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NEW ACCURACY CRITERIA FOR MODIFIED APPROXIMATE
PROXIMAL POINT ALGORITHMS IN HILBERT SPACES

Lu-Chuan Ceng1, Soon-Yi Wu2 and Jen-Chih Yao3,∗

Abstract. This paper proposes a modified approximate proximal point algo-
rithm to solve the problem of finding zeros of a maximal monotone operator
in a Hilbert space. New accuracy criteria are imposed. Weak and strong
convergence results are established.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respec-
tively. Let T : H −→ 2H be a maximal monotone operator. The problem of finding
an element x ∈ H such that 0 ∈ T (x) is very important in the area of optimization
and related fields. For example, if T is the subdifferential ∂f of a proper lower
semicontinuous convex functional f : H → (−∞,∞], then T is a maximal mono-
tone operator and the inclusion 0 ∈ ∂f(x) is reduced to the following optimization
problem:

f(x) = min{f(z) : z ∈ H}.
One of the most efficient and enforceable methods for solving 0 ∈ T (x) is the
proximal point algorithm which, staring with any vector x0 ∈ H , iteratively updates
xn+1 conforming to the following recursion:

(1) xn ∈ xn+1 + cnT (xn+1)
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where {cn}∞n=0 ⊂ [c,∞) , c > 0, is a sequence of scalars. However, as pointed
out in [13], the ideal form of the method is often impractical, since in many cases
solving problem (1) exactly is either impossible or as difficult as solving the original
problem 0 ∈ T (x). On the other hand, there seems to be little justification of the
effort required to solve the problem accurately when the iterate is far away from the
solution point. In [20], Rockafellar gave an inexact variant of the method:

(2) xn + en+1 ∈ xn+1 + cnT (xn+1)

where {en+1} is regarded as an error sequence. This method is called an inexact
proximal point algorithm. Rockafellar [20] proved that if en → 0 quickly enough
such that

∑∞
n=1 ‖en‖ < ∞, then xn → z ∈ Rn with 0 ∈ T (z).

Because of its relaxed accuracy requirement, the inexact proximal point algo-
rithm is more practical than the exact one. Thus it has been studied widely and
various forms of the method have been developed; see, e.g., [3, 4, 8, 10-12, 17-19,
25]. In most of these papers, the condition that the error term being summable is
essential for the convergence of the method. In [20] and some sequel papers (e.g.,
[5]) the accuracy criterion is

(3) ‖en+1‖ ≤ ηn‖xn+1 − xn‖ with
∞∑

n=0

ηn < ∞.

Recently, Eckstein [13] extended the method to Bregman-function-based inexact
proximal methods and proved that the sequence {xn} generated by the algorithm
converges to a root of T under the conditions

(4)
∞∑

n=1

‖en‖ < ∞ and
∞∑

n=1

〈en, xn〉 exists and is finite

(see Eqs. (18) and (19) in [13]). Condition (4) is an assumption on the whole
generated sequence {xn} and the error term sequence {en}, and thus seems to be
slightly stronger, but it can be checked and enforced in practice more easily than
those that existed earlier. On the other hand, as in He [15], Han and He [14] gave
another inexact criterion

(5) ‖en+1‖ ≤ ηn‖xn+1 − xn‖ with
∞∑

n=0

ηn
2 < ∞,

to recursion (2) for solving the equation 0 ∈ T (x) in Rn and studied the resulting
convergence properties. It is clear that the accruacy criterion (5) is weaker than the
one in [20] (see (3)). It is remarkable that da Silva e Silva et al. [9] and Solodov
and Svaiter [21-23] recently proposed some new accuracy criteria for proximal
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point algorithms. Their criteria, rather than requiring inequality (5), require only
supn≥0 ηn < 1. However, in [21-23], this comes at the cost of adding an additional
projection or ”extragradient” step to the algorithm, and the applicable portion of
[9] applies only to convex minimization. Let H be a real Hilbert space and T be
a maximal monotone operator on H . Throughout this paper, we assume that the
equation 0 ∈ T (x) has a solution and let S be the solution set:

S = {x ∈ H : 0 ∈ T (x)} = T−1(0).

