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NONDIFFERENTIABLE MULTIOBJECTIVE SECOND ORDER
SYMMETRIC DUALITY WITH CONE CONSTRAINTS

Do Sang Kim, Yu Jung Lee and Hyo Jung Lee

Abstract. We introduce two pairs of nondifferentiable multiobjective second
order symmetric dual problems with cone constraints over arbitrary closed
convex cones, which is different from the one proposed by Mishra and Lai
[12]. Under suitable second order pseudo-invexity assumptions we establish
weak, strong and converse duality theorems as well as self-duality relations.
Our symmetric duality results include an extension of the symmetric duality
results for the first order case obtained by Kim and Kim [7] to the second
order case. Several known results are abtained as special cases.

1. INTRODUCTION

Symmetric duality for quadratic programming was introduced by Dorn [5], who
defined symmetric duality in mathematical programming if the dual of the dual is
the primal problem. Applying these results to nonlinear programming, Dantzig et
al. [4] formulated a symmetric dual and established symmetric duality relations.
The notion of symmetric duality was developed significantly by Mond and Weir
[14], Chandra and Husain [3] and Mond and Weir [15]. Also Mond and Weir
[15] presented two pairs of symmetric dual multiobjective programming problems
for efficient solutions and obtained symmetric duality results concerning pseudo-
convex or convex functions. Later, Mond and Schechter [13] first introduced a
symmetric dual programs where the objective function contains a support function.

On the other hand, Bector and Chandra [2] studied Mond-Weir type second
order primal and dual nonlinear programs and established second order symmetric
duality results. Mishra [11] considered second order symmetric duality under second
order F -convexity, F -pseudo-convexity for second order Wolfe and Mond-Weir
models, respectively. Recently, Yang et al. [19] introduced a symmetric dual for
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a class of multiobjective programs, which is Mond-Weir type. Then in Yang et
al. [20] formulated a pair of Wolfe type second order symmetric dual programs in
nondifferentiablemultiobjective nonlinear prigramming and presented duality results
for these programs. Very recently, Kim et al. [8] gave a pair of nonfifferentiable
multiobjective generalized second order symmetric dual programs as unified models
and established duality relations.

In this paper we focus on symmetric duality with cone constraints. Bazaraa and
Goode [1] established symmetric duality results for convex function with arbitrary
cones. Nanda and Das [17] formulated a pair of symmetric dual nonlinear program-
ming problems for pseudo-invex functions and arbitrary cones. In the multiobjective
case, Kim et al. [9] formulated a pair of multiobjective symmetric dual programs
for pseudo-invex functions and arbitrary cones and established duality results. Sub-
sequently, Suneja et al. [18] formulated a pair of symmetric dual multiobjective
programs of Wolfe type over arbitrary cones in which the objective function is op-
timized with respect to an arbitrary closed convex cone by assuming the function
involved to be cone-convex. Recently, Khurana [6] introduced cone-pseudo-invex
and strongly cone-pseudo-invex functions and established duality theorems for a
pair of Mond-Weir type multiobjective symmetric dual over arbitrary cones. Very
recently, Kim and Kim [7] studied two pairs of non-differentiable multiobjective
symmetric dual problems with cone constraints over arbitrary closed convex cones,
which are Wolfe type and Mond-Weir type.

In the second order case, Mishra [10] formulated a pair of multiobjective second
order symmetric dual nonlinear programming problems under second order pseudo-
invexity assumptions on the functions involved over arbitrary cones and established
duality results. The concept of cone-second order pseudo-invex and strongly cone-
second order pseudo-invex functions was introduced by Mishra and Lai [12]. They
formulated a pair of Mond-Weir type multiobjective second order symmetric dual
programs over arbitrary cones.

In this paper, we consider two pairs of nondifferentiable multiobjective second
order symmetric dual problems with cone constraints over arbitrary closed convex
cones, which are Mond-Weir type and Wolfe type. These are slightly different from
Mishra and Lai ([10], [12]). Weak, strong, converse and self-duality theorems are
established under the assumptions of second order pseudo-invex functions. Our
results extend the results in Kim and Kim [7] to the second order case. Moreover,
we give some special cases of our symmetric duality results.

2. PRELIMINARIES

Definition 2.1. A nonempty set K in R
k is said to be a cone with vertex zero,

if x ∈ K implies that λx ∈ K for all λ � 0. If, in addition, K is convex, then K
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is called a convex cone.
Consider the following multiobjective programming problem:

(KP ) Minimize f(x)

subject to −g(x) ∈ Q, x ∈ C,

where f : R
n → R

k , g : R
n → R

m and C ⊂ R
n, Q is a closed convex cone with

nonempty interior in R
m.

We shall denote the feasible set of (KP) by X = {x| − g(x) ∈ Q, x ∈ C}.

Definition 2.2. A feasible point x is a K-weakly efficient solution of (KP),
if there exists no other x ∈ X such that f(x) − f(x) ∈ intK.

Definition 2.3. The positive polar cone K∗ of K is defined by

K∗ = {z ∈ R
k | xT z � 0 for all x ∈ K}.

