NONDIFFERENTIABLE MULTIOBJECTIVE SECOND ORDER SYMMETRIC DUALITY WITH CONE CONSTRAINTS

Do Sang Kim, Yu Jung Lee and Hyo Jung Lee

Abstract

We introduce two pairs of nondifferentiable multiobjective second order symmetric dual problems with cone constraints over arbitrary closed convex cones, which is different from the one proposed by Mishra and Lai [12]. Under suitable second order pseudo-invexity assumptions we establish weak, strong and converse duality theorems as well as self-duality relations. Our symmetric duality results include an extension of the symmetric duality results for the first order case obtained by Kim and Kim [7] to the second order case. Several known results are abtained as special cases.

1. Introduction

Symmetric duality for quadratic programming was introduced by Dorn [5], who defined symmetric duality in mathematical programming if the dual of the dual is the primal problem. Applying these results to nonlinear programming, Dantzig et al. [4] formulated a symmetric dual and established symmetric duality relations. The notion of symmetric duality was developed significantly by Mond and Weir [14], Chandra and Husain [3] and Mond and Weir [15]. Also Mond and Weir [15] presented two pairs of symmetric dual multiobjective programming problems for efficient solutions and obtained symmetric duality results concerning pseudoconvex or convex functions. Later, Mond and Schechter [13] first introduced a symmetric dual programs where the objective function contains a support function.

On the other hand, Bector and Chandra [2] studied Mond-Weir type second order primal and dual nonlinear programs and established second order symmetric duality results. Mishra [11] considered second order symmetric duality under second order F-convexity, F-pseudo-convexity for second order Wolfe and Mond-Weir models, respectively. Recently, Yang et al. [19] introduced a symmetric dual for

[^0]a class of multiobjective programs, which is Mond-Weir type. Then in Yang et al. [20] formulated a pair of Wolfe type second order symmetric dual programs in nondifferentiable multiobjective nonlinear prigramming and presented duality results for these programs. Very recently, Kim et al. [8] gave a pair of nonfifferentiable multiobjective generalized second order symmetric dual programs as unified models and established duality relations.

In this paper we focus on symmetric duality with cone constraints. Bazaraa and Goode [1] established symmetric duality results for convex function with arbitrary cones. Nanda and Das [17] formulated a pair of symmetric dual nonlinear programming problems for pseudo-invex functions and arbitrary cones. In the multiobjective case, Kim et al. [9] formulated a pair of multiobjective symmetric dual programs for pseudo-invex functions and arbitrary cones and established duality results. Subsequently, Suneja et al. [18] formulated a pair of symmetric dual multiobjective programs of Wolfe type over arbitrary cones in which the objective function is optimized with respect to an arbitrary closed convex cone by assuming the function involved to be cone-convex. Recently, Khurana [6] introduced cone-pseudo-invex and strongly cone-pseudo-invex functions and established duality theorems for a pair of Mond-Weir type multiobjective symmetric dual over arbitrary cones. Very recently, Kim and Kim [7] studied two pairs of non-differentiable multiobjective symmetric dual problems with cone constraints over arbitrary closed convex cones, which are Wolfe type and Mond-Weir type.

In the second order case, Mishra [10] formulated a pair of multiobjective second order symmetric dual nonlinear programming problems under second order pseudoinvexity assumptions on the functions involved over arbitrary cones and established duality results. The concept of cone-second order pseudo-invex and strongly conesecond order pseudo-invex functions was introduced by Mishra and Lai [12]. They formulated a pair of Mond-Weir type multiobjective second order symmetric dual programs over arbitrary cones.

In this paper, we consider two pairs of nondifferentiable multiobjective second order symmetric dual problems with cone constraints over arbitrary closed convex cones, which are Mond-Weir type and Wolfe type. These are slightly different from Mishra and Lai ([10], [12]). Weak, strong, converse and self-duality theorems are established under the assumptions of second order pseudo-invex functions. Our results extend the results in Kim and Kim [7] to the second order case. Moreover, we give some special cases of our symmetric duality results.

2. Preliminaries

Definition 2.1. A nonempty set K in \mathbb{R}^{k} is said to be a cone with vertex zero, if $x \in K$ implies that $\lambda x \in K$ for all $\lambda \geqq 0$. If, in addition, K is convex, then K
is called a convex cone.
Consider the following multiobjective programming problem:

$$
\begin{array}{lll}
(K P) & \text { Minimize } & f(x) \\
& \text { subject to } & -g(x) \in Q, x \in C,
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $C \subset \mathbb{R}^{n}, Q$ is a closed convex cone with nonempty interior in \mathbb{R}^{m}.

We shall denote the feasible set of (KP) by $X=\{x \mid-g(x) \in Q, x \in C\}$.
Definition 2.2. A feasible point \bar{x} is a K-weakly efficient solution of (KP), if there exists no other $x \in X$ such that $f(\bar{x})-f(x) \in \operatorname{int} K$.

Definition 2.3. The positive polar cone K^{*} of K is defined by

$$
K^{*}=\left\{z \in \mathbb{R}^{k} \quad \mid \quad x^{T} z \geqq 0 \quad \text { for all } \quad x \in K\right\}
$$

Definition 2.4. ([10]). Let $f: X\left(\subset \mathbb{R}^{n}\right) \times Y\left(\subset \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ be a twice differentiable function.
(i) f is said to be second order invex in the first variable at u for fixed v, if there exists a function $\eta_{1}: X \times X \rightarrow X$ such that for $r \in \mathbb{R}^{n}$,
$f(x, v)-f(u, v) \geqq \eta_{1}^{T}(x, u)\left[\nabla_{x} f(u, v)+\nabla_{x x} f(u, v) r\right]-\frac{1}{2} r^{T} \nabla_{x x} f(u, v) r$.
(ii) f is said to be second order pseudo-invex in the first variable at u for fixed v, if there exists a function $\eta_{1}: X \times X \rightarrow X$ such that for $r \in \mathbb{R}^{n}$,

$$
\eta_{1}^{T}(x, u)\left[\nabla_{x} f(u, v)+\nabla_{x x} f(u, v) r\right] \geqq 0 \Rightarrow f(x, v)-f(u, v)+\frac{1}{2} r^{T} \nabla_{x x} f(u, v) r \geqq 0
$$

Definition 2.5. ([13]). The support function $s(x \mid B)$, being convex and everywhere finite, has a subdifferential, that is, there exists z such that

$$
s(y \mid B) \geq s(x \mid B)+z^{T}(y-x) \text { for all } y \in B
$$

Equivalently,

$$
z^{T} x=s(x \mid B)
$$

The subdifferential of $s(x \mid B)$ is given by

$$
\partial s(x \mid B):=\left\{z \in B: z^{T} x=s(x \mid B)\right\}
$$

For any set $S \subset \mathbb{R}^{n}$, the normal cone to S at a point $x \in S$ is defined by

$$
N_{S}(x):=\left\{y \in \mathbb{R}^{n}: y^{T}(z-x) \leq 0 \text { for all } z \in S\right\} .
$$

It is readily verified that for a compact convex set B, y is in $N_{B}(x)$ if and only if $s(y \mid B)=x^{T} y$, or equivalently, x is in the subdifferential of s at y.

