarantee that £(z*) N'H = ().
In order to ensure the disjunction of the two sets, some restrictions on the choice of
the multipliers (*, \*) must be imposed.

Proposition 2.4. Let c/C' be a pointed cone and assume that the sets £(z *) and
‘H admit a linear separation.
(i) If u* € int C* then E(x*) NH = 0.
(ii) Suppose that C' is an open cone. If u* # 0 then £(z*) N'H = .

Proof. We recall (see e.g. [1]) that ¢l C' is pointed iff int C* # () and that
int C*={z*e€C": (x,2") >0, VxecC,x+#0}.

i) Ab absurdo, suppose that £(xz*) N'H # 0. This implies that K(xz*) N'H # 0 and,
therefore, 3z € K(z*) such that —f(z*, 2z) € C'\ {0}. Then, taking into account
that u* € int C*, we have

0 <(u',—f(z%2)) <(u' —=f(z" 2))+ (X g(z", 2)) <0, (8)

which is impossible.

ii) Ab absurdo, suppose that £(z*) N'H # (. Following the proof of part i),
Jdz € K(z*) such that —f(z*,2) € C = int C. Then, taking into account that
u* # 0, we have (8) which is impossible. ]

Remark 2.2. In particular, if we define f(x,y) := h(y) — h(z), K(z) = K,C
convex cone (resp. C' open convex cone), and £ () and H admit a linear separation
with 1 € int 0 (resp. wu # 0), then z* is a v.m.p. for (P).
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We aim at establishing sufficient conditions that guarantee that the hypotheses
of the Proposition 2.4 are fulfilled.
Let us recall the following preliminary result due to Hiriart-Urruty and Lemarechal
[13].

Proposition 2.5. Let B be a convex set in R™ and x € rbd(B). Then B admits
a supporting hyperplane at = and its normal vector belongs to aff(B — x).

Theorem 2.2. 1. Let C' :=RY, int D # () and suppose that the sets £(z*)
and H admit a linear separation.

Assume that, for every i = 1,. .., p, the following system is possible:
—fi-(a",y) >0, g(a",y)€int D, yeX. Si(z")

then in (5) we can suppose that x* > 0.
2. Suppose that the sets £(x*) and H admit a proper linear separation. If

0 € ri conv(g(z*, X) — D), 9)
then we can suppose that p* # 0 in (5).

Proof.

1. Ab absurdo, suppose that, 3i € {1, ..., p} suchthat i = 0; then (', \*) #
0 and, since S;(x*) is possible, 3y € X such that

0 < (pi—, —fi- (2%, 7)) + (X, 9(2%,9)) < —(ui’, —fi2™, 7)) = 0,
which is absurd.
2. By Theorem 2.1, proper linear separation is equivalent to the condition

0 & ri conv(E(z™)).

Since 0 € £(z*) then 0 € rbd[conv(E(x*))]. Applying Proposition 2.5, we obtain
that there exist (u*, \*) € af flconv(E(z*))], (pu*, A\*) # 0, such that

(i*,u) + (A", v) <0, V(u,v) € E(x™). (10)

Since 0 € E(x*) then (u*, \*) € lin[conv(E(z*))].
Ab absurdo, suppose that ;* = 0. Then

A* € lin[(conv(g(z*, X) — D)], (12)
and (10) implies

(A\",v) <0, Yoveconv(g(z*,X)— D). (12)



664 Giandomenico Mastroeni, Barbara Panicucci, Mauro Passacantando and Jen-Chih Yao

By (9), there exists a neighbourhood U of 0 € R™ such that
V :=U Nlin[conv(g(z*, X ) — D)] C conv[g(z*, X) — D].