Definition 2.4. ([10]). Let f : X(⊂ R
n) × Y (⊂ R

m) → R be a twice
differentiable function.

(i) f is said to be second order invex in the first variable at u for fixed v, if there
exists a function η1 : X × X → X such that for r ∈ R

n,

f(x, v)− f(u, v) � ηT
1 (x, u)[∇xf(u, v) +∇xxf(u, v)r]− 1

2
rT∇xxf(u, v)r.

(ii) f is said to be second order pseudo-invex in the first variable at u for fixed
v, if there exists a function η1 : X × X → X such that for r ∈ R

n,

ηT
1 (x, u)[∇xf(u, v)+∇xxf(u, v)r] � 0 ⇒ f(x, v)−f(u, v)+

1
2
rT∇xxf(u, v)r � 0.

Definition 2.5. ([13]). The support function s(x|B), being convex and every-
where finite, has a subdifferential, that is, there exists z such that

s(y|B) ≥ s(x|B) + zT (y − x) for all y ∈ B.

Equivalently,

zTx = s(x|B).

The subdifferential of s(x|B) is given by

∂s(x|B) := {z ∈ B : zT x = s(x|B)}.
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For any set S ⊂ R
n, the normal cone to S at a point x ∈ S is defined by

NS(x) := {y ∈ R
n : yT (z − x) ≤ 0 for all z ∈ S}.

It is readily verified that for a compact convex set B, y is in NB(x) if and only if
s(y|B) = xTy, or equivalently, x is in the subdifferential of s at y.

Definition 2.6. ([14]). A function f(x, y), x ∈ R
n, y ∈ R

n is said to be
skew-symmetric if

f(x, y) = −f(y, x)

for all x and y in the domain of f .

3. MOND-WEIR TYPE SYMMETRIC DUALITY

We consider the following pair of second order Mond-Weir type non-differentiable
multiobjective programming problem with k-objectives :

(MP) Minimize
P (x, y, λ, w, p)

=
(
f1(x, y) + s(x|B1) − yT w1 − 1

2

k∑
i=1

λip
T
i ∇yyfi(x, y)pi, · · · ,

fk(x, y) + s(x|Bk) − yT wk − 1
2

k∑
i=1

λip
T
i ∇yyfi(x, y)pi

)

(1) subject to −
k∑

i=1

λi[∇yfi(x, y)− wi + ∇yyfi(x, y)pi] ∈ C∗
2 ,

(2) yT
k∑

i=1

λi[∇yfi(x, y)− wi + ∇yyfi(x, y)pi] � 0,

x ∈ C1, wi ∈ Di, λ ∈ intK∗, λT e = 1,

(MD) Maximize
D(u, v, λ, z, r)

=
(
f1(u, v)− s(v|D1) + uT z1 − 1

2

k∑
i=1

λir
T
i ∇xxfi(u, v)ri, · · · ,

fk(u, v)− s(v|Dk) + uT zk − 1
2

k∑
i=1

λir
T
i ∇xxfi(u, v)ri

)

(3) subject to
k∑

i=1

λi[∇xfi(u, v) + zi + ∇xxfi(u, v)ri] ∈ C∗
1 ,
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(4) uT
k∑

i=1

λi[∇xfi(u, v) + zi + ∇xxfi(u, v)ri] � 0,

v ∈ C2, zi ∈ Bi, λ ∈ intK∗, λT e = 1,

where

(i) f : R
n × R

m → R
k is a three times differentiable function,

(ii) C1 and C2 are closed convex cones in R
n and R

m with nonempty interiors,
respectively,

(iii) C∗
1 and C∗

2 are positive polar cones of C1 and C2, respectively,

(iv) K is a closed convex cone in R
k with intK �= ∅ and R

k
+ ⊂ K ,

(v) ri, zi(i = 1, · · · , k) are vectors in R
n, pi, wi(i = 1, · · · , k) are vectors in

R
m,

(vi) e = (1, · · · , 1)T is a vector in R
k,

(vii) Bi andDi(i = 1, · · · , k) are compact convex sets in R
n and R

m, respectively.

Now we establish the symmetric duality theorems of (MP) and (MD).

Theorem 3.1. (Weak Duality). Let (x, y, λ, w, p) and (u, v, λ, z, r) be feasible
solutions of (MP) and (MD), respectively. Assume that,

(i)
k∑

i=1

λi[fi(·, y) + (·)T zi] is second order pseudo-invex in the first variable for

fixed y with respect to η1,

(ii) −
k∑

i=1

λi[fi(x, ·)− (·)Twi] is second order pseudo-invex in the second vari-

able for fixed x with respect to η2,

(iii) η1(x, u) + u ∈ C1,

(iv) η2(v, y) + y ∈ C2. Then

D(u, v, λ, z, r)− P (x, y, λ, w, p) /∈ intK.
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Proof. From (3) and (iii), we obtain

[η1(x, u) + u]T
k∑

i=1

λi[∇xfi(u, v) + zi + ∇xxfi(u, v)ri] � 0.