Definition 2.6. ([14]). A function $f(x, y), x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}$ is said to be skew-symmetric if

$$
f(x, y)=-f(y, x)
$$

for all x and y in the domain of f.

3. Mond-weir Type Symmetric Duality

We consider the following pair of second order Mond-Weir type non-differentiable multiobjective programming problem with k-objectives :
(MP) Minimize

$$
\begin{aligned}
& P(x, y, \lambda, w, p) \\
& =\left(f_{1}(x, y)+s\left(x \mid B_{1}\right)-y^{T} w_{1}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}, \cdots,\right. \\
& \left.\quad f_{k}(x, y)+s\left(x \mid B_{k}\right)-y^{T} w_{k}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right)
\end{aligned}
$$

(1) \quad subject to $-\sum_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right] \in C_{2}^{*}$,

$$
\begin{align*}
& y^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right] \geqq 0, \tag{2}\\
& x \in C_{1}, \quad w_{i} \in D_{i}, \quad \lambda \in \operatorname{int} K^{*}, \quad \lambda^{T} e=1,
\end{align*}
$$

(MD) Maximize

$$
\begin{aligned}
& D(u, v, \lambda, z, r) \\
& =\left(f_{1}(u, v)-s\left(v \mid D_{1}\right)+u^{T} z_{1}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}, \cdots,\right. \\
& \left.\quad f_{k}(u, v)-s\left(v \mid D_{k}\right)+u^{T} z_{k}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right)
\end{aligned}
$$

(3) subject to

$$
\sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \in C_{1}^{*}
$$

$$
\begin{align*}
& u^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \leqq 0 \tag{4}\\
& v \in C_{2}, \quad z_{i} \in B_{i}, \quad \lambda \in \operatorname{int} K^{*}, \quad \lambda^{T} e=1
\end{align*}
$$

where
(i) $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is a three times differentiable function,
(ii) C_{1} and C_{2} are closed convex cones in \mathbb{R}^{n} and \mathbb{R}^{m} with nonempty interiors, respectively,
(iii) C_{1}^{*} and C_{2}^{*} are positive polar cones of C_{1} and C_{2}, respectively,
(iv) K is a closed convex cone in \mathbb{R}^{k} with int $K \neq \emptyset$ and $\mathbb{R}_{+}^{k} \subset K$,
(v) $r_{i}, z_{i}(i=1, \cdots, k)$ are vectors in $\mathbb{R}^{n}, p_{i}, w_{i}(i=1, \cdots, k)$ are vectors in \mathbb{R}^{m},
(vi) $e=(1, \cdots, 1)^{T}$ is a vector in \mathbb{R}^{k},
(vii) B_{i} and $D_{i}(i=1, \cdots, k)$ are compact convex sets in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively.

Now we establish the symmetric duality theorems of (MP) and (MD).
Theorem 3.1. (Weak Duality). Let (x, y, λ, w, p) and (u, v, λ, z, r) be feasible solutions of (MP) and (MD), respectively. Assume that,
(i) $\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(\cdot, y)+(\cdot)^{T} z_{i}\right]$ is second order pseudo-invex in the first variable for fixed y with respect to η_{1},
(ii) $-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, \cdot)-(\cdot)^{T} w_{i}\right]$ is second order pseudo-invex in the second variable for fixed x with respect to η_{2},
(iii) $\eta_{1}(x, u)+u \in C_{1}$,
(iv) $\eta_{2}(v, y)+y \in C_{2}$. Then

$$
D(u, v, \lambda, z, r)-P(x, y, \lambda, w, p) \notin \text { int } K .
$$

Proof. From (3) and (iii), we obtain

$$
\left[\eta_{1}(x, u)+u\right]^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \geqq 0
$$

From (4), it implies

$$
\eta_{1}(x, u)^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \geqq 0
$$

By the second order pseudo-invexity of $\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(\cdot, y)+(\cdot)^{T} z_{i}\right]$, we have
(5) $\quad \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)+x^{T} z_{i}-f_{i}(u, v)-u^{T} z_{i}+\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right] \geqq 0$.

Similarly, using (1), (2), (ii) and (iv), we have
(6) $\quad \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)-v^{T} w_{i}-f_{i}(x, y)+y^{T} w_{i}+\frac{1}{2} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right] \leqq 0$.

From the inequality (5) and the inequality (6), we get

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)-v^{T} w_{i}+y^{T} w_{i}-\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right] \\
& \quad-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, y)+x^{T} z_{i}-u^{T} z_{i}-\frac{1}{2} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right] \leqq 0
\end{aligned}
$$

Using the fact that $x^{T} z_{i} \leqq s\left(x \mid B_{i}\right)$ and $v^{T} w_{i} \leqq s\left(v \mid D_{i}\right)$ for $i=1, \cdots, k$, we obtain

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)-s\left(v \mid D_{i}\right)+u^{T} z_{i}-\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right] \\
& \quad-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, y)+s\left(x \mid B_{i}\right)-y^{T} w_{i}-\frac{1}{2} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right] \leqq 0
\end{aligned}
$$

and hence

$$
\begin{align*}
& \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)-s\left(v \mid D_{i}\right)+u^{T} z_{i}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right] \tag{7a}\\
& \quad-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, y)+s\left(x \mid B_{i}\right)-y^{T} w_{i}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right] \leqq 0
\end{align*}
$$

But suppose that

$$
D(u, v, \lambda, z, r)-P(x, y, \lambda, w, p) \in \operatorname{int} K .
$$

Since $\lambda \in \operatorname{int} K^{*}$, it yields

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)-s\left(v \mid D_{i}\right)+u^{T} z_{i}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right] \\
& \quad-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, y)+s\left(x \mid B_{i}\right)-y^{T} w_{i}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right]>0
\end{aligned}
$$

which is a contradiction to the inequality (7a).
Remark 3.1. If we replace (i) and (ii) of Theorem 3.1 by
(i) $\left[f_{i}(\cdot, y)+(\cdot)^{T} z_{i}\right], i=1, \cdots, k$, is second order invex in the first variable for fixed y with respect to η_{1},
(ii) $-\left[f_{i}(x, \cdot)-(\cdot)^{T} w_{i}\right], i=1, \cdots, k$, is second order invex in the second variable for fixed x with respect to η_{2},
then the same conclusion of Theorem 3.1 also holds.
Lemma 3.1. ([7]). If \bar{x} is a K-weakly efficient solution of ($\mathbf{K P}$), then there exist $\alpha \in K^{*}$ and $\beta \in Q^{*}$ not both zero such that

$$
\begin{aligned}
& \left(\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})\right)(x-\bar{x}) \geqq 0, \quad \text { for all } \quad x \in C, \\
& \beta^{T} g(\bar{x})=0 .
\end{aligned}
$$

Equivalently, there exist $\alpha \in K^{*}, \beta \in Q^{*}, \beta_{1} \in C^{*}$ and $\left(\alpha, \beta, \beta_{1}\right) \neq 0$ such that

$$
\begin{aligned}
\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})-\beta_{1}^{T} I & =0, \\
\beta^{T} g(\bar{x}) & =0, \\
\beta_{1}^{T} \bar{x} & =0 .
\end{aligned}
$$

