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IMPROVEMENTS OF SOME INEQUALITIES OF OSTROWSKI TYPE
AND THEIR APPLICATIONS

Kuei-Lin Tseng

Abstract. In this paper, we establish some inequalities which improve some
Ostrowski type inequalities. Applications for Euler’s Beta mapping and special
means are also given.

1. INTRODUCTION

Throughout, let V?(f) be the total variation of f on the interval [c, d] and

7o = [ 170l

and let I, : a = 29 < 1 < --- < m, = b be a partition of the interval [a, D],
& € [1‘1‘,1‘1‘4_1] (i:(),l,--- ,n—l), h; = Tit1l — X5 (’L =0,1,---,n— 1) and
v(h) ;== max h;.

i=0,1,,n—1

The Ostrowski’s inequality [9, p.469] (see also [10, p. 933]), states that if f’
exists and is bounded on (a, b), then, for all z € (a, b), we have the inequality

<L [i(b—aﬁ—i— <x— a;b)Z

sup |f ()] < L.
te(a,b)

b
(L1) / F()dt — f(z) (b a)

where

In (1.1), the constant i is the best possible.
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Now if f is as above, then we can approximate the integral fab f(t)dt by the
Ostrowski quadrature formula A, (f, I,,, ), having an error given by R, (f, I, &),

where
n—1

An(f, 10, &) =) f (&) b,

=0

and the remainder satisfies the estimation

bt (- =252 s

For some recent results which generalize, improve and extend the inequalities
(1.1) and (1.2), see the papers [2 — 8, 10].

n—1
12 R(fL.OI<Y
=0

In this paper, we establish some Ostrowski type inequalities which improve some
inequalities in [5, 7]. Applications for Euler’s Beta mapping and special means are
also given.

2. SOME INTEGRAL INEQUALITIES

We may state the following results.

Theorem 1. Let f : [a,b] — R be a mapping with bounded variation on [a, b).
Then, for all x € [a,b], we have the inequality

b
/ F(B)dt — f(z)(b—a)
1

e < [30-a+|o- 5| e
2o 122 1) + V)]

where m = min{z,a + b — x}.
The constant % is the best possible in (2.1).

Proof. Let x € [a, b]. Define

- . t—a, te€la,x]
22 slt) = t—b, te(z,b)
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Using the integration by parts formula, we have the following identity

b
/ 5 6) dF (1
(2.3) (t—a)f /f )dt + (t —b) f /f
= f(z)(b—a) — / ft)dt

It is well known [1, p.159] that if p, v : [¢,d] — R are such that u is continuous
on [c,d] and v is of bounded variation on [c, d], then f w(t) dv (t) exists and [1,
p.177]

I b
24 [ ntravo| < sup v
c te|c,

a+b

In the case a < x < %57, using (2.3) and (2.4), we have m = = and

b
| st @
T a+b—zx b
~|[a-owws [ Tevaor [ e-nao
a+b—zx b
[ wnar o) [ evaro)
@) <@-a) Vi) + - VI () + @ = ) Vi, (f)
= (b= @) V2 = (a+b—20) (VI + Vi)

= 50|30 [ Vi -2 o 50 [0+ V)
_ [% (b—a)+ x_"’%bu Vab(f)—Q‘x a;b [Vm(f)+V$m(f)}-

In the case 24% < x < b, using (2.3) and (2.4), we have m = a + b — z and
b
f@)dt — f(x)(b—a)

/aa+b—a:(t_a)df(t)+/j (t—a)df(t)—l-/:(t—b)df(t)'

+b—x
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a+b—x x b
<[ eavol| [ waao)| [ evao)
<= D) VI + = 0) Vi) + (0 2) V()

= (@ =) V2(f) = 2 —a—b) (V2 () + V()

Thus, by (2.5) and (2.6), we obtain (2.1).
We assume that the inequality (2.1) holds with a constant C' > 0, i.e.,

b
[ e f@)0- 0

@.7) g[é@—a%%x—a;bHWﬂﬁ
2o = 2 V() + Vi)
ket a+b
. 0, if xemmlif }
1 if w="

Then f is with bounded variation on [a, b], and

b
=2 [ swi=o
and for x=“T+b, we get in (2.7)
b—a<2C(b—a)

which implies the constant % is the best possible.
This completes the proof.

Under the conditions of Theorem 1, we have the following remarks and corol-
laries.
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Remark 1. In Theorem 1, we get an improvement of Theorem 2.1 in [5, p. 59].