From (4), it implies

η1(x, u)T
k∑

i=1

λi[∇xfi(u, v) + zi + ∇xxfi(u, v)ri] � 0.

By the second order pseudo-invexity of
k∑

i=1

λi[fi(·, y) + (·)Tzi], we have

(5)
k∑

i=1

λi[fi(x, v) + xT zi − fi(u, v)− uT zi +
1
2
rT
i ∇xxfi(u, v)ri] � 0.

Similarly, using (1), (2), (ii) and (iv), we have

(6)
k∑

i=1

λi[fi(x, v)− vTwi − fi(x, y) + yT wi +
1
2
pT

i ∇yyfi(x, y)pi] � 0.

From the inequality (5) and the inequality (6), we get
k∑

i=1

λi[fi(u, v)− vTwi + yT wi − 1
2
rT
i ∇xxfi(u, v)ri]

−
k∑

i=1

λi[fi(x, y) + xT zi − uT zi − 1
2
pT

i ∇yyfi(x, y)pi] � 0.

Using the fact that xT zi � s(x|Bi) and vTwi � s(v|Di) for i = 1, · · · , k, we
obtain

k∑
i=1

λi[fi(u, v)− s(v|Di) + uT zi − 1
2
rT
i ∇xxfi(u, v)ri]

−
k∑

i=1

λi[fi(x, y) + s(x|Bi) − yTwi − 1
2
pT

i ∇yyfi(x, y)pi] � 0,

and hence

(7a)

k∑
i=1

λi[fi(u, v)− s(v|Di) + uT zi − 1
2

k∑
i=1

λir
T
i ∇xxfi(u, v)ri]

−
k∑

i=1

λi[fi(x, y) + s(x|Bi)− yTwi − 1
2

k∑
i=1

λip
T
i ∇yyfi(x, y)pi] � 0.
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But suppose that

D(u, v, λ, z, r)− P (x, y, λ, w, p) ∈ intK.

Since λ ∈ intK∗, it yields
k∑

i=1

λi[fi(u, v)− s(v|Di) + uT zi − 1
2

k∑
i=1

λir
T
i ∇xxfi(u, v)ri]

−
k∑

i=1

λi[fi(x, y) + s(x|Bi) − yT wi − 1
2

k∑
i=1

λip
T
i ∇yyfi(x, y)pi] > 0,

which is a contradiction to the inequality (7a).

Remark 3.1. If we replace (i) and (ii) of Theorem 3.1 by
(i) [fi(·, y)+ (·)Tzi], i = 1, · · · , k, is second order invex in the first variable for

fixed y with respect to η1,
(ii) −[fi(x, ·)−(·)Twi], i = 1, · · · , k, is second order invex in the second variable

for fixed x with respect to η2,

then the same conclusion of Theorem 3.1 also holds.

Lemma 3.1. ([7]). If x is a K-weakly efficient solution of (KP), then there
exist α ∈ K∗ and β ∈ Q∗ not both zero such that

(αT∇f(x) + βT∇g(x))(x − x) � 0, for all x ∈ C,

βTg(x) = 0.

Equivalently, there exist α ∈ K ∗, β ∈ Q∗, β1 ∈ C∗ and (α, β, β1) �= 0 such that

αT∇f(x) + βT∇g(x) − βT
1 I = 0,

βT g(x) = 0,

βT
1 x = 0.

Proof. We can check that the first part of Lemma 3.1[1]. Now we prove the
latter part of Lemma 3.1. (Sufficiency) Substituting x = 0 and x = 2x, we get

(αT∇f(x) + βT∇g(x))x = 0.

Since αT∇f(x) + βT∇g(x) ∈ C∗, let β1 = αT∇f(x) + βT∇g(x). Then

αT∇f(x) + βT∇g(x) − βT
1 I = 0,

βT g(x) = 0,

βT
1 x = 0.
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(Necessity) Since αT∇f(x) + βT∇g(x) = β1 ∈ C∗, we get

(αT∇f(x) + βT∇g(x))x � 0, for all x ∈ C

and

βT
1 x = (αT∇f(x) + βT∇g(x))x = 0.

Therefore,

(αT∇f(x) + βT∇g(x))(x− x) � 0, for all x ∈ C,

βT g(x) = 0.

Theorem 3.2. (Strong Duality). Let (x, y, λ, w, p) be a K-weakly efficient
solution of (MP). Fix λ = λ in (MD). Assume that

(i) ∇yyfi is positive definite for i = 1, · · · , k and
k∑

i=1

λip
T
i [∇yfi − wi] � 0;or

∇yyfi is negative definite for i = 1, · · · , k and
k∑

i=1

λip
T
i [∇yfi − wi] � 0,

(ii) the set {∇yfi −wi +∇yyfipi, i = 1, · · · , k} is linearly independent, where
fi = fi(x, y) for i = 1, · · · , k.

Then there exists zi ∈ Bi(i = 1, · · · , k) such that (x, y, λ, z, r = 0) is a feasible
solution of (MD) and objective values of (MP) and (MD) are equal. Further-
more, under the assumptions of Theorem 3.1, (x, y, λ, z, r = 0) is a K-weakly
efficient solution of (MD).