Proof. We can check that the first part of Lemma 3.1[1]. Now we prove the latter part of Lemma 3.1. (Sufficiency) Substituting $x=0$ and $x=2 \bar{x}$, we get

$$
\left(\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})\right) \bar{x}=0 .
$$

Since $\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x}) \in C^{*}$, let $\beta_{1}=\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})$. Then

$$
\begin{aligned}
\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})-\beta_{1}^{T} I & =0, \\
\beta^{T} g(\bar{x}) & =0, \\
\beta_{1}^{T} \bar{x} & =0 .
\end{aligned}
$$

(Necessity) Since $\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})=\beta_{1} \in C^{*}$, we get

$$
\left(\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})\right) x \geqq 0, \quad \text { for all } \quad x \in C
$$

and

$$
\beta_{1}^{T} \bar{x}=\left(\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})\right) \bar{x}=0 .
$$

Therefore,

$$
\begin{gathered}
\left(\alpha^{T} \nabla f(\bar{x})+\beta^{T} \nabla g(\bar{x})\right)(x-\bar{x}) \geqq 0, \quad \text { for all } \quad x \in C, \\
\beta^{T} g(\bar{x})=0
\end{gathered}
$$

Theorem 3.2. (Strong Duality). Let $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p})$ be a K-weakly efficient solution of (MP). Fix $\lambda=\bar{\lambda}$ in (MD). Assume that
(i) $\nabla_{y y} f_{i}$ is positive definite for $i=1, \cdots, k$ and $\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{p}_{i}^{T}\left[\nabla_{y} f_{i}-\bar{w}_{i}\right] \geqq 0 ;$ or $\nabla_{y y} f_{i}$ is negative definite for $i=1, \cdots, k$ and $\sum^{k} \bar{\lambda}_{i} \bar{p}_{i}^{T}\left[\nabla_{y} f_{i}-\bar{w}_{i}\right] \leqq 0$,
(ii) the set $\left\{\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}, i=1, \cdots, k\right\}$ is ${ }^{i}$ Fhearly independent, where $f_{i}=f_{i}(\bar{x}, \bar{y})$ for $i=1, \cdots, k$.

Then there exists $\bar{z}_{i} \in B_{i}(i=1, \cdots, k)$ such that $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is a feasible solution of (MD) and objective values of (MP) and (MD) are equal. Furthermore, under the assumptions of Theorem 3.1, $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is a K-weakly efficient solution of (MD).

Proof. Since $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p})$ is a K-weakly efficient solution of (MP), by Lemma 3.1, there exist $\alpha \in K^{*}, \beta \in C_{2}, \mu \in \mathbb{R}_{+}, \delta \in C_{1}^{*}$ and $\rho \in K$ such that

$$
\begin{align*}
& \sum_{i=1}^{k} \alpha_{i}\left(\nabla_{x} f_{i}+z_{i}\right)+(\beta-\mu \bar{y})^{T} \sum_{i=1}^{k} \bar{\lambda}_{i} \nabla_{y x} f_{i} \tag{7b}\\
& \quad+\sum_{i=1}^{k}\left(\beta-\frac{1}{2}\left(\alpha^{T} e\right) \bar{p}_{i}-\mu \bar{y}\right)^{T} \bar{\lambda}_{i} \nabla_{x}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)-\delta=0, \\
& \sum_{i=1}^{k}\left(\alpha_{i}-\mu \bar{\lambda}_{i}\right)\left(\nabla_{y} f_{i}-\bar{w}_{i}\right)+\sum_{i=1}^{k}\left(\beta-\mu \bar{p}_{i}-\mu \bar{y}\right)^{T} \bar{\lambda}_{i} \nabla_{y y} f_{i} \tag{8}\\
& \quad+\sum_{i=1}^{k}\left(\beta-\frac{1}{2}\left(\alpha^{T} e\right) \bar{p}_{i}-\mu \bar{y}\right)^{T} \bar{\lambda}_{i} \nabla_{y}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)=0,
\end{align*}
$$

$$
\begin{equation*}
\left(\beta-\left(\alpha^{T} e\right) \bar{p}_{i}-\mu \bar{y}\right)^{T} \bar{\lambda}_{i} \nabla_{y y} f_{i}=0, \quad i=1, \cdots, k \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\beta^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0 \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\mu \bar{y}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0, \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
(\beta-\mu \bar{y})^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\frac{1}{2}\left(\alpha^{T} e\right) \bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i}-\rho_{i}=0, \tag{9}\\
i=1, \cdots, k, \\
\alpha_{i} \bar{y}+(\beta-\mu \bar{y}) \bar{\lambda}_{i} \in N_{D_{i}}\left(\bar{w}_{i}\right), \quad i=1, \cdots, k, \tag{10}
\end{gather*}
$$

$$
\begin{equation*}
\delta^{T} \bar{x}=0, \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\rho^{T} \bar{\lambda}=0 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
z_{i} \in B_{i}, \quad z_{i}^{T} \bar{x}=s\left(\bar{x} \mid B_{i}\right), \quad i=1, \cdots, k \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
(\alpha, \beta, \mu, \delta, \rho) \neq 0 \tag{17}
\end{equation*}
$$

Since $\bar{\lambda}>0$, it follows from (15), that $\rho=0$. As $\nabla_{y y} f_{i}$ is positive or negative definite for $i=1, \cdots, k$, (11) yields

$$
\begin{equation*}
\beta=\left(\alpha^{T} e\right) \bar{p}_{i}+\mu \bar{y}, \quad i=1, \cdots, k . \tag{18}
\end{equation*}
$$

If $\alpha_{i}=0$ for $i=1, \cdots, k$, then the above equality becomes

$$
\begin{equation*}
\beta=\mu \bar{y} . \tag{19}
\end{equation*}
$$

From (8), we obtain

$$
\begin{equation*}
\mu \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0 . \tag{20}
\end{equation*}
$$

By the assumption (ii), we have $\mu=0$. Also, from (7b) and (19), we get $\delta=0$ and $\beta=0$, respectively. This contradicts (17). So, $\alpha_{i}>0$ for $i=1, \cdots, k$. From (12) and (13), we obtain

$$
\sum_{i=1}^{k}(\beta-\mu \bar{y})^{T} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0
$$

Using (18) and $\alpha^{T} e>0$, it follows that

$$
\sum_{i=1}^{k} \bar{p}_{i}^{T} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0 .
$$

So,

$$
\begin{equation*}
\sum_{i=1}^{k} \bar{p}_{i}^{T} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-\bar{w}_{i}\right)+\sum_{i=1}^{k} \bar{p}_{i}^{T} \bar{\lambda}_{i} \nabla_{y y} f_{i} \bar{p}_{i}=0 . \tag{21}
\end{equation*}
$$

We now prove that $\bar{p}_{i}=0$ for $i=1, \cdots, k$. Otherwise, the assumption (i) implies that

$$
\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{p}_{i}^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}\right)+\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i}\right) \neq 0
$$

which contradicts (21). Hence $\bar{p}_{i}=0$ for $i=1, \cdots, k$. From (18), we have

$$
\begin{equation*}
\beta=\mu \bar{y} . \tag{22}
\end{equation*}
$$

Using (22) and $\bar{p}_{i}=0, i=1, \cdots, k$, in (8), we obtain

$$
\sum_{i=1}^{k}\left(\alpha_{i}-\mu \bar{\lambda}_{i}\right)\left(\nabla_{y} f_{i}-\bar{w}_{i}\right)=0 .
$$