Corollary 1. In Theorem 1, let f : [a,b] — R be a monotonic mapping. Then
we have the inequality

/f Hdt — f(2)(b— a)

< [§<b_a>+|x— rw-r@

- 2
a+b

—2'96 'Hf() (@) +1f () = fla+b=m)].

Remark 2. Corollary 1 is an improvement of Corollary 2.2 in [5, p. 61].

Corollary 2. In Theorem 1, let f : [a,b] — R be an L-Lipschitzian mapping
on la,b], i.e., we recall

|f(x) = fy)| < Liz -y
Sor all x,y € [a,b]. Then we have the inequality

b
/ F(B)dt — f(z)(b—a)
a+b

2.8) gL{[%(b—a)—i—'w— H(b—a)

—4‘x—a;b‘(m—a)}.

Proof. Letz € [a,b]. In the case a < x < %t using (2.5), we have m =

and
/f fdt — f(x)(b—a)

<@ —a) Vi) +O-a) VI () + (@ = a) Vi (f)
<L[(z—a)(z—a)+(b—z)(a+b—22)+ (z —a) (z — a)]

:L{[%(b—a)—i—‘ —“‘QH’H (b—a)—4‘x—a—2|—b‘(x—a)}
:L{[%(b—a)—i— x—“;bu (b—a) — 4 x—a+b'(m—a)}
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In the case ”T”Lb < x < b, using (2.6), we have m = a + b — z and

/f t)dt — f(z)(b—a)

b—z)(b—2)+(x—a)2x—a—>b)+ (b—z)(b—x)]
<( D) Vit () + (o = @) Vil o () + (b= 2) V2 (f)

(2.10) [x_a 4<x_a+b>(b_x)]
Al - -t
BRI Sk » [CEEEE S (RR)S

Thus, by (2.9) and (2.10), we obtain (2.8). This completes the proof.

Remark 3. Corollary 2 is an improvement of Corollary 2.3 in [5, p. 61].

Theorem 2. Let f: I C R — R be a differentiable mapping in Int (I) and
a,b € Int(I) with a < b. If f' € Ly [a,b], then, for all x € [a,b], we have the

inequality
/f 1)dt — f(x)(b— a)

e g[§<b—a>+x “*”H 1 s
2o = 2 (17 N+ 17 N

where m = min{z,a+ b — z}.

Proof. Let = € [a,b] and let s (t) (¢ € [a, b]) be defined as in (2.2). Using the
integration by parts formula, we have the following identity

/ o) £ (1) dt
212) =(t-a)f /f )t + (t— ) f /f

— f@)(b—a) - / F(t)dt
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In the case a < < “T“’, using (2.12), we have m = x and

(2.13)

<

<

b
| st~ @00
(;: a+b—x b
/ (t—a) £ () dt+/ (t=b) £ (1 dt+/

’ (t—a) f' (t) dt|+ o (t—0) f' (t) dt|+ I
[ A |

(t=b)F () dt'
b
[ wnro dt(
atb—x
(m—a) Hf/H[a,az],l—i_(b_w) ||f/H[J:,a+b—a;],1+(x_a) Hf/H[a—l—b—a:,b],l

(b— =) Hf/H[a,b],l —(a+b—2z) (Hf/H[a,a:],l + Hf/H[a—f—b—ac,b],l)

1 a+b|] .
5 (b—a)+ |z - 2 | HfH[a,b],1
+b , ,
2= 2| (1 N+ 1 Nasorina)
1 a+bl], .
2 (b—a)+|z— 2 ] I f H[a,b],l
+b , ,
=20 = 222 (1 N+ 1 )

In the case “T“’ < x <b, using (2.12), we have m = a + b — z and

(2.14)

IN

IN

/ " Ftydt — F@) 0~ a)
/am_m(t—a) 1) dH/;b_x (t—a) f'(t) dt+/: (t—b) f'(t) dt‘
[“a-arwa-|[ c-aroal][ c-nrod

(b—z) Hf/H[a,a—i—b—a;],l +(z—a) Hf/H[a—l—b—a:,m],l +(b—2) Hf/H[a:,b],l

(x —a) Hf/H[a,b],l —(2z—a-0) (Hf/H[a,a—l—b—m],l + Hf/H[a:,b],1>

1 a+b /
-5 (b_a)—|— T — 9 :| Hf H[a,b],l
+b ' !
-2 |z — : 2 [Hf H[a,a-}—b—l’]al * Hf H[m’b]’l} '
1 +b /
-5 (b — a) + | — 2 9 :| Hf H[a,b],l
+b ' !
2o = S 17 s 1 ) -
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Thus, by (2.13) and (2.14), we obtain (2.11).
This completes the proof. ]

Remark 4. In Theorem 2, we get an improvement of Theorem 2.1 in [7, p. 240].

