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ANALYSIS ON THE DURATION OF DEEP EARTHQUAKES

Meng-Rong Li and Chuen-Hsin Chang

Abstract. In this paper, we obtain the duration of deep earthquakes coming
from the concept of pendulum motion. We consider the well-posedness and
periodicity of the solutions for the seismic equation and get representation
formula of duration for the equation. We revise the validity of our work by
using numerical data gained from Center Weather Bureau in Taipei, Taiwan.

1. INTRODUCTION

1.1. Background about Seismology

In this paper, we find the duration of deep earthquakes and would analyze what
is the influence factor for the duration. The duration is defined to be the persisting
time for a earthquake from the time it occurs to the time it stops.

The seismology of [4] and [6] shows that the types of earthquakes can be clas-
sified as shallow, intermediate or deep by the depth of the hypocenter (the depth of
shallow earthquakes is not greater than 70 km, and the depth of deep earthquakes
is greater than 300 km.), but from NCREE (National Center for Research on Earth-
quake Engineering) in Taipei, Taiwan, the types of earthquakes are depended on the
thickness of crust. From geology the thickness of the Earth’s crust of Taiwan is
probably around 25 km to 30 km; in actual works on searching data of earthquakes,
we use the definition of earthquakes from NCREE.

1.2. Derivation of seismic equation

Considering the deep earthquakes first, because the deep earthquakes are trans-
mitted under the theory of plate tectonics, it is a motion of plate with the periodic
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characteristics. Under this consideration and comparing the motion of deep earth-
quakes with the motion of pendulum, it can be found that they nearly have the same
property, therefore the motion of deep earthquakes can be regarded as the motion
of pendulum in the abstract meaning.

When the deep earthquake occurs, the building destroyed by the force sent from
the hypocenter, such a phenomenon could be approximately regarded as a torsion
offered from the fulcrum by a pendulum, and then causes a motion happened in the
pendulum (See Fig. 1). We treat the bob of the pendulum as a building and also
the fulcrum as the hypocenter; in the process of moving from the pendulum, there
is a tension τ drawn to the fulcrum.

Fig. 1. Motion model of pendulum.

Assume that the length of the pendulum is l, the mass of the bob is m, the
mass of the rod is negligible, and let x = (x1, x2, x3) ∈ R

3 be the space variables.
Moreover, at time t, we suppose that u(x, t) is the angular displacement of the
pendulum, measured from the vertical direction, and g is the acceleration of gravity.

In shallow earthquakes, the influence factors for the motion of earthquakes are
not only the motion of plate but also the space variable (that is the interaction be-
tween building and soil); those are need to be taken into account. For convenience,
let k(x, u) be the soil parameter, where u is the angular displacement of the pendu-
lum we have considered. Then k(x, u)∇x(l sinu) means the vector fields of seismic
wave flowing on the Earth’s surface.

Suppose that the flux of the shearing force of earthquakes proportions to the di-
vergence of k(x, u)∇x(l sinu), that is, the flux equals to λ[∇x·(k(x, u)∇x(l sinu))],
where λ is a proportion constant. In the pendulum model, this means the damping
force for the motion of pendulum.

Considering the motion upon the bob, dividing the total forces into the horizontal
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and vertical direction, we can get

(1.1)
{

τ sin u + λ
(∇x · (k (x, u)∇x (l sinu))

)
= m(l sin u)tt,

τ cos u + mg = f(x, t, u, ut, ux1, ux2, ux3).

where f(x, t, u, ut, ux1, ux2, ux3) is the total force in the vertical direction.
Because of the complicated model on (1.1), the discussion on shallow earth-

quakes is out of the range in this paper. Starting with the simple structure of deep
earthquakes first and considering deep earthquakes, we treat the three dimension
problem of a pendulum as a problem on a plane; supposing that no damping force
acts on the pendulum, thus the angular displacement of the pendulum becomes
u = u(t), that is, we only consider the time variable t, and then the model of the
motion of the pendulum becomes

(1.2)

{
τ sinu = m(l sinu)′′,

τ cosu + mg ≤ 0,

where the prime means the derivative with respect to time t ( ′ = d
dt).