By the assumption (ii), we get

$$
\begin{equation*}
\alpha_{i}=\mu \bar{\lambda}_{i}, \quad i=1, \cdots, k . \tag{23}
\end{equation*}
$$

Therefore, $\mu>0$ and $\bar{y} \in C_{2}$ by (22). Using (19) and (23) in (7b), we have

$$
\begin{equation*}
\mu \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{x} f_{i}+z_{i}\right)=\delta \in C_{1}^{*} . \tag{24}
\end{equation*}
$$

Also, since $\mu>0$, it follows that

$$
\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{x} f_{i}+z_{i}\right) \in C_{1}^{*}
$$

Multiplying (24) by \bar{x} and using equation (14), we get

$$
\bar{x}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{x} f_{i}+z_{i}\right)=0
$$

Taking $\bar{z}_{i}:=z_{i} \in B_{i}$ for $i=1, \cdots, k$, we find that $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is feasible for (MD). Moreover, from (10), we get $\bar{y} \in N_{D_{i}}\left(\bar{w}_{i}\right)$ for $i=1, \cdots, k$, so that $\bar{y}^{T} \bar{w}_{i}=s\left(\bar{y} \mid D_{i}\right)$ for $i=1, \cdots, k$. Consequently, using (16)

$$
\begin{aligned}
& f_{i}+s\left(\bar{x} \mid B_{i}\right)-\bar{y}^{T} \bar{w}_{i}-\frac{1}{2} \sum_{i=1}^{k} \bar{\lambda}_{i} \bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i} \\
= & f_{i}+\bar{x}^{T} \bar{z}_{i}-s\left(\bar{y} \mid D_{i}\right) \\
= & f_{i}-s\left(\bar{y} \mid D_{i}\right)+\bar{x}^{T} \bar{z}_{i}-\frac{1}{2} \sum_{i=1}^{k} \bar{\lambda}_{i} \bar{r}_{i}^{T} \nabla_{x x} f_{i} \bar{r}_{i}, \quad i=1, \cdots, k .
\end{aligned}
$$

Thus objective values of (MP) and (MD) are equal.
We will now show that $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is a K-weakly efficient solution of (MD), otherwise, there exists a feasible solution ($u, v, \bar{\lambda}, z, r=0$) of (MD) such that

$$
D(u, v, \bar{\lambda}, z, r=0)-D(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0) \in \operatorname{int} K
$$

Since objective values of (MP) and (MD) are equal, it follows that

$$
D(u, v, \bar{\lambda}, z, r=0)-P(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p}=0) \in \operatorname{int} K
$$

which contradicts weak duality. Hence the results hold.
Theorem 3.3. (Converse Duality) Let $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{z}, \bar{r})$ be a K-weakly efficient solution of (MD). Fix $\lambda=\bar{\lambda}$ in (MP). Assume that
(i) $\nabla_{x x} f_{i}$ is positive definite for $i=1, \cdots, k$ and $\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{r}_{i}^{T}\left[\nabla_{x} f_{i}+\bar{z}_{i}\right] \geqq 0$; or $\nabla_{x x} f_{i}$ is negative definite for $i=1, \cdots, k$ and $\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{r}_{i}^{T}\left[\nabla_{x} f_{i}+\bar{z}_{i}\right] \leqq 0$,
(ii) the set $\left\{\nabla_{x} f_{i}+\bar{z}_{i}+\nabla_{x x} f_{i} \bar{r}_{i}, i=1, \cdots, k\right\}$ is linearly independent, where $f_{i}=f_{i}(\bar{u}, \bar{v})$ for $i=1, \cdots, k$.

Then there exists $\bar{w}_{i} \in D_{i}(i=1, \cdots, k)$ such that $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{w}, \bar{p}=0)$ is a feasible solution of (MP) and objective values of (MP) and (MD) are equal. Furthermore, under the assumptions of Theorem 3.1, $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{w}, \bar{p}=0)$ is a K-weakly efficient solution of (MP).

Proof. It follows on the lines of Theorem 3.2.
A mathematical programming problem is said to be self dual if, when the dual is recast in the form of the primal, the new program constructed is the same as the primal problem.

We now prove the following self duality theorem for the primal (MP) and the dual (MD) on the lines of Mond and Weir [14]. We describe (MP) and (MD) as dual programs, if the conclusions of Theorem 3.2. hold.

Theorem 3.4. (Self Duality) Assume that $m=n, C_{1}=C_{2}$ and $B=D$. If f is skew-symmetric, then the program (MP) is self dual. Furthermore, if (MP) and (MD) are dual programs with K-weakly efficient solutions as $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \vec{p})$ and $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r})$, respecively, then $(\bar{y}, \bar{x}, \bar{\lambda}, \bar{z}, \bar{p})$ and $(\bar{y}, \bar{x}, \bar{\lambda}, \bar{w}, \bar{r})$ are K-weakly efficient solutions of ($\mathbf{M P}$) and ($\mathbf{M D})$, respectively. Also the common objective value of the objective functions is 0 .

Proof. Rewriting the dual as in [14], we have
(MD^{\prime}) Minimize

$$
\begin{aligned}
& -\left(f_{1}(u, v)-s\left(v \mid D_{1}\right)+u^{T} z_{1}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}, \cdots,\right. \\
& \left.f_{k}(u, v)-s\left(v \mid D_{k}\right)+u^{T} z_{k}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right) \\
& \text { subject to } \quad \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \in C_{1}^{*}, \\
& u^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \leqq 0, \\
& v \in C_{2}, \quad z_{i} \in B_{i}, \quad \lambda \in i n t K^{*}, \quad \lambda^{T} e=1 .
\end{aligned}
$$

Since f is skew-symmetric, therefore, as in [14], $f(u, v)=-f(v, u), \nabla_{x} f(u, v)=$ $-\nabla_{x} f(v, u)$ and $\nabla_{x x} f(u, v)=-\nabla_{x x} f(v, u)$. Hence (MD') becomes
(MD') Minimize

$$
\begin{array}{r}
\left(f_{1}(v, u)+s\left(v \mid D_{1}\right)-u^{T} z_{1}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} r_{i}^{T} \nabla_{x x} f_{i}(v, u) r_{i}, \cdots,\right. \\
\left.f_{k}(v, u)+s\left(v \mid D_{k}\right)-u^{T} z_{k}-\frac{1}{2} \sum_{i=1}^{k} \lambda_{i} r_{i}^{T} \nabla_{x x} f_{i}(v, u) r_{i}\right) \\
\text { subject to } \quad-\sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(v, u)-z_{i}+\nabla_{x x} f_{i}(v, u) r_{i}\right] \in C_{1}^{*}, \\
u^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(v, u)-z_{i}+\nabla_{x x} f_{i}(v, u) r_{i}\right] \geqq 0,
\end{array}
$$

$$
v \in C_{2}, \quad z_{i} \in B_{i}, \quad \lambda \in \operatorname{int} K^{*}, \quad \lambda^{T} e=1
$$

which is just (MP). Thus, if $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r})$ is K-weakly efficient solution of (MD), then $(\bar{y}, \bar{x}, \bar{\lambda}, \bar{z}, \bar{p})$ is K-weakly efficient solution of (MP), and hence by symmetric duality, also ($\bar{y}, \bar{x}, \bar{\lambda}, \bar{w}, \bar{r}$) is K-weakly efficient solution of (MD).