3. APPLICATIONS FOR QUADRATURE RULES
We have the following quadrature formula.

Theorem 3. Let [ be defined as in Theorem 1. Then, for &, h; (i =
0,1,---,n—1), A,(f, I, &) and v(h) as above, we have the inequality

b
L/ ()t — An(f. T €)

1 Ti +Tip1 b
< Shyt g - BT T M
(3‘1) = z‘:O,Ilr,l%),(n—l [th + fz 9 ] Va (f)
1 Ti + T b
< |Z o —
< [qom+ e Je- 2258 [ vap -
<v(WV(f)— M
where m; = min{§;, x; + ;41 — &} (1 =0,1,--- ,n—1) and
n—1
Ti + Tit1 m T
i=0

The constant % is the best possible in (3.1).

Proof. Using Theorem 1 on the interval [x;, z;1+1], we have the inequality

[ s s @on

i

< [_hz + fz - it Tt ] Vmil+1 (f)
2 2
€y + Ti+1 m; Ti41

forall? =0,1,---,n—1. Summing over ¢ from 0 to n—1 and using the generalized
triangle inequality we get

Awwﬁ—%uwxﬁ
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n—1 Tt
<3| H@de-fon,
i=0 1/ @i
n—1 1 2 4,
< |:§hi+ §i— ——F— 5 an ]Vgi.i“(f)—M
=0
1 T+ n—1
% i+1 Tit1
< 21 o ' B
= ol [Qh’ + i 5 ] 2 Ve, T () - M
i=0,1,n—1]2 " ! 2 a '

The second inequality follows by the properties of sup(-).

Now, as
Ti+ Tiv1 1
(3.2) & — % < §hi
for all &; € [z, zi41] (1 =0,1,---,n— 1) the last part of (3.1) is also proved.

Under the conditions of Theorem 3, we have the following remarks and corol-

laries.

Remark 5. In Theorem 3, we get an improvement of Theorem 3.1 in [5, p. 63]

Corollary 3. In Theorem 3, let f : [a,b] — R be a monotonic mapping. Then

we have the inequality

b
/ )t — Ay(f. T, €)

1 Ti + iyl
< k. - — —
< ohmax [th + |6 — = ] F) — f(@)] - M

1 i i
<[5+ o 6= 5 1700) - pa)l -

<wv()[f(b) = f(a)] = M

where
M =372l = I (1 (m) = f (@) + 1f (i) = F @i+ s —mo)]).
=0

Remark 6. Corollary 3 is an improvement of Corollary 3.2 in [5, p. 64].
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Using Corollary 2 the generalized triangle inequality and (3.2), we have the

following corollary:

Corollary 4. [n Theorem 3, let f : [a,b] — R be a L-Lipschitzian mapping.
Then we have the inequality

/a " f(0ydt — A, In,@l

_Ti+Tip

+1&i 5

oo

where
n—1 (L“—f—(L'_H
M:Zgllfz— : 22 ( Z—(L‘Z‘).
i

Remark 7. The Corollary 4 is an improvement of Corollary 3.3 in [5, p. 64].

Theorem 4. Let [ be defined as in Theorem 2. Then, for &, h; (i =
0,1,---,n—1), A,(f, In, &) and v(h) as above, we have the inequality

b
/ )t — An(f. T, €)

x; + x;
S [§hi + |8 — Tﬂ ] 1 g0 = M
1 T; + X1 '

i e

<w(h) Hf/H[a,b],l -M
where m; = min{§;, x; + ;41 — &} (1 =0,---,n—1) and

n—1

T; + x;
M - 22 52 - 2 +1 |:Hf/| [mi,mi],l + Hf/| [mi+mi+1—mi,mi+1],1 :
i=0

Proof. The proof is obvious by applying Theorem 2 to the intervals [z ;, T;11]
(i=0,1,---,n—1) and using the generalized triangle inequality . We shall omit
the details.