Proof. Since (x, y, λ, w, p) is a K-weakly efficient solution of (MP), by
Lemma 3.1, there exist α ∈ K∗, β ∈ C2, µ ∈ R+, δ ∈ C∗

1 and ρ ∈ K such that

(7b)

k∑
i=1

αi(∇xfi + zi) + (β − µy)T
k∑

i=1

λi∇yxfi

+
k∑

i=1

(β − 1
2
(αT e)pi − µy)Tλi∇x(∇yyfipi)− δ = 0,

(8)

k∑
i=1

(αi − µλi)(∇yfi − wi) +
k∑

i=1

(β − µpi − µy)T λi∇yyfi

+
k∑

i=1

(β − 1
2
(αT e)pi − µy)T λi∇y(∇yyfipi) = 0,
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(9)
(β − µy)T (∇yfi − wi + ∇yyfipi) −

1
2
(αT e)pT

i ∇yyfipi − ρi = 0,

i = 1, · · · , k,

(10) αiy + (β − µy)λi ∈ NDi(wi), i = 1, · · · , k,

(11) (β − (αT e)pi − µy)Tλi∇yyfi = 0, i = 1, · · · , k,

(12) βT
k∑

i=1

λi(∇yfi − wi + ∇yyfipi) = 0,

(13) µyT
k∑

i=1

λi(∇yfi − wi + ∇yyfipi) = 0,

(14) δT x = 0,

(15) ρTλ = 0,

(16) zi ∈ Bi, zT
i x = s(x|Bi), i = 1, · · · , k,

(17) (α, β, µ, δ, ρ) �= 0.

Since λ > 0, it follows from (15), that ρ = 0. As ∇yyfi is positive or negative
definite for i = 1, · · · , k, (11) yields

(18) β = (αT e)pi + µy, i = 1, · · · , k.

If αi = 0 for i = 1, · · · , k, then the above equality becomes

(19) β = µy.

From (8), we obtain

(20) µ

k∑
i=1

λi(∇yfi − wi + ∇yyfipi) = 0.

By the assumption (ii), we have µ = 0. Also, from (7b) and (19), we get δ = 0
and β = 0, respectively. This contradicts (17). So, αi > 0 for i = 1, · · · , k. From
(12) and (13), we obtain

k∑
i=1

(β − µy)T λi(∇yfi − wi + ∇yyfipi) = 0.
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Using (18) and αT e > 0, it follows that

k∑
i=1

pT
i λi(∇yfi − wi + ∇yyfipi) = 0.

So,

(21)
k∑

i=1

pT
i λi(∇yfi − wi) +

k∑
i=1

pT
i λi∇yyfipi = 0.

We now prove that pi = 0 for i = 1, · · · , k. Otherwise, the assumption (i) implies
that

k∑
i=1

λip
T
i (∇yfi − wi) +

k∑
i=1

λi(pT
i ∇yyfipi) �= 0,

which contradicts (21). Hence pi = 0 for i = 1, · · · , k. From (18), we have

(22) β = µy.

Using (22) and pi = 0, i = 1, · · · , k, in (8), we obtain

k∑
i=1

(αi − µλi)(∇yfi − wi) = 0.

By the assumption (ii), we get

(23) αi = µλi, i = 1, · · · , k.

Therefore, µ > 0 and y ∈ C2 by (22). Using (19) and (23) in (7b), we have

(24) µ

k∑
i=1

λi(∇xfi + zi) = δ ∈ C∗
1 .

Also, since µ > 0, it follows that

k∑
i=1

λi(∇xfi + zi) ∈ C∗
1 .

Multiplying (24) by x and using equation (14), we get

xT
k∑

i=1

λi(∇xfi + zi) = 0.
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Taking zi := zi ∈ Bi for i = 1, · · · , k, we find that (x, y, λ, z, r = 0) is feasible
for (MD). Moreover, from (10), we get y ∈ NDi(wi) for i = 1, · · · , k, so that
yT wi = s(y|Di) for i = 1, · · · , k. Consequently, using (16)

fi + s(x|Bi)− yTwi − 1
2

k∑
i=1

λip
T
i ∇yyfipi

= fi + xT zi − s(y|Di)

= fi − s(y|Di) + xT zi − 1
2

k∑
i=1

λir
T
i ∇xxfiri, i = 1, · · · , k.

Thus objective values of (MP) and (MD) are equal.
We will now show that (x, y, λ, z, r = 0) is a K-weakly efficient solution of

(MD), otherwise, there exists a feasible solution (u, v, λ, z, r = 0) of (MD) such
that

D(u, v, λ, z, r = 0) − D(x, y, λ, z, r = 0) ∈ intK.

Since objective values of (MP) and (MD) are equal, it follows that

D(u, v, λ, z, r = 0) − P (x, y, λ, w, p = 0) ∈ intK,

which contradicts weak duality. Hence the results hold.