Then S is a nonempty closed convex subset of H and thus the projection Ps from
H onto S is well defined. Recall [2,16] that for any given c > 0, Jc = (I + cT )−1

is called the resolvent operator associated with T, where I denotes the identity
mapping on H . It is known that the mapping T is maximal monotone if and only
if the resolvent operator Jc is defined everywhere on the space for each c > 0. It is
also known [7] that T is maximal monotone if and only if T is monotone and (I +
cT )(D(T )) = H for each c > 0 (equivalently, T is monotone and (I+T )(D(T )) =
H). Furthermore the resolvent operator Jc is single-valued and nonexpansive, that
is, for all u, v ∈ H ,

‖Jc(u) − Jc(v)‖ ≤ ‖u − v‖.
In 2002, Xu [26] introduced and studied the following modified proximal point

algorithms for solving the equation 0 ∈ T (x) in a real Hilbert space H .

Algorithm 1.1. [26, Algorithm 5.1].

(i) x0 ∈ H is chosen arbitrarily.

(ii) Choose a regularization parameter cn > 0 with error en ∈ H and relaxation
parameter αn ∈ [0, 1] and compute

yn := (I + cnT )−1(xn) + en.

(iii) Compute the (n + 1)th iterate:

xn+1 := αnx0 + (1 − αn)yn.

Algorithm 1.2. [26, Algorithm 5.2]. (Relaxed proximal point algorithm)

(i) Select x0 ∈ H arbitrarily.
(ii) Choose a regularization parameter cn > 0 with error en ∈ H and compute

yn := (I + cnT )−1(xn) + en.
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(iii) Select a relaxation parameter αn ∈ [0, 1] and compute the (n + 1)th iterate:

xn+1 := αnxn + (1 − αn)yn.

Moreover, Xu [26] gave the following convergence criteria for the above algo-
rithms.

Theorem 1.1. [26, Theorem 5.1]. Let {xn} be generated by Algorithm 1.1.
Assume that (i) limn→∞ αn = 0; (ii)

∑∞
n=0 αn = ∞; (iii) limn→∞ cn = ∞; (iv)∑∞

n=0 ‖en‖ < ∞.
Then {xn} converges strongly to PS(x0).

Theorem 1.2. [26, Theorem 5.2]. Let {xn}be the sequence generated by Algo-
rithm 1.2. Assume that (i) {αn} is bounded away from 1, namely 0 ≤ αn ≤ 1 − δ

for some δ ∈ (0, 1); (ii) limn→∞ cn = ∞; (iii)
∑∞

n=0 ‖en‖ < ∞. Then {xn}
converges weakly to a point in S.

In this paper, motivated and inspired by Xu [26], we propose modified ap-
proximate proximal point algorithms for finding approximate solutions of zeros of
a maximal monotone operator in real Hilbert spaces. We introduce new accuracy
criteria for these modified approximate proximal point algorithms. Under the sug-
gested enforceable accuracy restrictions which are easy to verify, the convergence
results of these modified approximate proximal point algorithms are established. In
particular, results in this paper improve and extend corresponding results in [14]
which were in finite dimensional space setting.

2. ALGORITHMS AND PRELIMINARIES

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively.
A set T ⊂ H × H with the property

(x, y), (x′, y′) ∈ T =⇒ 〈x− x′, y − y′〉 ≥ 0,

is called a monotone operator onH . T is maximal if (considered as a graph) it is not
strictly contained in any other monotone operator on H . In this paper we consider
the central problem associated with T : Find z ∈ H such that 0 ∈ T (z), i.e., to find
one of the roots of T . Here T (·) is defined as T (x) = {y ∈ H : (x, y) ∈ T}.