Therefore,

$$
\begin{aligned}
& P(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p}=0) \\
= & \left(f_{1}(\bar{x}, \bar{y})+s\left(\bar{x} \mid B_{1}\right)-\bar{y}^{T} \bar{w}_{1}, \cdots, f_{k}(\bar{x}, \bar{y})+s\left(\bar{x} \mid B_{k}\right)-\bar{y}^{T} \bar{w}_{k}\right) \\
= & \left(f_{1}(\bar{y}, \bar{x})+s\left(\bar{y} \mid D_{1}\right)-\bar{x}^{T} \bar{z}_{1}, \cdots, f_{k}(\bar{y}, \bar{x})+s\left(\bar{y} \mid D_{k}\right)-\bar{x}^{T} \bar{z}_{k}\right) \\
= & \left(-f_{1}(\bar{x}, \bar{y})-s\left(\bar{x} \mid B_{1}\right)+\bar{y}^{T} \bar{w}_{1}, \cdots,-f_{k}(\bar{x}, \bar{y})-s\left(\bar{x} \mid B_{k}\right)+\bar{y}^{T} \bar{w}_{k}\right) \\
= & D(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0) .
\end{aligned}
$$

This implies

$$
P(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p})=0=D(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r})
$$

4. Wolfe Type Symmetric Duality

We consider the following pair of second order Wolfe type non-differentiable multiobjective programming problem with k-objectives :
(WP) Minimize

$$
\begin{aligned}
& P(x, y, \lambda, w, p) \\
& =\left(f_{1}(x, y)+s\left(x \mid B_{1}\right)-y^{T} w_{1}-\sum_{i=1}^{k} \lambda_{i}\left[y ^ { T } \left(\nabla_{y} f_{i}(x, y)\right.\right.\right. \\
& \left.\left.-w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right)+\frac{1}{2} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right], \cdots, \\
& \quad f_{k}(x, y)+s\left(x \mid B_{k}\right)-y^{T} w_{k}-\sum_{i=1}^{k} \lambda_{i}\left[y ^ { T } \left(\nabla_{y} f_{i}(x, y)\right.\right. \\
& \left.\left.\left.-w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right)+\frac{1}{2} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right]\right) \\
& \text { subject to } \quad-\sum_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right] \in C_{2}^{*}, \\
& \quad x \in C_{1}, \quad w_{i} \in D_{i}, \quad \lambda \in i n t K^{*}, \quad \lambda^{T} e=1,
\end{aligned}
$$

(WD) Maximize

$$
\begin{aligned}
& D(u, v, \lambda, z, r) \\
& =\left(f_{1}(u, v)-s\left(v \mid D_{1}\right)+u^{T} z_{1}-\sum_{i=1}^{k} \lambda_{i}\left[u ^ { T } \left(\nabla_{x} f_{i}(u, v)\right.\right.\right. \\
& \left.\left.+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right)+\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right], \cdots, \\
& \quad f_{k}(u, v)-s\left(v \mid D_{k}\right)+u^{T} z_{k}-\sum_{i=1}^{k} \lambda_{i}\left[u ^ { T } \left(\nabla_{x} f_{i}(u, v)\right.\right. \\
& \left.\left.\left.+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right)+\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right]\right) \\
& \text { subject to } \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \in C_{1}^{*}, \\
& v \in C_{2}, \quad z_{i} \in B_{i}, \quad \lambda \in \operatorname{int} K^{*}, \quad \lambda^{T} e=1,
\end{aligned}
$$

where
(1) $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is a three times differentiable function,
(2) C_{1} and C_{2} are closed convex cones in \mathbb{R}^{n} and \mathbb{R}^{m} with nonempty interiors, respectively,
(3) C_{1}^{*} and C_{2}^{*} are positive polar cones of C_{1} and C_{2}, respectively,
(4) K is a closed convex cone in \mathbb{R}^{k} with $\operatorname{int} K \neq \emptyset$ and $\mathbb{R}_{+}^{k} \subset K$,
(5) $r_{i}, z_{i}(i=1, \cdots, k)$ are vectors in $\mathbb{R}^{n}, p_{i}, w_{i}(i=1, \cdots, k)$ are vectors in \mathbb{R}^{m},
(6) $e=(1, \cdots, 1)^{T}$ is a vector in \mathbb{R}^{k},
(7) B_{i} and $D_{i}(i=1, \cdots, k)$ are compact convex sets in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively.

Now we establish the symmetric duality theorems of (WP) and (WD).
Theorem 4.1. (Weak Duality). Let (x, y, λ, w, p) and (u, v, λ, z, r) be feasible solutions of (WP) and (WD), respectively. Assume that,
$\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(\cdot, y)+(\cdot)^{T} z_{i}\right]$ is second order invex in the first variable for fixed y with respect to η_{1},
(28) $-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, \cdot)-(\cdot)^{T} w_{i}\right]$ is second order invex in the second variable for fixed x with respect to η_{2},

$$
\begin{gather*}
\eta_{1}(x, u)+u \in C_{1}, \tag{29}\\
\eta_{2}(v, y)+y \in C_{2} . \text { Then } \tag{30}\\
D(u, v, \lambda, z, r)-P(x, y, \lambda, w, p) \notin \text { int } K .
\end{gather*}
$$

Proof. By assumptions (27) (28) (29) and (30) and applying constraints (25) and (26), we obtain

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)-v^{T} w_{i}+u^{T} z_{i}\right. \\
- & \left.\sum_{i=1}^{k} \lambda_{i}\left\{u^{T}\left(\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right)+\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right\}\right] \\
- & \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, y)+x^{T} z_{i}-y^{T} w_{i}\right. \\
- & \left.\sum_{i=1}^{k} \lambda_{i}\left\{y^{T}\left(\nabla_{y} f_{i}(x, y)-w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right)+\frac{1}{2} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right\}\right]
\end{aligned}
$$

$$
\leqq 0
$$

Using $x^{T} z_{i} \leqq s\left(x \mid B_{i}\right)$ and $v^{T} w_{i} \leqq s\left(v \mid D_{i}\right)$ for $i=1, \cdots, k$, we get

$$
\begin{align*}
& \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)-s\left(v \mid D_{i}\right)+u^{T} z_{i}\right. \\
- & \left.\sum_{i=1}^{k} \lambda_{i}\left\{u^{T}\left(\nabla_{x} f_{i}(u, v)+z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right)+\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(u, v) r_{i}\right\}\right] \\
- & \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, y)+s\left(x \mid B_{i}\right)-y^{T} w_{i}\right. \tag{31}\\
- & \left.\sum_{i=1}^{k} \lambda_{i}\left\{y^{T}\left(\nabla_{y} f_{i}(x, y)-w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right)+\frac{1}{2} p_{i}^{T} \nabla_{y y} f_{i}(x, y) p_{i}\right\}\right] \\
\leqq & 0 .
\end{align*}
$$

But suppose that

$$
D(u, v, \lambda, z, r)-P(x, y, \lambda, w, p) \in \operatorname{int} K
$$

Since $\lambda \in \operatorname{int} K^{*}$, it becomes $\lambda^{T}[D(u, v, \lambda, z, r)-P(x, y, \lambda, w, p)]>0$, which is a contradiction to the inequality (31). Hence the result holds.