In the second line of (1.2), the inequality τ cos u + mg ≤ 0 which means that
in deep earthquakes, the position where energy breaks out is far from the Earth’s
surface, and the seismic wave distributed out has already consumed most energy
while getting to the Earth’s surface, so the influence on the building is very small;
thus the force of the weight of building is dominant among the total force in the
vertical direction.

Because the motion of deep earthquakes is based on the theory of plate tectonics,
the motion of (1.2) can only be viewed as a horizontal motion, and then (1.2)
becomes

(1.3)

{
τ sinu = m(l sinu)′′,

τ cosu + mg = 0,

in the vertical direction. The other reason why inequality can be seen as an equality
is that the motion will at least be balanced under the condition of (1.3) for deep
earthquakes.

Eliminating τ in (1.3) and combine the two equalities, it follows that

(1.4) u′′ − (u′)2 tanu +
g

l
sin u sec2 u = 0.

Generally speaking, provided time t = 0, the angle u(0) is a state that will suffer
the shearing force from earthquakes at the beginning, and then we obtain u(0) = 0,

u′(0) = α, namely the initial angular displacement is 0 and the initial angular
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velocity is α; combining those with (1.4) we can get an initial value problem:

(1.5)

{
u′′ − (u′)2 tanu + g

l sinu sec2 u = 0,

u(0) = 0, u′(0) = α > 0.

For convenience, we will call (1.5) the seismic equation in sequence of this
paper.

Back to (1.4), defining v(t) = u′(t), we have

v dv
du − v2 tanu + g

l sin u sec2 u = 0,(
v cos2 u

)
dv +

(−v2 sinu cosu + g
l sin u

)
du = 0.

We can use the method of integrating factors to convert the above equation into
an exact equation and then solve the relation between u and v to get:

(1.6) v2 cos2 u − 2g

l
cosu = α2 − 2g

l
.

Since u′(t) = v(t), we get a transformed first order nonlinear differential equa-
tion:

(1.7)




(
du

dt
)2 =

α2 − 2g
l + 2g

l cos u

cos2 u
,

u(0) = 0.

We treat (1.7) as an equivalent version of seismic equation (1.5). We would
mention some properties by studying the first order version of seismic equation.

In section 2 we find the well-posedness of the seismic equation and study which
from the phase portrait. We would prove the periodicity of (1.5). In the model of
(1.3), we don’t consider the damping force, so the periodicity for (1.5) is in the
mathematical sense, that is, the solution of (1.5) exists globally, but in fact, the
damping force should be taken into account, such as the model (1.1), therefore the
periodicity of solution of (1.1) will actually starts from some time, and then stops;
thus there is actually a persisting time.

In section 3 we derive the representation formula expressing the duration of
the solution of this equation and in section 4 we analyze how the duration been
influenced by the depth and peak ground acceleration of deep earthquakes. Finally
we quote the data from Center Weather Bureau in Taiwan to check our work.
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2. WELL-POSEDNESS, ASYMPTOTIC BEHAVIOR AND PERIODICITY OF SEISMIC EQUATION

2.1. Well-Posedness

We quote the Picard-Lindelöf Theorem from Bellman [1, Theorem 3.1] to obtain
the existence and uniqueness of solutions of (1.7).

Lemma 1. Suppose u is the solution for equation (1.7) and β is the maximal
angular displacement u of the pendulum, then we have

(2.1) cos β =
2g
l − α2

2g
l

.

Proof. Because β is the maximal angular displacement of the pendulum, the
angular velocity is 0 as the pendulum reaches the angle β; thus u′(t)|u=β = f(β) =
0 and then α2 − 2g

l + 2g
l cosβ = 0, therefore we have (2.1).