At first, we summarize some basic properties and related definitions of the
monotone operator T . As is the custom, we regard T as the graph of a point-to-set
mapping. The domain of the mapping T is

D(T ) = {x ∈ H : ∃y ∈ H, (x, y) ∈ T} = {x ∈ H : T (x) �= ∅}.
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We say that T has full domain if D(T ) = H . The range or image of T is

R(T ) = {y ∈ H : ∃x ∈ H, (x, y) ∈ T}.

For all real numbers c, we let

cT = {(x, cy) : (x, y) ∈ T},

and for all operators A, B ⊂ H × H , we defined A + B via

A + B = {(x, y + z) : (x, y) ∈ A, (x, z) ∈ B}.

Motivated and inspired by Xu [26, Algorithms 5.1 and 5.2], we give the modified
approximate proximal point algorithms for computing approximate solutions to the
equation 0 ∈ T (x).

Algorithm 2.1. (Relaxed proximal point algorithm).

(i) x0 ∈ H is chosen arbitrarily.
(ii) Choose a regularization parameter cn > 0 with error en+1 ∈ H and compute

(6) x̃n+1 := (I + cnT )−1(xn + en+1).

(iii) Select a relaxation parameter αn ∈ [0, 1] and compute the (n + 1)th iterate:

(7) xn+1 := αnxn + (1 − αn)x̃n+1.

Algorithm 2.2.

(i) Select x0 ∈ H arbitrarily.
(ii) Choose a regularization parameter cn > 0 with error en+1 ∈ H and compute

x̃n+1 := (I + cnT )−1(xn + en+1).

(iii) Select a relaxation parameter αn ∈ [0, 1] and compute the (n + 1)th iterate:

(8) xn+1 := αnx0 + (1 − αn)x̃n+1.

Remark 2.1. Obviously, for the above (6) we have

x̃n+1 = Jcn(xn + en+1) ⇔ xn + en+1 ∈ [I + cnT ](x̃n+1)

⇔ 1
cn

(xn − x̃n+1 + en+1) ∈ T (x̃n+1).
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The following lemma can be proved by similar argument as that in [13] and
hence the proof will be omitted.

Lemma 2.1. Let {xn}∞n=0, {x̃n}∞n=1 and {en}∞n=1 be sequences that conform
to recursion (6). Then for any x∗ ∈ S (root of T ) and all n ≥ 0 we have

(9) 〈xn − x̃n+1 + en+1, x̃n+1 − x∗〉 ≥ 0

and

(10) ‖x̃n+1 − x∗‖2 ≤ ‖xn − x∗‖2 − ‖x̃n+1 − xn‖2 + 2〈en+1, x̃n+1 − x∗〉.

Lemma 2.2. (see [24, Lemma 1, p. 303].) Let {an} and {bn} be sequences
of nonnegative real numbers satisfying the inequality:

an+1 ≤ an + bn, ∀n ≥ 1.

If
∑∞

n=1 bn < ∞, then limn→∞ an exists.

Lemma 2.3. (see [26, Lemma 2.5, p. 243]). Let {sn} be a sequence of
nonnegative real numbers satisfying the inequality:

sn+1 ≤ (1− αn)sn + αnβn + γn, ∀n ≥ 0,

where {αn},{βn} and {γn} satisfy the conditions:
(i) {α} ⊂ [0, 1] ,

∑∞
n=0 αn = ∞,or equivalently,∏∞

n=0(1− αn) = 0;

(ii) limsupn→∞βn ≤ 0;

(iii) γn ≥ 0(∀n ≥ 0),
∑∞

n=0 γn < ∞.

Then limn→∞ sn = 0.

For a nonempty closed convex subset K ⊂ H and a vector x ∈ H , the orthog-
onal projection of x onto K, i.e., argmin{‖y−x‖ : y ∈ K}, is denoted by PK(x).
We state some well-known properties of the projection operator which will be used
in the sequel; see [27].

Lemma 2.4. Let K be a nonempty closed convex subset of H . For any
x, y ∈ H and z ∈ K, the following statements hold:

(i) 〈PK(x)− x, z − PK(x)〉 ≥ 0.