Taking into account (11), we obtain that yYA* € V for |y| < ¢, sufficiently small.
Since V' C conv[g(x*, X) — D], by (12),

VAN <0, Vv: |y <e

which is impossible, for \* # 0. ]

Remark 2.3. The condition given in statement 1 of Theorem 2.2 has been also
considered in [16] in a slightly different form. The assumption (9) in statement 2
is a generalization of the Slater condition for scalar optimization problems [17, 18].
If int D # () and g(z*,-) is a D—function, then (9) is equivalent to assume that
there exists y € X such that

g(z*,y) € int D.

3. SADDLE PoIiNT CONDITIONS

In this section, following the line considered in [2] we will characterize the
linear separation, in the image space, in terms of a saddle point condition of the
Lagrangian function associated with VQE P (or, equivalently, to the system S (z*)),
defined by L : C* x D* x X — R,

L(x™; py Ay y) o= (s f(2%,y)) — (N (2™, v)).

Proposition 3.1. Suppose that f(z*, *) = 0. Then £(x*) and H admit a linear
separation and g(z*, z*) € D, iff I(u*, \*) € C* x D*, (p*, \*) # 0, such that
(p*, A*, 2*) is a saddle point for L(z*; u, A, y) on (C* x D*) x X.

Proof. Suppose that £(z*) and H admit a linear separation. From (5) we obtain
that (\*, g(«*, 2*)) < 0, which implies that (\*, g(z*, 2*)) = 0, since g(z*, z*) €
D and \* € D*. Therefore

0= L(z"; p", N a®) < L(z*5 %, \'yy), Wy e X.
It remains to show that L(z*; u, A, z*) < 0, V(u, A) € (C* x D*). We observe
that
L(‘T*7 122 )‘7 .’L'*) = _<)‘7 g(x*v w*)>

which is non positive, VA € D*, and the necessity part of the statement is proved.
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Sufficiency. Suppose that (u*, \*,z*) is a saddle point for L(x*;u, A,y) on
(C* x D*) x X, that is

—<)\,g($*,$*)> < _<)‘*7g(‘7: y L )>

< f@y)) — (A g(@h ), VA y) € (CF x DY) x X.

)

First of all we prove that g(z*, z*) € D. Ab absurdo suppose that g(z*, 2*) ¢ D =
(D*)*; then 3\ € D* such that (A, g(z*, 2*)) < 0. Since D* is a cone, then

al€D*, Ya>0 and - a(X,g(m*,x*» — 400, a— 400;

this contradicts the first inequality in the saddle point condition.

Computing the first inequality for A = 0, we obtain (\*, g(z* 2*)) < 0 and,
therefore, (\*, g(z*,2*)) = 0. The second inequality coincides with (5) and the
proposition is proved. ]

Remark 3.1. We observe that the saddle value, L(z*; u*, A*, z*), is equal to
zero. This property will be useful in Section 4, for the analysis of a gap function
associated with VQFEP.

Proposition 3.2. Assume that f(z*,-) and g(z*, -) are differentiable at z* and
flz* %) = 0. If (p*, \*, ) is a saddle point for L(z*; u, A, y) on (C* x D*) x X
then it is a solution of the following system (S)

vyL(x*7 Mv )‘7 y) = 0

(A g(z*,y)) =0
g(@*,y) € D,pe C*, Ne D*, ye X.
Proof. Suppose that (u*, A*, z*) is a saddle point for L(x*; u, A, y) on (C* x
D*) x X, that is
—<)\,g(fI,'*,fI,'*)> S —<)\*,g($*,$*)>
< (Wt @) — (A g(2,9)], Y(p,Ay) € (C x D*) x X.

As in the proof of the sufficiency in Proposition 3.1, we can show that g(z*, 2*) €
D.
Computing the first inequality for A = 0, we obtain (\*, g(z*, 2*)) < 0 and,
therefore,
(N, g(a*,2%)) = 0. (13)

The second inequality implies that z* is a global minimum point of L(x*; u*,
A*,y), since f(z*,2*) = 0. Then

VyL(x*; i, X", z*) = 0. (14)
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(14), (13) and the relation (p*, A*) € (C* x D*), allow us to complete the proof. m

Proposition 3.3. Assume that

1. —f(x*,-) isa (cl C)-function, differentiable at =*, and such that f(x*, z*) =
0;

2. g(z*,-) is a D-function, differentiable at x *;

If (u*, \*, 2*) is a solution of system (S) then it is a saddle point for L(z *; u, A, y)
on (C* x D*) x X.