Theorem 4.2. (Strong Duality). Let $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p})$ be a K-weakly efficient solution of (WP). Fix $\lambda=\bar{\lambda}$ in (WD). Assume that
(i) $\nabla_{y y} f_{i}$ is positive definite for $i=1, \cdots, k$ and $\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{p}_{i}^{T}\left[\nabla_{y} f_{i}-\bar{w}_{i}\right] \geqq 0 ;$ or $\nabla_{y y} f_{i}$ is negative definite for $i=1, \cdots, k$ and $\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{p}_{i}^{T}\left[\nabla_{y} f_{i}-\bar{w}_{i}\right] \leqq 0$,
(ii) the set $\left\{\nabla_{y} f_{i}-\bar{w}_{i}, i=1, \cdots, k\right\}$ is linearly independent, where $f_{i}=$ $f_{i}(\bar{x}, \bar{y})$ for $i=1, \cdots, k$.

Then there exists $\bar{z}_{i} \in B_{i}(i=1, \cdots, k)$ such that $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is a feasible solution of (WD) and objective values of (WP) and (WD) are equal. Furthermore, under the assumptions of Theorem 4.1, $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is a K-weakly efficient solution of (WD).

Proof. Since $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p})$ is a K-weakly efficient solution of (WP), by Lemma 3.1, there exist $\alpha \in K^{*}, \beta \in C_{2}, \delta \in C_{1}^{*}$ and $\rho \in K$ such that

$$
\begin{align*}
& \sum_{i=1}^{k} \alpha_{i}\left(\nabla_{x} f_{i}+z_{i}\right)+\left(\beta-\left(\alpha^{T} e\right) \bar{y}\right)^{T} \sum_{i=1}^{k} \bar{\lambda}_{i} \nabla_{y x} f_{i} \\
& +\sum_{i=1}^{k}\left(\beta-\left(\alpha^{T} e\right) \bar{y}-\frac{1}{2}\left(\alpha^{T} e\right) \bar{p}_{i}\right)^{T} \bar{\lambda}_{i} \nabla_{x}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)-\delta=0, \tag{32}\\
& \quad \sum_{i=1}^{k}\left(\alpha_{i}-\left(\alpha^{T} e\right) \bar{\lambda}_{i}\right)\left(\nabla_{y} f_{i}-\bar{w}_{i}\right) \\
& +\sum_{i=1}^{k}\left(\beta-\left(\alpha^{T} e\right) \bar{p}_{i}-\left(\alpha^{T} e\right) \bar{y}\right)^{T} \bar{\lambda}_{i} \nabla_{y y} f_{i} \tag{33}\\
& \quad+\sum_{i=1}^{k}\left(\beta-\left(\alpha^{T} e\right) \bar{y}-\frac{1}{2}\left(\alpha^{T} e\right) \bar{p}_{i}\right)^{T} \bar{\lambda}_{i} \nabla_{y}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)=0, \\
& \left(\beta-\left(\alpha^{T} e\right) \bar{y}\right)^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\frac{1}{2}\left(\alpha^{T} e\right) \bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i}-\rho_{i}=0, \tag{34}\\
& \quad i=1, \cdots, k, \\
& \alpha_{i} \bar{y}+\left(\beta-\left(\alpha^{T} e\right) \bar{y}\right) \bar{\lambda}_{i} \in N_{D_{i}}\left(\bar{w}_{i}\right), \quad i=1, \cdots, k, \tag{35}
\end{align*}
$$

$$
\begin{equation*}
z_{i} \in B_{i}, \quad z_{i}^{T} \bar{x}=s\left(\bar{x} \mid B_{i}\right), \quad i=1, \cdots, k \tag{40}
\end{equation*}
$$

$$
\begin{gather*}
\left(\beta-\left(\alpha^{T} e\right) \bar{y}-\left(\alpha^{T} e\right) \bar{p}_{i}\right)^{T} \bar{\lambda}_{i} \nabla_{y y} f_{i}=0, \quad i=1, \cdots, k, \tag{36}\\
\beta^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0, \tag{37}
\end{gather*}
$$

$$
\begin{equation*}
\delta^{T} \bar{x}=0, \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\rho^{T} \bar{\lambda}=0, \tag{39}
\end{equation*}
$$

As $\bar{\lambda}>0$, it follows from (39), that $\rho=0$. Hence from (34), we obtain

$$
\begin{array}{r}
\left(\beta-\left(\alpha^{T} e\right) \bar{y}\right)^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\frac{1}{2}\left(\alpha^{T} e\right) \bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i}=0, \tag{42}\\
i=1, \cdots, k .
\end{array}
$$

As $\nabla_{y y} f_{i}$ is positive or negative definite for $i=1, \cdots, k$, it follows from (36),

$$
\begin{equation*}
\beta=\left(\alpha^{T} e\right)\left(\bar{y}+\bar{p}_{i}\right), \quad i=1, \cdots, k . \tag{43}
\end{equation*}
$$

If $\alpha_{i}=0$ for $i=1, \cdots, k$, then $\delta=0$ and $\beta=0$ from (32) and (43), respectively.
This contradicts (41). So, $\alpha_{i}>0$ for $i=1, \cdots, k$. Using (43), (42) implies

$$
\left(\alpha^{T} e\right) \bar{p}_{i}^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\frac{1}{2}\left(\alpha^{T} e\right) \bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i}=0, \quad i=1, \cdots, k .
$$

Since $\alpha^{T} e>0$, the above equality becomes

$$
\bar{p}_{i}^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\frac{1}{2} \nabla_{y y} f_{i} \bar{p}_{i}\right)=0, \quad i=1, \cdots, k .
$$

Using $\bar{\lambda}>0$, it follows that

$$
\begin{equation*}
\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{p}_{i}^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}\right)+\sum_{i=1}^{k} \frac{1}{2} \bar{\lambda}_{i}\left(\bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i}\right)=0 . \tag{44}
\end{equation*}
$$

We now prove that $\bar{p}_{i}=0$ for $i=1, \cdots, k$. Otherwise, the assumption (i) implies that

$$
\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{p}_{i}^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}\right)+\sum_{i=1}^{k} \frac{1}{2} \bar{\lambda}_{i}\left(\bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i}\right) \neq 0
$$

which contradicts (44). Hence $\bar{p}_{i}=0$ for $i=1, \cdots, k$. Thus (43) implies

$$
\begin{equation*}
\beta=\left(\alpha^{T} e\right) \bar{y} . \tag{45}
\end{equation*}
$$

Consequently, $\bar{y} \in C_{2}$. From (33), we obtain

$$
\sum_{i=1}^{k}\left(\alpha_{i}-\left(\alpha^{T} e\right) \bar{\lambda}_{i}\right)\left(\nabla_{y} f_{i}-\bar{w}_{i}\right)=0 .
$$

By the assumption (ii), we get

$$
\begin{equation*}
\alpha_{i}=\left(\alpha^{T} e\right) \bar{\lambda}_{i}, \quad i=1, \cdots, k . \tag{46}
\end{equation*}
$$

From (32),

$$
\begin{equation*}
\sum_{i=1}^{k} \alpha_{i}\left(\nabla_{x} f_{i}+z_{i}\right)=\delta \in C_{1}^{*} \tag{47}
\end{equation*}
$$

Using (46) and $\alpha^{T} e>0$, it follows that

$$
\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{x} f_{i}+z_{i}\right) \in C_{1}^{*}
$$

Taking $\bar{z}_{i}:=z_{i} \in B_{i}$ for $i=1, \cdots, k$, we find that $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is feasible for (WD).