(ii) ‖PK(x)− PK(y)‖2 ≤ ‖x − y‖2 − ‖PK(x)− x + y − PK(y)‖2.
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Remark 2.2. As a matter of fact, (i) of Lemma 2.4 provides also a sufficient
condition for a vector u to be the projection of the vector x; i.e., u = PK(x) if and
only if

〈u − x, z − u〉 ≥ 0, z ∈ K.

Throughout the rest of the paper, we shall use the following notation: for a
given sequence {xn}, ωw(xn) denotes the weak ω-limit set of {xn}; that is,

ωw(xn) := {x ∈ H : w − lim
j→∞

xnj = x for some {nj} ⊂ {n}, nj ↑ ∞}

where w-limj→∞ xnj = x means the weak convergence of {xnj} to x, i.e., xnj → x

weakly.

3. MAIN RESULTS

Now we begin to investigate the convergence of Algorithms 2.1 and 2.2 under
the condition

(11) ‖en+1‖ ≤ ηn‖x̃n+1 − xn‖ with
∞∑

n=0

η2
n < ∞.

Note that in the exact proximal point algorithm (1), xn is a root of T if and only
if xn+1 = xn. Hence, roughly speaking, we can see the distance ‖x̃n+1 − xn‖ as
an ”error bound” which measures how much xn fails to be in the roots set of T . If
‖x̃n+1 − xn‖ is small enough, it follows from Eq.(6) that x̃n+1 is an approximate
solution of the original problem 0 ∈ T (x). Thus there is no doubt that under the
mild restrictions on {αn} and {cn}, the xn+1 generated by (7) or (8) is naturally
an acceptable approximate solution of the original problem 0 ∈ T (x).

Theorem 3.1. Let {xn}∞n=0 be the sequence generated by Algorithm 2.1.As-
sume that condition (11) is satisfied and that

(i) {αn} is bounded away form 1, namely 0 ≤ αn ≤ 1− δ for some δ ∈ (0, 1) ;
(ii) {cn}∞n=0 ⊂ [c,∞) for some c > 0.

Then the following statements are valid:
[a] there exists an integer N0 ≥ 0 such that for all n ≥ N0

‖xn+1 − x∗‖2 ≤ (1 +
2η2

n

1 − 2η2
n

)‖xn − x∗‖2 − δ

2
‖x̃n+1 − xn‖2, ∀x∗ ∈ S;

[b] limn→∞ ‖x̃n+1 − xn‖ = 0;

[c] {xn} converges weakly to a point in S.
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Proof. We divide the proof into four steps where Steps 1 and 2 are similar to
[14, Theorem 1].

Step 1. Let x∗ be any root of T . For ηn > 0, using the Cauchy-Schwartz
inequality we have

(12) 2〈en+1, x̃n+1 − x∗〉 ≤ 1
2η2

n

‖en+1‖2 + 2η2
n‖x̃n+1 − x∗‖2.

Since ηn → 0, there exists N0 ≥ 0 such that for all n ≥ N0, 1 − 2η2
n > 0.

Substituting (12) in (10) we obtain

(13)
‖x̃n+1 − x∗‖2 ≤ (1 +

2η2
n

1− 2η2
n

)‖xn − x∗‖2 − 1
2(1− 2η2

n)
‖x̃n+1 − xn‖2

≤ (1 +
2η2

n

1− 2η2
n

)‖xn − x∗‖2 − 1
2
‖x̃n+1 − xn‖2.

Note that for all x, y in H and 0 ≤ λ ≤ 1, the following identity holds:

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Thus, it follows from (7) and (13) that

‖xn+1 − x∗‖2 = ‖αn(xn − x∗) + (1 − αn)(x̃n+1 − x∗)‖2

≤ αn‖xn − x∗‖2 + (1 − αn)‖x̃n+1 − x∗‖2

≤ αn‖xn − x∗‖2 + (1 − αn)[(1 +
2η2

n

1 − 2η2
n

)‖xn − x∗‖2 − 1
2
‖x̃n+1 − xn‖2]

≤ (1 +
2η2

n

1 − 2η2
n

)‖xn − x∗‖2 − 1
2
(1 − αn)‖x̃n+1 − xn‖2.