Theorem 3.3. (Converse Duality) Let (u, v, λ, z, r) be a K-weakly efficient
solution of (MD). Fix λ = λ in (MP). Assume that

(i) ∇xxfi is positive definite for i = 1, · · · , k and
k∑

i=1

λir
T
i [∇xfi + zi] � 0; or

∇xxfi is negative definite for i = 1, · · · , k and
k∑

i=1

λir
T
i [∇xfi + zi] � 0,

(ii) the set {∇xfi + zi + ∇xxfiri, i = 1, · · · , k} is linearly independent, where
fi = fi(u, v) for i = 1, · · · , k.

Then there exists wi ∈ Di(i = 1, · · · , k) such that (u, v, λ, w, p = 0) is a feasible
solution of (MP) and objective values of (MP) and (MD) are equal. Further-
more, under the assumptions of Theorem 3.1, (u, v, λ, w, p = 0) is a K-weakly
efficient solution of (MP).

Proof. It follows on the lines of Theorem 3.2.

A mathematical programming problem is said to be self dual if, when the dual
is recast in the form of the primal, the new program constructed is the same as the
primal problem.
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We now prove the following self duality theorem for the primal (MP) and the
dual (MD) on the lines of Mond and Weir [14]. We describe (MP) and (MD)
as dual programs, if the conclusions of Theorem 3.2. hold.

Theorem 3.4. (Self Duality) Assume that m = n, C1 = C2 and B = D. If
f is skew-symmetric, then the program (MP) is self dual. Furthermore, if (MP)
and (MD) are dual programs with K-weakly efficient solutions as (x, y, λ, w, p)
and (x, y, λ, z, r), respecively, then (y, x, λ, z, p) and (y, x, λ, w, r) are K-weakly
efficient solutions of (MP) and (MD), respectively. Also the common objective
value of the objective functions is 0.

Proof. Rewriting the dual as in [14], we have

(MD′) Minimize

−
(
f1(u, v)− s(v|D1) + uT z1 − 1

2

k∑
i=1

λir
T
i ∇xxfi(u, v)ri, · · · ,

fk(u, v)− s(v|Dk) + uT zk − 1
2

k∑
i=1

λir
T
i ∇xxfi(u, v)ri

)

subject to
k∑

i=1

λi[∇xfi(u, v) + zi + ∇xxfi(u, v)ri] ∈ C∗
1 ,

uT
k∑

i=1

λi[∇xfi(u, v) + zi + ∇xxfi(u, v)ri] � 0,

v ∈ C2, zi ∈ Bi, λ ∈ intK∗, λT e = 1.

Since f is skew-symmetric, therefore, as in [14], f(u, v) = −f(v, u), ∇xf(u, v) =
−∇xf(v, u) and ∇xxf(u, v) = −∇xxf(v, u). Hence (MD′) becomes

(MD′) Minimize
(
f1(v, u) + s(v|D1) − uT z1 − 1

2

k∑
i=1

λir
T
i ∇xxfi(v, u)ri, · · · ,

fk(v, u) + s(v|Dk) − uT zk − 1
2

k∑
i=1

λir
T
i ∇xxfi(v, u)ri

)

subject to −
k∑

i=1

λi[∇xfi(v, u)− zi + ∇xxfi(v, u)ri] ∈ C∗
1 ,

uT
k∑

i=1

λi[∇xfi(v, u)− zi + ∇xxfi(v, u)ri] � 0,
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v ∈ C2, zi ∈ Bi, λ ∈ intK∗, λT e = 1,

which is just (MP). Thus, if (x, y, λ, z, r) isK-weakly efficient solution of (MD),
then (y, x, λ, z, p) is K-weakly efficient solution of (MP), and hence by symmetric
duality, also (y, x, λ, w, r) is K-weakly efficient solution of (MD).

Therefore,

P (x, y, λ, w, p = 0)

= (f1(x, y) + s(x|B1) − yTw1, · · · , fk(x, y) + s(x|Bk) − yT wk)

= (f1(y, x) + s(y|D1) − xT z1, · · · , fk(y, x) + s(y|Dk) − xT zk)

= (−f1(x, y)− s(x|B1) + yTw1, · · · ,−fk(x, y) − s(x|Bk) + yTwk)

= D(x, y, λ, z, r = 0).

This implies

P (x, y, λ, w, p) = 0 = D(x, y, λ, z, r).

4. WOLFE TYPE SYMMETRIC DUALITY

We consider the following pair of second order Wolfe type non-differentiable
multiobjective programming problem with k-objectives :

(25)

(WP) Minimize

P (x, y, λ, w, p)

=
(
f1(x, y) + s(x|B1)− yTw1 −

k∑
i=1

λi[yT (∇yfi(x, y)

−wi + ∇yyfi(x, y)pi) +
1
2
pT

i ∇yyfi(x, y)pi], · · · ,

fk(x, y) + s(x|Bk) − yT wk −
k∑

i=1

λi[yT (∇yfi(x, y)

−wi + ∇yyfi(x, y)pi) +
1
2
pT

i ∇yyfi(x, y)pi]
)

subject to −
k∑

i=1

λi[∇yfi(x, y)−wi+∇yyfi(x, y)pi]∈C∗
2 ,

x ∈ C1, wi ∈ Di, λ ∈ intK∗, λT e = 1,
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(26)