Moreover, from (35), we get $\bar{y} \in N_{D_{i}}\left(\bar{w}_{i}\right)$ for $i=1, \cdots, k$, which implies $\bar{y}^{T} \bar{w}_{i}=s\left(\bar{y} \mid D_{i}\right)$ for $i=1, \cdots, k$. Multiplying (47) by \bar{x} and using (38), we get

$$
\bar{x}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{x} f_{i}+\bar{z}_{i}\right)=0
$$

And from (37) and (45), we obtain

$$
\bar{y}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0 .
$$

So, using (40)

$$
\begin{array}{r}
f_{i}+s\left(\bar{x} \mid B_{i}\right)-\bar{y}^{T} \bar{w}_{i}-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\bar{y}^{T}\left(\nabla_{y} f_{i}-\bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)+\frac{1}{2} \bar{p}_{i}^{T} \nabla_{y y} f_{i} \bar{p}_{i}\right] \\
=f_{i}-s\left(\bar{y} \mid D_{i}\right)+\bar{x}^{T} \bar{z}_{i}-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\bar{x}^{T}\left(\nabla_{x} f_{i}+\bar{z}_{i}+\nabla_{x x} f_{i} \bar{r}_{i}\right)+\frac{1}{2} \bar{r}_{i}^{T} \nabla_{x x} f_{i} \bar{r}_{i}\right], \\
i=1, \cdots, k .
\end{array}
$$

Thus objective values of (WP) and (WD) are equal.
We will now show that $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is a K-weakly efficient solution of (WD), otherwise, there exists a feasible solution ($u, v, \bar{\lambda}, z, r=0$) of (WD) such that

$$
D(u, v, \bar{\lambda}, z, r=0)-D(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0) \in \operatorname{int} K
$$

Since objective values of (WP) and (WD) are equal, it follows that

$$
D(u, v, \bar{\lambda}, z, r=0)-P(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p}=0) \in \operatorname{int} K
$$

which contradicts weak duality. Hence the results hold.
Remark 4.1. ([19]). If we replace (i) and (ii) of Theorem 4.2 by
(i) the matrix $\nabla_{y y}\left(\bar{\lambda}^{T} f\right)$ is non-singular,
(ii) the vectors $\nabla_{y} f_{1}-\bar{w}_{1}, \cdots, \nabla_{y} f_{k}-\bar{w}_{k}$ are linearly independent,
(iii) the vector $\bar{p}_{i}^{T} \nabla_{y}\left(\nabla_{y y}\left(\bar{\lambda}^{T} f\right) \bar{p}_{i}\right)=0$ implies that $\bar{p}_{i}=0(i=1,2, \cdots, k)$, and then the same results also hold.

Theorem 4.3. (Converse Duality). Let $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{z}, \bar{r})$ be a K-weakly efficient solution of (WD). Fix $\lambda=\bar{\lambda}$ in (WP). Assume that
(i) $\nabla_{x x} f_{i}$ is positive definite for $i=1, \cdots, k$ and $\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{r}_{i}^{T}\left[\nabla_{x} f_{i}+\bar{z}_{i}\right] \geqq 0$; or $\nabla_{x x} f_{i}$ is negative definite for $i=1, \cdots, k$ and $\sum_{i=1}^{k} \bar{\lambda}_{i} \bar{r}_{i}^{T}\left[\nabla_{x} f_{i}+\bar{z}_{i}\right] \leqq 0$,
(ii) the set $\left\{\nabla_{x} f_{i}+\bar{z}_{i}, i=1, \cdots, k\right\}$ is linearly independent, where $f_{i}=f_{i}(\bar{u}, \bar{v})$ for $i=1, \cdots, k$.

Then there exists $\bar{w}_{i} \in D_{i}(i=1, \cdots, k)$ such that $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{w}, \bar{p}=0)$ is a feasible solution of (WP) and objective values of (WP) and (WD) are equal. Furthermore, under the assumptions of Theorem 4.1, $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{w}, \bar{p}=0)$ is a K-weakly efficient solution of (WP).

Proof. It follows on the lines of Theorem 4.2.
Remark 4.2. ([19]). If we replace (i) and (ii) of Theorem 4.3 by
(i) the matrix $\nabla_{x x}\left(\bar{\lambda}^{T} f\right)$ is non-singular,
(ii) the vectors $\nabla_{x} f_{1}+\bar{z}_{1}, \cdots, \nabla_{x} f_{k}+\bar{z}_{k}$ are linearly independent,
(iii) the vector $\bar{r}_{i}^{T} \nabla_{x}\left(\nabla_{x x}\left(\bar{\lambda}^{T} f\right) \bar{r}_{i}\right)=0$ implies that $\bar{r}=0$, and then the same results also hold.

We now prove the following self duality theorem for the primal (WP) and the dual (WD) on the lines of Mond and Weir [14]. We describe (WP) and (WD) as dual programs, if the conclusions of Theorem 4.2 hold.

Theorem 4.4. (Self Duality). Assume that $m=n, C_{1}=C_{2}$ and $B=D$. If f is skew-symmetric, then the program ($\mathbf{W P}$) is self dual. Furthermore, if $(\mathbf{W P})$ and (WD) are dual programs with K-weakly efficient solutions as $(\bar{x}, \bar{y}, \overline{\lambda,} \bar{w}, \vec{p})$ and $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r})$, respecively, then $(\bar{y}, \bar{x}, \bar{\lambda}, \bar{z}, \bar{p})$ and $(\bar{y}, \bar{x}, \bar{\lambda}, \bar{w}, \bar{r})$ are K-weakly efficient solutions of (WP) and (WD), respectively. Also common objective value of the objective functions is 0 .