Since 0 ≤ αn ≤ 1 − δ for some δ ∈ (0, 1), 1
2 (1− αn) ≥ 1

2δ. Hence, we get

(14) ‖xn+1 − x∗‖2 ≤ (1 +
2η2

n

1 − 2η2
n

)‖xn − x∗‖2 − δ

2
‖x̃n+1 − xn‖2, ∀n ≥ N0.

Step 2. It follows from (14) that

(15) ‖xn+1 − x∗‖2 ≤ (1 +
2η2

n

1 − 2η2
n

)‖xn − x∗‖2, ∀n ≥ N0.

Since
∑∞

n=0 η2
n < ∞, we get

C0 :=
∞∑

n=N0

2η2
n

1 − 2η2
n

< ∞ and C1 :=
∞∏

n=N0

(1 +
2η2

n

1 − 2η2
n

) < ∞,



New Accuracy Criteria for Modified Approximate Proximal Point Algorithms in Hilbert Spaces 1699

and thus {xn} is bounded. Set M = supn≥0 ‖xn − x∗‖. Then from (15) we get

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 +
2η2

n

1 − 2η2
n

M2, ∀n ≥ N0.

Hence, by Lemma 2.2 we conclude that limn→∞ ‖xn − x∗‖exists. Also from (14)
we obtain

δ

2
‖x̃n+1 − xn‖2 ≤ (1 +

2η2
n

1 − 2η2
n

)‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

Therefore, we deduce that limn→∞ ‖x̃n+1 − xn‖ = 0.

Step 3. We claim that ωw(xn) ⊂ S. Indeed, let z ∈ ωw(xn) and take a
subsequence {xnj} of {xn} such that w-limj→∞ xnj = z. Since ‖x̃n+1 −xn‖ → 0
as n → ∞, we get

w − lim
j→∞

x̃nj+1 = z.

Observe that

‖ 1
cn

(xn − x̃n+1 + en+1)‖ ≤ 1
cn

‖x̃n+1 − xn‖ +
1
cn

‖en+1‖

≤ 1
c
‖x̃n+1 − xn‖ +

1
c
ηn‖x̃n+1 − xn‖

=
1
c
(1 + ηn)‖x̃n+1 − xn‖ → 0 as n → ∞,

and
1

cnj

(xnj − x̃nj+1 + enj+1) ∈ T (x̃nj+1).

Taking the limit as j → ∞, we infer by the maximality of T (hence T is demiclosed)
that 0 ∈ T (z); that is, z ∈ S.

Step 4. We claim that {xn} converges weakly to some z ∈ S. Indeed, it
suffices to show that ωw(xn) consists of one point. Let z1, z2 ∈ ωw(xn) and let

w − lim
i→∞

xni = z1 and w − lim
j→∞

xmj = z2.

We deduce by Step 2 that

(16)

lim
n→∞ ‖xn − z2‖2

= lim
i→∞

‖xni − z2‖2 = lim
i→∞

‖xni − z1 + z1 − z2‖2

= lim
i→∞

(‖xni − z1‖2 + 2〈xni − z1, z1 − z2〉 + ‖z1 − z2‖2)

= lim
n→∞ ‖xn − z1‖2 + ‖z1 − z2‖2.
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Interchanging z1 and z2, we obtain

(17) lim
n→∞ ‖xn − z1‖2 = lim

n→∞ ‖xn − z2‖2 + ‖z2 − z1‖2.

Adding up (16) and (17) we obtain z1 = z2.

Corollary 3.1. Let T be a maximal monotone operator on R n and {xn}∞n=0

be the sequence generated by Algorithm 2.1. Assume that condition (11) is satisfied
and that

(i) {αn} is bounded away from 1, namely 0 ≤ αn ≤ 1− δ for some δ ∈ (0, 1) ;
(ii) {cn}∞n=0 ⊂ [c,∞) for some c > 0.