(WD) Maximize

D(u, v, λ, z, r)

=
(
f1(u, v)− s(v|D1) + uT z1 −

k∑
i=1

λi[uT (∇xfi(u, v)

+zi + ∇xxfi(u, v)ri) +
1
2
rT
i ∇xxfi(u, v)ri], · · · ,

fk(u, v)− s(v|Dk) + uT zk −
k∑

i=1

λi[uT (∇xfi(u, v)

+zi + ∇xxfi(u, v)ri) +
1
2
rT
i ∇xxfi(u, v)ri]

)

subject to
k∑

i=1

λi[∇xfi(u, v) + zi + ∇xxfi(u, v)ri] ∈ C∗
1 ,

v ∈ C2, zi ∈ Bi, λ ∈ intK∗, λT e = 1,

where

(1) f : R
n × R

m → R
k is a three times differentiable function,

(2) C1 and C2 are closed convex cones in R
n and R

m with nonempty interiors,
respectively,

(3) C∗
1 and C∗

2 are positive polar cones of C1 and C2, respectively,

(4) K is a closed convex cone in R
k with intK �= ∅ and R

k
+ ⊂ K,

(5) ri, zi(i = 1, · · · , k) are vectors in R
n, pi, wi(i = 1, · · · , k) are vectors in

R
m,

(6) e = (1, · · · , 1)T is a vector in R
k,

(7) Bi andDi(i = 1, · · · , k) are compact convex sets in R
n and R

m, respectively.

Now we establish the symmetric duality theorems of (WP) and (WD).

Theorem 4.1. (Weak Duality). Let (x, y, λ,w, p) and (u, v, λ, z, r) be feasible
solutions of (WP) and (WD), respectively. Assume that,

k∑
i=1

λi[fi(·, y) + (·)Tzi] is second order invex in the first variable

for fixed y with respect to η1,

(27)
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(28) −
k∑

i=1

λi[fi(x, ·)− (·)Twi] is second order invex in the second variable

for fixed x with respect toη2,

η1(x, u) + u ∈ C1,(29)

(30) η2(v, y) + y ∈ C2.Then

D(u, v, λ, z, r)− P (x, y, λ, w, p) /∈ intK.

Proof. By assumptions (27) (28) (29) and (30) and applying constraints (25)
and (26), we obtain

k∑
i=1

λi[fi(u, v)− vTwi + uT zi

−
k∑

i=1

λi{uT (∇xfi(u, v) + zi + ∇xxfi(u, v)ri) +
1
2
rT
i ∇xxfi(u, v)ri}]

−
k∑

i=1

λi[fi(x, y) + xT zi − yT wi

−
k∑

i=1

λi{yT (∇yfi(x, y)− wi + ∇yyfi(x, y)pi) +
1
2
pT

i ∇yyfi(x, y)pi}]

� 0.

Using xT zi � s(x|Bi) and vTwi � s(v|Di) for i = 1, · · · , k, we get

(31)

k∑
i=1

λi[fi(u, v)− s(v|Di) + uT zi

−
k∑

i=1

λi{uT (∇xfi(u, v) + zi + ∇xxfi(u, v)ri) +
1
2
rT
i ∇xxfi(u, v)ri}]

−
k∑

i=1

λi[fi(x, y) + s(x|Bi) − yT wi

−
k∑

i=1

λi{yT (∇yfi(x, y)− wi + ∇yyfi(x, y)pi) +
1
2
pT

i ∇yyfi(x, y)pi}]

� 0.

But suppose that

D(u, v, λ, z, r)− P (x, y, λ, w, p) ∈ intK.
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Since λ ∈ intK∗, it becomes λT [D(u, v, λ, z, r)− P (x, y, λ, w, p)] > 0, which is
a contradiction to the inequality (31). Hence the result holds.

Theorem 4.2. (Strong Duality). Let (x, y, λ, w, p) be a K-weakly efficient
solution of (WP). Fix λ = λ in (WD). Assume that

(i) ∇yyfi is positive definite for i = 1, · · · , k and
k∑

i=1

λip
T
i [∇yfi − wi] � 0;or

∇yyfi is negative definite for i = 1, · · · , k and
k∑

i=1

λip
T
i [∇yfi − wi] � 0,

(ii) the set {∇yfi − wi, i = 1, · · · , k} is linearly independent, where fi =
fi(x, y) for i = 1, · · · , k.

Then there exists zi ∈ Bi(i = 1, · · · , k) such that (x, y, λ, z, r = 0) is a feasible
solution of (WD) and objective values of (WP) and (WD) are equal. Further-
more, under the assumptions of Theorem 4.1, (x, y, λ, z, r = 0) is a K-weakly
efficient solution of (WD).