Remark 8. In Theorem 4, we get an improvement of Theorem 4.1 in [7, p. 243].
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4. APPLICATIONS FOR EULER’S BETA MAPPING

Consider the mapping Beta for real numbers

1
B(p,q) :=/ (1=t pg >0
0
and the mapping
epq(t) =t 11— )1t e [0,1].

In [5, p. 65], Dragomir get the following results:
We have for p,q > 1 that

/

(41) ep,q(t) = ep—l,q—l(t) [p —1- (p +4q— 2)t]
and as
(4.2) lp—1—(p+q—2)t| <max{p—1,q—1}

for all ¢ € [0, 1], then

e H <max{p—1,¢—1}|ep—24-2
» [l ) = mx lea-20-2lip.174
:max{p—l,q— 1}B(p—17q_ 1)-

Using Theorem 2, Theorem 4 and (4.1) — (4.3), we have the following corol-
laries:

Corollary 5. Let p,q > 1. Then, for all x € |0, 1], we have the inequality

|B (p,q) — 2?1 (1 —x)7"|

1

(4.4)

—2

T %I [He;’vqu[o,ml,l ! He;’qu“‘m’”’l]

where m = min {z, 1 — z}.

Remark 9. Corollary 5 is an improvement of Proposition 4.1 in [5, p. 65].
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Corollary 6. Let &;, h; (i=0,1,--

-,n—1) and v(h) be as above. Then, for
p,q > 1 we have the inequality

n—1
B(p,q) - > &1 (1-&)""h
=0
1 T; + Tq1
< _ _ — -
(4.5) <max{p—1,4¢ 1}[2v(h)+¢gf§ﬂ1£z 5 ]

where m; = min{§;, x; + ;41 — &} (1 =0,1,--- ,n—1) and

= T +
M= 2l 2t He/ + He/ .
izg fz 2 p.q [zi,mi],1 g [xitzit1—mi,zit1],1

Remark 10. Corollary 6 is an improvement of Proposition 4.3 in [5, p. 65].

5. APPLICATIONS FOR THE SPECIAL MEANS

Let us recall the following means of the two nonnegative number a and b:
1. The arithematic mean

A:A@m:“;ﬁawzm
2. The geometric mean

G =G (a,b):= Vab, a,b> 0;
3. The harmonic mean

2
H (a,b) := ey a,b > 0;
b

ISH

4. The logarithmic mean

b—a
279 ifa#b
L=L(@b=1{ mb—tna "27° 4p>0;
a ifa=2>
5. The identric mean
1
1PN
I=1(a,b):= g(;) ifa?b 4 5>o0

a ifa="b
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6. The p-logarithmic mean

pp+1 _ oo+l % )
Ly = Ly (a,b) := hg;fﬂgjgﬂ ifazb e R\{-1,0), a,b> 0.
a ifa=0»b

It is well known that L, is monotonically increasing in p € R with L_; := L
and Lg := I. In particular, we have the following inequality

H<GLSL<SI<A

In what follows, by the use of Theorem 2, we point out some inequalities for
the above means.

Casel. f(x)=2aP (pe R\{-1,0}).
Using the inequality (2.11), we get

| — 2|
b—a p—1
(5.1) < |5 tle— Al el L,
2z — Al |p| [L5 7} (a,m) = LI (a + b —m,b)

for all z € [a,b] and p # 1 where m = min{z,a+ b — z}.
Let z = I in (5.1). We have

|y — 17|
b—a _
(5.2) SP3—+A—4WM$1

~2(A—1)|p| |57} (a,m) = L7} (a+ b—m,b)]

Case 2. f(r)=1.

T

Using the inequality (2.11), we get
L — |
b —a _9
(5.3) <zL —— |z — A|| L75
—2zL |z — Al [LZ5 (a,m) — LZ3 (a + b —m, b)]

for all z € [a,b] where m = min{z,a+ b — z}.
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Let x = I in (5.3). We have
0<I-L
b—a _9
(5.4) <al|~——+A-1|L7

—2zL(A—1I)[LZ5(a,m)— L3 (a+b—m,b)].

Case3. f(z)=—Inz.
Using the inequality (2.11), we get

In] — Inx|

(5.5) < [b;a —Hx—A\] Lt
2|z — A [L7" (a,m) — L (a+b—m,b)]

for all z € [a, b] where m = min {z,a + b — z}.
Let z = L in (5.5). We have

—
IN

o]
N N~

(5.6) < ex

[b;a+A—L] !

—2(A-L)[L7 (a,m)— L (a+b—m,b)]).

—~

Remark 11. The inequalities are an improvements of the inequalities (3.1) —
(3.3) in [7, p. 242].
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