Proof. Rewriting the dual as in [14], we have
$\left(\mathbf{W D}^{\prime}\right)$ Minimize

$$
\begin{aligned}
& \left(f_{1}(v, u)+s\left(v \mid D_{1}\right)-u^{T} z_{1}\right. \\
& -\sum_{i=1}^{k} \lambda_{i}\left[u^{T}\left(\nabla_{x} f_{i}(v, u)-z_{i}+\nabla_{x x} f_{i}(v, u) r_{i}\right)\right. \\
& \left.+\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(v, u) r_{i}\right], \cdots, \quad f_{k}(v, u)+s\left(v \mid D_{k}\right)-u^{T} z_{k} \\
& \left.-\sum_{i=1}^{k} \lambda_{i}\left[u^{T}\left(\nabla_{x} f_{i}(v, u)-z_{i}+\nabla_{x x} f_{i}(v, u) r_{i}\right)+\frac{1}{2} r_{i}^{T} \nabla_{x x} f_{i}(v, u) r_{i}\right]\right) \\
& \text { subject to } \quad-\sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(v, u)-z_{i}+\nabla_{x x} f_{i}(v, u) r_{i}\right] \in C_{1}^{*} \\
& \qquad v \in C_{2}, \quad z_{i} \in B_{i}, \quad \lambda \in \operatorname{int} K^{*}, \quad \lambda^{T} e=1
\end{aligned}
$$

which is just (WP). Thus, if $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r})$ is K-weakly efficient solution of (WD), then $(\bar{y}, \bar{x}, \bar{\lambda}, \bar{z}, \bar{p})$ is K-weakly efficient solution of (WP), and hence by symmetric duality, also $(\bar{y}, \bar{x}, \bar{\lambda}, \bar{w}, \bar{r})$ is K-weakly efficient solution of (WD). Therefore,

$$
\begin{aligned}
& P(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p}=0) \\
& =\left(f_{1}(\bar{x}, \bar{y})+s\left(\bar{x} \mid B_{1}\right)-\bar{y}^{T} \bar{w}_{1}, \cdots, f_{k}(\bar{x}, \bar{y})+s\left(\bar{x} \mid B_{k}\right)-\bar{y}^{T} \bar{w}_{k}\right) \\
& =\left(f_{1}(\bar{y}, \bar{x})+s\left(\bar{y} \mid D_{1}\right)-\bar{x}^{T} \bar{z}_{1}, \cdots, f_{k}(\bar{y}, \bar{x})+s\left(\bar{y} \mid D_{k}\right)-\bar{x}^{T} \bar{z}_{k}\right) \\
& =\left(-f_{1}(\bar{x}, \bar{y})-s\left(\bar{x} \mid B_{1}\right)+\bar{y}^{T} \bar{w}_{1}, \cdots,-f_{k}(\bar{x}, \bar{y})-s\left(\bar{x} \mid B_{k}\right)+\bar{y}^{T} \bar{w}_{k}\right) \\
& =D(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)
\end{aligned}
$$

This implies

$$
P(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p})=0=D(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}) .
$$

5. Special Cases

We give some special cases of our symmetric duality.
(1) If $C_{1}=\mathbb{R}_{+}^{n}$ and $C_{2}=\mathbb{R}_{+}^{m}$, then (MP) and (MD) become the pair of Mond-Weir symmetric dual programs considered in X.M. Yang et al.[20] for the same B and D.
(2) If $B_{i}=\{0\}$ and $D_{i}=\{0\}, i=1, \cdots, k$, then (MP) and (MD) reduced to the second order symmetric dual programs in S.K. Mishra and K.K. Lai [12].
(3) If $p=r=0$, then we get the first order symmetric dual programs which studied by M.H. Kim and D.S. Kim [7].
(4) If $B_{i}=\{0\}, D_{i}=\{0\}$ and $p_{i}=r_{i}=0, i=1, \cdots, k$, then (MP) and (MD) become the pair of symmetric dual programs considered in Seema Khurana [6].
(5) If $B_{i}=\{0\}, D_{i}=\{0\}$ and $p_{i}=r_{i}=0, i=1, \cdots, k$, then (WP) and (WD) reduced to the first order multiobjective symmetric dual programs in D.S. Kim et al.[9].
(6) If $C_{1}=\mathbb{R}_{+}^{n}$ and $C_{2}=\mathbb{R}_{+}^{m}$, then (MP), (MD), (WP) and (WD) become the pair of Mond-Weir and Wolfe type symmetric dual programs considered in D.S. Kim et al.[8] for the same B, D, p and r.

References

1. M. S. Bazaraa and J. J. Goode, On symmetric duality in nonlinear programming, Oper. Res., 21(1) (1973), 1-9.
2. C. R. Bector and S. Chandra, Second order symmetric and self dual programs, Opsearch, 23(2) (1986), 89-95.
3. S. Chandra and I. Husain, Symmetric dual non-differentiable programs, Bull. Austral. Math. Soc., 24 (1981), 295-307.
4. G. B. Dantzig, E. Eisenberg and R. W. Cottle, Symmetric dual nonlinear programs, Pacific J. Math., 15 (1965), 809-812.
5. W. S. Dorn, A symmetric dual theorem for quadratic programs, J. Oper. Res. Soc. Japan, 2 (1960), 93-97.
6. S. Khurana, Symmetric duality in multiobjective programming involving generalized cone-invex functions, European J. Oper. Res., 165 (2005), 592-597.
7. M. H. Kim and D. S. Kim, Non-differentiable symmetric duality for multiobjective programming with cone constraints, To be appear in European J. Oper. Res..
8. D. S. Kim, H. J. Lee and Y. J.Lee, Generalized second order symmetric duality in nondifferentiable multiobjective programming, Taiwanese J. Math., 11(3) (2007), 745-764.
9. D. S. Kim, Y. B. Yun and W. J. Lee, Multiobjective symmetric duality with cone constraints, European J. Oper. Res., 107 (1998), 686-691.
10. S. K. Mishra, Multiobjective second order symmetric duality with cone constraints, European J. Oper. Res., 126 (2000), 675-682.
11. S. K. Mishra, Second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res., 127 (2000), 507-518.
12. S. K. Mishra and K. K. Lai, Second order symmetric duality in multiobjective programming involving generalized cone-invex functions, European J. Oper. Res., 178 (2007), 20-26.
13. B. Mond and M. Schechter, Nondifferentiable symmetric duality, Bull. Austral. Math. Soc., 53 (1996), 177-188.
14. B. Mond and T. Weir, Generalized concavity and duality, in Generalized Concavity in Optimization and Economics, (S. Schaible and W. T.Ziemba, Eds.),Academic Press, New York, 1981, 263-279.
15. B. Mond and T. Weir, Symmetric duality for nonlinear multiobjective programming, in Recent Developments in Mathematical Programming, (S.Kumar, Ed.), Gordon and Breach Science Publishers, 1991, 137-153.
16. S. Nanda, Invex generalizations of some duality results, Opsearch, 25(2) (1998), 105-111.
17. S. Nanda and L. N. Das, Pseudo-invexity and symmetric duality in nonlinear programming, Optimization, 28 (1994), 267-273.
18. S. K. Suneja, S. Aggarwal and S. Davar, Multiobjective symmetric duality involving cones, European J. Oper. Res., 141 (2002), 471-479.
19. X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou, Multiobjective second-order symmetric duality with F-convexity, European J. Oper. Res., 165 (2005), 585-591.
20. X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou, Second-order symmetric duality in non-differentiable multiobjective programming with F-convexity, European J. Oper. Res., 164 (2005), 406-416.

Do Sang Kim, Yu Jung Lee and Hyo Jung Lee
Department of Applied Mathematics,
Pukyong National University,
Busan 608-737,
Republic of Korea
E-mail: dskim@pknu.ac.kr

[^0]: Received September 29, 2007, accepted March 22, 2008
 2000 Mathematics Subject Classification: 90C29, 90C46.
 Key words and phrases: Nondifferentiable multiobjective programming, Generalized convex functions, Second order symmetric duality.
 This work was supported by the Brain Korea 21 Project in 2006.