Proof. Suppose that (u*, \*, z*) is a solution of (S). By the assumptions 1
and 2, it is easy to prove that L(x*; u*, \*, y) is a convex function in the variable
y, so that V, L(z*; u*, A*, 2*) = 0 implies that

L(z™ ", A% a™) < L(x%5 % A y), Yy e X

Taking into account the complementarity relation (\*, g(z*, «*)) = 0 and the con-
dition A € D*, we obtain

—(Ag(@ha”)) < =A% g(a®, 2%)), V(p, A) € (CF x DY),

and the statement is proved. [ |

Corollary 3.1. Suppose that the hypotheses 1 and 2 of Proposition 3.3 hold.
Then (p*, \*, 2*) is a saddle point for L(z*; u, A,y) on (C* x D*) x X iffitis a
solution of (S).

Coupling Theorem 2.2 with the results obtained in the present section, it is
possible to obtain necessary and sufficient Lagrangian—type optimality conditions
for VQEP.

Theorem 3.1. Let f(z*,z*) = 0, —f(z*,-) be a (c/C)-function, and g(z*,-)
be a D-function.
1. Assume that C' := R%, int D # 0, and that, for every i = 1,...,p, the
system S;(z*), defined in 1 of Theorem 2.2, is possible; then z* € X is
a solution of VQEP iff I(u*, A*) € (C* x D*), (u*, \*) # 0, such that
(*, A*, z*) is a saddle point for L(z*; u, A, y) on (C* x D*) x X.

2. Assume that C' is an open convex cone and that the following conditions
hold:
int E(x*) # 0, (15)

0e€ri(g(z*,X)— D), (16)
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then 2* € X isasolutionof VQEP iff 3(u*, \*) € (C*x D*), (u*, \*) # 0,
such that (u*, A*, 2*) is a saddle point for L(z*; u, A,y) on (C* x D*) x X.

Proof.

1. Suppose that z* is a solution of VQEP. Then (3) holds. Since —f(z*, ")
is a (cIC)-function and g(x*, -) is a D-function, then the set £(x*) is convex
(see Remark 2.1). Therefore £(z*) and H admit a linear separation. By
Proposition 3.1, we have that 3(u*, A*) € C* x D* such that (u*, \*, z*) is
a saddle point for the Lagrangian function L(x*; u, A, y) on (C* x D*) x X.

Vice versa, let (u*, \*, 2*) be a saddle point for L(z*; u, A, y). By Proposition
3.1, &(z*) and H admit a linear separation. Taking into account part 1 of
Theorem 2.2, we have that 1* > 0. Part i) of Proposition 2.4 ensures that (3)
holds and, therefore, z* is a solution of VQEP.

2. As in the proof of 1, it can be shown that if z* is a solution to VQE P, then
there exists (u*, \*) € C* x D* such that (u*, \*, 2*) is a saddle point for
the Lagrangian function L(z*; u, A,y) on (C* x D*) x X.

Vice versa, let (p*, \*, 2*) be a saddle point for L(z*; u, A, y). By Proposition
3.1, £(z*) and H admit a linear separation, i.e. (5) holds. Condition (15)
guarantees that the linear separation is proper.

Since g(x*,-) is a D—function, then the set g(z*, X) — D is convex, and, by 2 of
Theorem 2.2, we obtain that (5) is fulfilled with 1* # 0. By ii) of Proposition 2.4,
we have that z* is a solution to VQEP. ]

Remark 3.2. Note that, if C is an open convex cone and int D # (), then (15)
is fulfilled. Actually, int H = C x int D # (), which implies that int (x*) # 0.