Define the right hand side of (1.7) to be f(u), then for all ε > 0, if we choose
u in the closed subinterval [− ε

2 , ε
2 ] ⊂ (−ε, ε) ⊂ E (E is the domain of f ′(u)), we

can find max
|u|≤ ε

2

|f(u)| and max
|u|≤ ε

2

|f ′(u)| for t in the finite interval; thus we can get

the local existence and uniqueness and the stability of (1.7) by the method in [5].

2.2 Asymptotic behavior

We deal with the asymptotic behavior of solutions of (1.5) by using the method
of phase portrait of linearized equation of (1.5).

Back to (1.5), define u′(t) = v(t) = F (u, v), and then

v′ = v2 tanu − g

l
sinu sec2 u := G(u, v).

Theorem 1. Suppose that (u, v) is the solution to the autonomous system:

(2.2)

{
u′ = F (u, v) = v,

v′ = G(u, v) = v2 tan u − g
l sinu sec2 u,

then (0, 0) is a center of (2.2), and when the initial condition (u(0), v(0)) close to
(0, 0) (i.e. α → 0), (2.2) has a approximate solution

(2.3)
(

u(t)
v(t)

)
= c1


 cos

√
g
l t√

g
l sin

√
g
l t


+ c2


 sin

√
g
l t√

g
l cos

√
g
l t


 .
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Because (0, 0) is a center in the phase plane, by (2.3) we obtain that the period
of solution u is 2π

√
l
g , which identifies with the period of solution to the problem

of pendulum motion with small amplitude we know classically and this is only the
result obtained as α → 0.

2.3. Periodicity

Although in this paper the periodic solutions are a little bit different from the
so-called one classically, after having such cognition, we want to prove the existence
of periodic solutions for (1.5).

In the u − v phase plane of (2.2), in order to justify that there exists a closed
curve in the phase plane of solutions of (1.5), we need to prove that u and v are
bounded first. From the boundedness of u and v it follows the global existence of
solutions, and if we can prove the phase orbits are symmetric with respect to the
v-axis, then the existence of periodic solutions is obtained.

Lemma 2. The phase orbits of the autonomous system of (2.2) are symmetric
with respect to the v-axis.

Theorem 2. Suppose u is the solution to the initial value problem (1.5), then
we have:

(i) |u| ≤ β, |u′| ≤ α for 0 ≤ α2 ≤ g
l .

(ii) |u| ≤ β, |u′| ≤
g
l√

2g
l
−α2

for g
l < α2 < 2g

l .

(iii) |u| unbounded, |α| ≤ |u′| for α2 = 2g
l .

(iv) |u| ≤ β, |u′| unbounded for 2g
l < α2 ≤ 4g

l .

(v) |u| unbounded, |u′| unbounded for 4g
l < α2

and then there exists a periodic solution of (1.5) for 0 ≤ α 2 ≤ g
l .

Proof. Transform (1.6) into the following:

(2.4) (u′)2 = (α2 − 2g

l
) sec2 u +

2g

l
sec u

regard (u′)2 as a quadratic polynomial of variable sec u, then we can get the asser-
tions of this Theorem 2.

Therefore only under the case 0 ≤ α2 ≤ g
l , we can get the existence of periodic

solutions for equation (1.5).
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3. DERIVATION AND ESTIMATE OF THE DURATION

3.1. Representation formula

Theorem 3. Suppose u is the solution of equation (1.7) for α 2 ≤ g
l , then there

exists T (l, α) := T such that u(t + T ) = u(t) for all t > 0, and we also obtain

(3,1) T (l, β) = T (l, β(α)) = 4

√
l

g

∫ π
2

0

1− α2

2g
l

sin2 ϕ√
1 − α2

4g
l

sin2 ϕ

dϕ.

Proof. Similar to the derivation of the elliptic integral of the first kind, from
(1.6) we have

du

dt
=

√
2g

l

√
cos u − cos β

cos u
.

According to the phenomenon of deep earthquakes, we take the positive sign
and thus

t =
1
2

√
l

g

∫ u(t)

0

cosφ√
sin2 β

2 − sin2 φ
2

dφ.