Proof. Since (x, y, λ, w, p) is a K-weakly efficient solution of (WP), by
Lemma 3.1, there exist α ∈ K∗, β ∈ C2, δ ∈ C∗

1 and ρ ∈ K such that

(32)

k∑
i=1

αi(∇xfi + zi) + (β − (αT e)y)T
k∑

i=1

λi∇yxfi

+
k∑

i=1

(β − (αT e)y − 1
2
(αT e)pi)

Tλi∇x(∇yyfipi) − δ = 0,

(33)

k∑
i=1

(αi − (αT e)λi)(∇yfi − wi)

+
k∑

i=1

(β − (αT e)pi − (αT e)y)Tλi∇yyfi

+
k∑

i=1

(β − (αT e)y − 1
2
(αT e)pi)

Tλi∇y(∇yyfipi) = 0,

(34)
(β − (αT e)y)T (∇yfi − wi + ∇yyfipi) −

1
2
(αT e)pT

i ∇yyfipi − ρi = 0,

i = 1, · · · , k,

(35) αiy + (β − (αT e)y)λi ∈ NDi(wi), i = 1, · · · , k,
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(36) (β − (αT e)y − (αT e)pi)
Tλi∇yyfi = 0, i = 1, · · · , k,

(37) βT
k∑

i=1

λi(∇yfi − wi + ∇yyfipi) = 0,

(38) δT x = 0,

(39) ρTλ = 0,

(40) zi ∈ Bi, zT
i x = s(x|Bi), i = 1, · · · , k,

(41) (α, β, δ, ρ) �= 0.

As λ > 0, it follows from (39), that ρ = 0. Hence from (34), we obtain

(42)
(β − (αT e)y)T (∇yfi − wi + ∇yyfipi) −

1
2
(αT e)pT

i ∇yyfipi = 0,

i = 1, · · · , k.

As ∇yyfi is positive or negative definite for i = 1, · · · , k, it follows from (36),

(43) β = (αT e)(y + pi), i = 1, · · · , k.

If αi = 0 for i = 1, · · · , k, then δ = 0 and β = 0 from (32) and (43), respectively.
This contradicts (41). So, αi > 0 for i = 1, · · · , k. Using (43), (42) implies

(αT e)pT
i (∇yfi − wi + ∇yyfipi) −

1
2
(αT e)pT

i ∇yyfipi = 0, i = 1, · · · , k.

Since αT e > 0, the above equality becomes

pT
i (∇yfi − wi +

1
2
∇yyfipi) = 0, i = 1, · · · , k.

Using λ > 0, it follows that

(44)
k∑

i=1

λip
T
i (∇yfi − wi) +

k∑
i=1

1
2
λi(pT

i ∇yyfipi) = 0.

We now prove that pi = 0 for i = 1, · · · , k. Otherwise, the assumption (i) implies
that

k∑
i=1

λip
T
i (∇yfi − wi) +

k∑
i=1

1
2
λi(pT

i ∇yyfipi) �= 0,
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which contradicts (44). Hence pi = 0 for i = 1, · · · , k. Thus (43) implies

(45) β = (αT e)y.

Consequently, y ∈ C2. From (33), we obtain

k∑
i=1

(αi − (αT e)λi)(∇yfi − wi) = 0.

By the assumption (ii), we get

(46) αi = (αT e)λi, i = 1, · · · , k.

From (32),

(47)
k∑

i=1

αi(∇xfi + zi) = δ ∈ C∗
1 .

Using (46) and αT e > 0, it follows that

k∑
i=1

λi(∇xfi + zi) ∈ C∗
1 .

Taking zi := zi ∈ Bi for i = 1, · · · , k, we find that (x, y, λ, z, r = 0) is feasible
for (WD).

Moreover, from (35), we get y ∈ NDi(wi) for i = 1, · · · , k, which implies
yT wi = s(y|Di) for i = 1, · · · , k. Multiplying (47) by x and using (38), we get

xT
k∑

i=1

λi(∇xfi + zi) = 0.

And from (37) and (45), we obtain

yT
k∑

i=1

λi(∇yfi − wi + ∇yyfipi) = 0.

So, using (40)

fi + s(x|Bi) − yT wi −
k∑

i=1

λi[yT (∇yfi − wi + ∇yyfipi) +
1
2
pT

i ∇yyfipi]

= fi − s(y|Di) + xT zi −
k∑

i=1

λi[xT (∇xfi + zi + ∇xxfiri) +
1
2
rT
i ∇xxfiri],

i = 1, · · · , k.
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Thus objective values of (WP) and (WD) are equal.
We will now show that (x, y, λ, z, r = 0) is a K-weakly efficient solution of

(WD), otherwise, there exists a feasible solution (u, v, λ, z, r = 0) of (WD) such
that

D(u, v, λ, z, r = 0) − D(x, y, λ, z, r = 0) ∈ intK.

Since objective values of (WP) and (WD) are equal, it follows that

D(u, v, λ, z, r = 0) − P (x, y, λ, w, p = 0) ∈ intK,

which contradicts weak duality. Hence the results hold.

Remark 4.1. ([19]). If we replace (i) and (ii) of Theorem 4.2 by

(i) the matrix ∇yy(λ
T
f) is non-singular,

(ii) the vectors ∇yf1 − w1, · · · ,∇yfk − wk are linearly independent,

(iii) the vector pT
i ∇y(∇yy(λ

T
f)pi) = 0 implies that pi = 0(i = 1, 2, · · · , k), and

then the same results also hold.