If we further assume that the functions f(x*,-) and g(z*, -) are differentiable at x*,
then, by Theorem 3.1 and Corollary 3.1, we obtain a Kuhn-Tucker-type condition
for VQEP.

Theorem 3.2. Suppose that the hypotheses 1 and 2 of Proposition 3.3 hold.

(i) Assume that C' := R%, int D # 0, and that, for every i = 1,...,p, the
system S;(z*), defined in 1 of Theorem 2.2, is possible; then z* € X is
a solution of VQEP iff J(u*, A*) € (C* x D*), (u*, \*) # 0, such that
(p*, X*, 2*) is a solution of (S).

(if) Assume that C' is an open convex cone and that the conditions (15) and
(16) hold; then z* € X is a solution of VQEP iff 3(u*, \*) € (C* x
D¥), (p*, \*) # 0, such that (u*, A*, 2*) is a solution of (S).
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4. A GAP FUNCTION FOR A VECTOR QUASI-EQUILIBRIUM PROBLEM

Let us introduce the definition of gap function associated with VQE P, which
generalizes those existing in the literature for EP and V EP (see e.g. [19, 3]). Let
KV:={reX:zeK(x)}

Definition 4.1. A function ¢ : K — RU{+oc} is a gap function for VQE P
iff
(i) ¢(x) >0, Ve K
(ii) ¢(xz) =0 if and only if z is a solution of VQEP.

We remark that a similar definition, where ¢ is required to be non positive, has
been introduced in [15] for a generalized VQEP.
Consider the following function ¢ : X — R:

Y(z) = (Mrggrelssg)g[—<u,f(w,y)> + (A g(z,9))],

where S = {(u, A) € (C* x D*) : ||(g, A)||s = 1} and || - ||s is the s-norm in
RPF™,

Let Q := {z € K° : ¢(z) = 0}. The saddle point condition, that characterizes
the separation in the image space (see the Proposition 3.1), allows us to prove that
¥ (x) is a gap function for VQEP.

Theorem 4.1. Let f(z,2) = 0,Vz € K° and —f(z*,-) be a (cIC)-function,
g(z*,-) be a D-function, for every z* € Q.

1. Assume that C' := R”, int D # 0, and that, for every i = 1,...,p and
Va* € , the following system is possible

then ¢ (z) is a gap function for VQEP.

2. Assume that C' is an open convex cone and that, Vz* € Q, (15) and (16)
hold; then ¢ (z) is a gap function for VQEP.

Proof. It is easy to prove that ¢(z) > 0, Va € K9; in fact, if (u,)\) €
(C* x D*), then

— (s [, 2)) + (A g2, 2)) = (A, g(x, ) > 0.

1. Suppose that =* is a solution to VQEP. Since — f(x*, -) is a (c/C)-function and
g(z*,-) is a D-function, then the set £(z*) is convex (see Remark 2.1). Therefore
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E(z*) and H admit a linear separation. Without loss of generality we can suppose
that the coefficients of the separating hyperplane (x*, A\*) € S. From Proposition
3.1, we have that (p*, A*, 2*) is a saddle point for L(z*; u, A, y) := (u, f(z*,y)) —
(A, g(z*,y)) on (C* x D*) x X and the saddle value L(z*; u*, \*, 2*) = 0 (see
Remark 3.1). Recalling that the saddle point condition can be characterized by
suitable minimax problems [22], we have

min sup[—(u, f(z%,y)) + (A g(@", )] = —L(z";p", A%, 2%) = 0. (17)
(pu,\)EC*x D* yeX
Since (u*, \*) € S, taking into account (17), we obtain that «(z*) = 0.
Vice versa, suppose that ¢)(x*) = 0. Then 3(u*, \*) € S, such that

— (", f(2%,y)) + (N g(z%,y)) <0, VyeX. (18)