Then {xn} converges to a point in S.

Corollary 3.2. [14, Theorem 2]. Let T be a maximal monotone operator on
Rn and {xn} be the sequence generated by the inexact proximal point Algorithm
(2) under the proposed accuracy criterion (5) where {cn}∞n=0 ⊂ [c,∞) , c > 0 is
a sequence of scalars. Then {xn} converges to some x∞ with 0 ∈ T (x∞).

Theorem 3.2. Let {xn}∞n=0 be the sequence generated by Algorithm 2.2.
Assume that condition (11) is satisfied and that

(i) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(ii) limn→∞ cn = ∞.

Then {xn} converges strongly to Ps(x0).

Proof. We divide the proof into three steps.

Step 1. We claim that {xn} is bounded. Indeed, let x∗ be any root of T . As
in Step 1 of the proof of Theorem 3.1, we can infer that there exists N0 ≥ 0 such
that for all n ≥ N0, 1− 2η2

n > 0 and

‖x̃n+1 − x∗‖2 ≤ (1 +
2η2

n

1 − 2η2
n

)‖xn − x∗‖2 − 1
2
‖x̃n+1 − xn‖2.

This immediately implies that

(18a) ‖x̃n+1 − x∗‖2 ≤ (1 +
2η2

n

1 − 2η2
n

)‖xn − x∗‖2.

Note that
√

1 + t ≤ 1 + 1
2 t, ∀t ∈ [0,∞) . Thus, we derive for all n ≥ N0,

(18b) ‖x̃n+1 − x∗‖ ≤ (1 +
η2

n

1 − 2η2
n

)‖xn − x∗‖.
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Now, we prove that

(19)

‖xN0+n+1 − x∗‖ ≤
n∏

k=0

(1 +
η2

No+k

1 − 2η2
N0+k

)‖x0 − x∗‖

+
n∏

k=0

(1 +
η2

N0+k

1 − 2η2
N0+k

)‖xN0 − x∗‖.

When n = 0, from (8) and (18b) we get

‖xN0+1 − x∗‖ = ‖αN0(x0 − x∗) + (1− αN0)(x̃N0+1 − x∗)‖

≤ αN0‖x0 − x∗‖ + (1 − αN0)(1 +
η2

N0

1 − 2η2
N0

)‖xN0 − x∗‖

≤ (1 +
η2

N0

1− 2η2
N0

)‖x0 − x∗‖ + (1 +
η2

N0

1 − 2η2
N0

)‖xN0 − x∗‖.

This shows that (19) holds for n = 0. Suppose that (19) holds for n ≥ 0. Then
from (8) and (18b) we obtain

‖xN0+n+2 − x∗‖
= ‖αN0+n+1(x0 − x∗) + (1− αN0+n+1)(x̃N0+n+2 − x∗)‖

≤ αN0+n+1‖x0 − x∗‖+ (1− αN0+n+1)(1 +
η2

N0+n+1

1 − 2η2
N0+n+1

)‖xN0+n+1 − x∗‖

≤ αN0+n+1‖x0 − x∗‖+ (1− αN0+n+1)(1 +
η2

N0+n+1

1 − 2η2
N0+n+1

)

[
n∏

k=0

(1 +
η2

No+k

1 − 2η2
N0+k

)‖x0 − x∗‖ +
n∏

k=0

(1 +
η2

N0+k

1 − 2η2
N0+k

)‖xN0 − x∗‖]

≤ αN0+n+1‖x0 − x∗‖+ (1− αN0+n+1)
n+1∏

k=0

(1 +
η2

No+k

1 − 2η2
N0+k

)‖x0 − x∗‖

+(1 − αN0+n+1)
n+1∏

k=0

(1 +
η2

N0+k

1 − 2η2
N0+k

)‖xN0 − x∗‖

≤
n+1∏

k=0

(1 +
η2

No+k

1 − 2η2
N0+k

)‖x0 − x∗‖ +
n+1∏

k=0

(1 +
η2

N0+k

1 − 2η2
N0+k

)‖xN0 − x∗‖.