Theorem 4.3. (Converse Duality). Let (u, v, λ, z, r) be a K-weakly efficient
solution of (WD). Fix λ = λ in (WP). Assume that

(i) ∇xxfi is positive definite for i = 1, · · · , k and
k∑

i=1

λir
T
i [∇xfi + zi] � 0; or

∇xxfi is negative definite for i = 1, · · · , k and
k∑

i=1

λir
T
i [∇xfi + zi] � 0,

(ii) the set {∇xfi+zi, i = 1, · · · , k} is linearly independent, where fi = fi(u, v)
for i = 1, · · · , k.

Then there exists wi ∈ Di(i = 1, · · · , k) such that (u, v, λ, w, p = 0) is a feasible
solution of (WP) and objective values of (WP) and (WD) are equal. Further-
more, under the assumptions of Theorem 4.1, (u, v, λ, w, p = 0) is a K-weakly
efficient solution of (WP).

Proof. It follows on the lines of Theorem 4.2.

Remark 4.2. ([19]). If we replace (i) and (ii) of Theorem 4.3 by

(i) the matrix ∇xx(λ
T
f) is non-singular,

(ii) the vectors ∇xf1 + z1, · · · ,∇xfk + zk are linearly independent,
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(iii) the vector rT
i ∇x(∇xx(λ

T
f)ri) = 0 implies that r = 0, and then the same

results also hold.

We now prove the following self duality theorem for the primal (WP) and the dual
(WD) on the lines of Mond and Weir [14]. We describe (WP) and (WD) as
dual programs, if the conclusions of Theorem 4.2 hold.

Theorem 4.4. (Self Duality). Assume that m = n, C1 = C2 and B = D. If
f is skew-symmetric, then the program (WP) is self dual. Furthermore, if (WP)
and (WD) are dual programs with K-weakly efficient solutions as (x, y, λ, w, p)
and (x, y, λ, z, r), respecively, then (y, x, λ, z, p) and (y, x, λ, w, r) are K-weakly
efficient solutions of (WP) and (WD), respectively. Also common objective value
of the objective functions is 0.

Proof. Rewriting the dual as in [14], we have

(WD′) Minimize(
f1(v, u) + s(v|D1) − uT z1

−
k∑

i=1

λi[uT (∇xfi(v, u)− zi + ∇xxfi(v, u)ri)

+
1
2
rT
i ∇xxfi(v, u)ri], · · · , fk(v, u) + s(v|Dk) − uT zk

−
k∑

i=1

λi[uT (∇xfi(v, u)− zi + ∇xxfi(v, u)ri) +
1
2
rT
i ∇xxfi(v, u)ri]

)

subject to −
k∑

i=1

λi[∇xfi(v, u)− zi + ∇xxfi(v, u)ri] ∈ C∗
1 ,

v ∈ C2, zi ∈ Bi, λ ∈ intK∗, λT e = 1,

which is just (WP). Thus, if (x, y, λ, z, r) isK-weakly efficient solution of (WD),
then (y, x, λ, z, p) isK-weakly efficient solution of (WP), and hence by symmetric
duality, also (y, x, λ, w, r) is K-weakly efficient solution of (WD). Therefore,

P (x, y, λ, w, p = 0)

= (f1(x, y) + s(x|B1) − yT w1, · · · , fk(x, y) + s(x|Bk) − yT wk)

= (f1(y, x) + s(y|D1) − xT z1, · · · , fk(y, x) + s(y|Dk) − xT zk)

= (−f1(x, y) − s(x|B1) + yTw1, · · · ,−fk(x, y) − s(x|Bk) + yTwk)

= D(x, y, λ, z, r = 0).
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This implies

P (x, y, λ, w, p) = 0 = D(x, y, λ, z, r).

5. SPECIAL CASES

We give some special cases of our symmetric duality.

(1) If C1 = R
n
+ and C2 = R

m
+ , then (MP) and (MD) become the pair of

Mond-Weir symmetric dual programs considered in X.M. Yang et al.[20] for
the same B and D.

(2) If Bi ={0} and Di ={0}, i=1,· · · ,k, then (MP) and (MD) reduced to the
second order symmetric dual programs in S.K. Mishra and K.K. Lai [12].

(3) If p = r = 0, then we get the first order symmetric dual programs which
studied by M.H. Kim and D.S. Kim [7].

(4) If Bi = {0}, Di = {0} and pi = ri = 0, i = 1, · · · , k, then (MP) and
(MD) become the pair of symmetric dual programs considered in Seema
Khurana [6].

(5) If Bi = {0}, Di = {0} and pi = ri = 0, i = 1, · · · , k, then (WP) and
(WD) reduced to the first order multiobjective symmetric dual programs in
D.S. Kim et al.[9].

(6) If C1 = R
n
+ and C2 = R

m
+ , then (MP), (MD), (WP) and (WD) become

the pair of Mond-Weir and Wolfe type symmetric dual programs considered
in D.S. Kim et al.[8] for the same B, D, p and r.
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