Hence, £(x*) and H admit a linear separation. From Theorem 2.2, the possibility
of the system S;(z*) fori = 1,..., p, implies that x* > 0. By i) of Proposition 2.4
, We obtain that =* is a solution to VQEP.
2. As in the proof of 1, it can be shown that if z* is a solution to VQE P, then
Y(a*) = 0.
Vice versa, suppose that ¢)(z*) = 0, so that (18) holds and £(z*) and H admit
a linear separation. Condition (15) guarantees that the linear separation is proper.
Since g(z*, ) is a D—function, then the set g(x*, X ) — D is convex, and, by 2
of Theorem 2.2, we obtain that (18) is fulfilled with * £ 0. By ii) of Proposition
2.4, we have that z* is a solution to VQEP. |

Remark 4.1. We observe that A, (11, A) := sup,e x [— (1, f(2,y)) + (A, g(z, v))],
being the supremum of a collection of linear functions, is a convex function, so that
Y(r) = ming, nyesha(p, A) is the optimal value of a parametric problem on a
compact set, with a convex objective function.

Theorem 4.1 generalizes Theorem 5.1 of [20] and Theorem 2 of [21]. Next
corollary extends the above mentioned results to QVV I and QMVV I.

Corollary 4.1. In the hypotheses of Theorem 4.1, with

flx,y):=F(x)(y—=z) or flz,y):=F(yly—=),
Y (x) is a gap function for QVVI and QM V'V I, respectively.

Example4.1. Let X := R, C :=R2, D =Ry, f(z,y) := (fi(z,y), fo(z,y)),

where

filz,y) == xy — 2, folz,y) = y* — 27,
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and g(x,y) := 2y — 2z. In the present case, K’ = {r € R: 2 <0 U z > 2} and

b)=  min suplm(a® — o) + (e )+ May —20)], (19)
(p1,12,M) €S yeR

where we have set S := {(u1, 2, A) € Ri sp1+pe+ A =1}

Let us compute, in (19), the supremum with respect to y € R. We obtain

suplyui (22 — wy) + pa(a? — y?) + My — 20)]

yeR
2 2
(A — .
M + (Ml + MQ)x2 - 2)“7:7 if H2 7& 07
4po
N /LlfI,'(fI,'—Q), if M2:07)‘:M17
400, otherwise.

Let us consider the case where uo # 0. We immediately observe that ¢ (z) =0

iff xt =0 or
8o

(A= p1)? + dpa g + 43
Note that z* = 0 € KY, so that it is a solution of VQEP and any (u1, u2, \) € S,

with pe # 0, is a vector of multipliers associated with z*.
Let us consider the solutions given by (20). Dividing (20) by 3 and setting

(20)

xr=

A
- = klv & == k27
H2 H2
we obtain
8k1

xr=

. 21
(k1 — k2)? + 4ko + 4 1)

By imposing the condition x > 2, we have
dky > (kg — ko) + 4ko + 4

which is equivalent to
(k1 — ks — 2)? <0,

that implies k1 — ko = 2 or, equivalently,
A—p1 —2puz = 0.
Therefore, the set of multipliers associated with the solution (20) fulfils the system
A +pe =1
A—p1—2p2 =0
p1 > 0,2 >0, >0,
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that is,
petl 13w
2 2
Substituting the previous relations in (20), we obtain = = 2, which belongs to the
set K° and therefore it is a solution of VQEP.

Let us consider the case where s = 0, A = u7. In such a case we obtain
once more the solutions = = 0, x = 2 with related multipliers given by iy = A =

5. H2=0.

1
A H1 0<M2§§-

The gap function ¢ that we have analysed in the present section, in general, is not
differentiable. Following the line adopted in [4, 24], adding a suitable regularizing
term H(z,y) : X x X — R to the function —(u, f(x,y)) + (A, g(z,y)), itis
possible to obtain a directionally differentiable gap function for VQEP.

Further extensions can be obtained by means of nonlinear scalarization methods
for VEP (see e.g. [3]).
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