When the pendulum moves from the lowest u = 0 up and then reaches the
maximal displacement u = β, ϕ goes from 0 to π

2 ; thus, from (2.1) we deduce that

(3.2) T (l, β) = 4

√
l

g

∫ π
2

0

1− 2 sin2 β
2 sin2 ϕ√

1− sin2 β
2 sin2 ϕ

dϕ.

Since sin2 β
2 = 1−cos β

2 = 1
2(1 −

2g
l
−α2

2g
l

) = α2

4g
l

, substitute this into (3.2); thus,
we obtain (3.1), and it is the the duration of u.

When α → 0,

T → 4

√
l

g
(
π

2
) = 2π

√
l

g
,

which coincides with the period of pendulum with small angular displa-cement.

3.2. Modified formula

From (3.1) we can view the duration T (l, β(α)) as a function of two variables α
and l. In fact, there are no data of α recorded from Center Weather Bureau (CWB)
in Taipei, Taiwan, so it is necessary to transform (3.1) to match the data from CWB.
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Definition 1. Let the variable A denote the PGA (peak ground acceleration)
with unit gal (cm/sec2) in each earthquake. That is, A means the maximal horizontal
ground acceleration.

A can be related with (3.1) in the following way:

Lemma 3. From the definition of A, we have

(3.3) A =
|α|
√

4g
l − α2

2g
l − α2

g.

Proof. At each earthquake, the horizontal displacement of the building is l sinu,
and using (1.4) we get the acceleration at time t:

(l sinu(t))′′ = −l
(
u

′
(t)
)2

sinu(t) + l u′′(t) cosu(t) = −g tanu(t);

thus the PGA (namely A) is

(3.4) A := max
|u|≤β<π

2

(l sin u)′′ = g tanβ.

By (2.1) we have

g tanβ =
|α|
√

4g
l − α2

2g
l − α2

g

and so we have (3.3).

From (3.3) we have

(3.5) α2 =
2g

l
(1± 1√

( g
A)2 + 1

).

Under the restriction α2 ≤ g
l , it follows that:

2g

l
(1 ± 1√

( g
A)2 + 1

) ≤ g

l
,

and so
1 ± 1√

( g
A)2 + 1

≤ 1
2
.
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Obviously the positive sign in left hand side above can’t satisfy the inequality;
thus

1− 1√
( g

A)2 + 1
≤ 1

2
, and then

A

g
≤ √

3.

If m is the mass of the building, then the above ratio, A
g = mA

mg , results in the
following definition:

Definition 2. For the PGA A of a motion, r = A
g is called the rate of receiving

force, it means that the building will be forced horizontally with amount of A
g per

unit weight through the shearing force.
Although by mathematical derivation it turns out to be the case r ≤ √

3, actually,
from the table of [2, pp. 1-19] we know that the ratio r is very small (less than 0.1
at least) for deep earthquakes (i.e. r � 1), so the necessary condition α2 ≤ g

l for
the existence of periodicity needs a stricter restriction.

Corollary 1. Substituting (3.5) into (3.1), then

(3.6) T (l, r) = 4

√
l

g

∫ π
2

0

1 −
(
1 − 1√

r2+1

)
sin2 ϕ√

1 − 1
2

(
1 − 1√

r2+1

)
sin2 ϕ

dϕ.

4. ANALYSIS ON THE DURATION

4.1. Example

From geology, the thickness of the Earth’s crust of Taiwan is probably around
25 km to 30 km, so the depth of the numerical data which we adopt also need to
be selected in such range. Taking notice that the unit for PGA is gal (cm/sec2),
we will translate its units to be the MKS systems of units in the following.