This shows that (19) holds for n+1. Therefore by induction we conclude that (19)
is true for all nonnegative integers n ≥ 0. Since

∑∞
k=0 η2

k < ∞, it follows that

C′
0 :=

∞∑

k=N0

η2
k

1 − 2η2
k

< ∞ and C′
1 :=

∞∏

k=N0

(1 +
η2

k

1 − 2η2
k

) < ∞,
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and thus {xn} is bounded.

Step 2. We claim that limsupn→∞〈x0−y∗, xn−y∗〉 ≤ 0 where y∗ = Ps(x0).
Pick a subsequence {xnj} of {xn} so that
(20) lim sup

n→∞
〈x0 − y∗, xn − y∗〉 = lim

j→∞
〈x0 − y∗, xnj − y∗〉.

We may also assume that w-limj→∞ xnj = x∞. It thus follows from (20) that

(21) lim sup
n→∞

〈x0 − y∗, xn − y∗〉 = 〈x0 − y∗, x∞ − y∗〉,

and it remains to show that x∞ ∈ S. Since {xn} is bounded, it follows from (18b)
that {x̃n}∞n=1 is bounded. Observe that

‖ 1
cn

(xn − x̃n+1 + en+1)‖ ≤ 1
cn

‖xn − x̃n+1‖ +
1
cn

‖en+1‖

≤ 1
cn

‖x̃n+1−xn‖+
ηn

cn
‖x̃n+1−xn‖→0 as n→∞,

and that (8) implies

‖xn+1 − x̃n+1‖ = αn‖x0 − x̃n+1‖ → 0 as n → ∞.

Thus, we get

lim
j→∞

1
cnj−1

(xnj−1 − x̃nj + enj ) = 0 and w − lim
j→∞

x̃nj = w − lim
j→∞

xnj = x∞.

Since (6) implies that 1
cnj−1

(xnj−1−x̃nj +enj ) ∈ T (x̃nj), taking the limit as j → ∞,
we obtain by the maximality of T (hence T is demiclosed ) that 0 ∈ T (x∞); that
is, x∞ ∈ S. The claim of Step 2 now follows from Lemma 2.4.

Step 3. We claim that limn→∞ xn = y∗ := Ps(x0). Indeed, for each n ≥ N0,
put

βn := 2〈x0 − y∗, xn+1 − y∗〉, and γn :=
η2

n

1 − 2η2
n

· M,

where M = supn≥0 ‖xn − y∗‖2. Then it follows from (18a) that

‖xn+1 − y∗‖2 = ‖(1− αn)(x̃n+1 − y∗) + αn(x0 − y∗)‖2

≤ (1− αn)‖x̃n+1 − y∗‖2 + 2αn〈x0 − y∗, xn+1 − y∗〉

≤ (1− αn)(1 +
2η2

n

1 − 2η2
n

)‖xn − y∗‖2 + 2αn〈x0 − y∗, xn+1 − y∗〉
≤ (1− αn)‖xn − y∗‖2 + αnβn + γn.
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Combining Step 2, condition (11) and Lemma 2.3, we can see that ‖xn − y∗‖ → 0
as n → ∞.

Remark 3.1. As in [26], it is unclear if the weak limit z of {xn} in Theorem
3.1 equals Ps(x0).

Remark 3.2. In this paper, we suggest and propose the new accuracy criteria for
modified approximate proximal point algorithms. The accuracy conditions are easy
to verify and to enforce. However, we would like to point out that the convergence
analysis is based on the assumption that the roots set of T is nonempty. Note that
T may have no root even if T is maximal monotone; that is, the roots set S may
be empty. If S is empty, then the sequence {xn} conforming to Algorithm (2) (as
a special case of Algorithm 2.1) is unbounded; see e.g., [1, 6, 11, 20].
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