According to the record of earthquakes given in [3], we want to find whether
the actual numerical data are coincide with our formula estimated above. For
example, if we adopt the earthquake record No.10740 in [3] in vol 51(2), its
epicenter located at 22.71◦N 121.37◦E , with depth 27.1 km. At that earth-
quake, the PGA at the station CHN1 in Tainan, Taiwan with 101 km distance
from the epicenter is 6.6 gal, so the distance from this station to the hypocen-
ter can be roughly computed by the Pythagorean Theorem to obtain the value
l =

√
1012 + (27.1)2 ≈ 104.57 km. By Definition 10, r ≈ 0.0067347; from

(3.6) we can obtain T ≈ 649.0328688543557sec, but by the record of seismo-
graphs, no numerical data of records of deep earthquakes will have such a large
value.
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There is a great error between the theoretical value and the recorded value. The
reason may be that:

(1) In the model of (1.3), we hadn’t considered damping force.
(2) Because the deep earthquakes are very weak until it passing to the ground,

and the seismographs can’t technically detect all the actual duration of the
earthquakes, so formula (3.6) doesn’t have perfect degree with theoretical
value and the recorded value.

4.2. Functional properties

Although the values of the two data corresponded above are not the same, the
importance is that we can find properties with the numerical data of solutions of
(3.6) say that the duration of u is a function of l and r, therefore (3.6) tells us that
T is a function of r and l. We want to know whether T (l, r) will be changed with
r and l, and if this can be done and the results can match to the numerical data
from CWB, then our estimation formula make sense in the characterizing properties
of the solution corresponding to its variables.

There are two ways to analyze, considering at first that l is fixed and r changes
(i.e. A changes), and then we observe how the duration T (l, r) changes with r. Next,
changing the role of r and l and then continuing carrying on the same procedure,
we have:

Theorem 4. Suppose that T (l, r) is the duration of the solution of u to the
equation (1.5), then

(1) For fixed l and small r, we have

(4.1)
T (l, r1)
T (l, r2)

=
(

r2
1 + 1

r2
2 + 1

)−1/4

;

(2) For fixed r > 0, we have

(4.2)
T (l1, r)
T (l2, r)

=
√

l1
l2

;

(3) Further, for small r > 0, we have also

(4.3) T (l, r) = −3
8
π +

(
2

√
l

g
+

3
8

)
π exp

(
−2

√
l

g

(
1− 1√

r2 + 1

))

in the neighborhood of r = 0.
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Proof. To analyze how the duration T changes with r, the method is to keep l

fixed and to regard T as a function of one variable r; for convenience, we will find
an estimate and an approximated function T (·, r).

(1) For fixed l, (3.6) can be transformed into the following:

(4.4) T (l, r) = 4

√
l

g

1
4
√

r2 + 1

∫ π
2

0

√
r2 + 1 (1 + cos 2ϕ) + 2 sin2 ϕ√√
r2 + 1(3 + cos 2ϕ) + 2 sin2 ϕ

dϕ.

In actual data, the ratio r = A
g is very small (for deep earthquakes, if the PGA

A tens to the value 80 gal, the value r = 0.8
9.8 ≈ 0.081633, which is still small

compared with 1, but the situation A = 80 gal seldom occurs in deep earthquakes
by the seismic intensity scales given in CWB, Taiwan), so we can suppose r is
small,

(4.5) T (l, r) ≈ 2π

√
l

g

1
4
√

r2 + 1

and (4.1) follows.
(2) For fixed l, we define

T (r) = 4

√
l

g

∫ π
2

0
g(r, ϕ)dϕ,

where

g(r, ϕ) :=
1 −

(
1 − 1√

r2+1

)
sin2 ϕ√

1− 1
2

(
1 − 1√

r2+1

)
sin2 ϕ

.

It can be easily observed that ∂g(r,ϕ)
∂r is continuous, so we have

(4.6) ∂T (l, r)
∂r

= 4
√

l
g

∫ π
2

0
∂g(r,ϕ)

∂r dϕ

(4.7) = −2

√
l

g
r
(
r2 + 1

)− 3
2

∫ π
2

0

h(r, ϕ)dϕ,

where

h(r, ϕ) :=
1
2

3 −
(
1 − 1√

r2+1

)
sin2 ϕ√(

1 − 1
2

(
1 − 1√

r2+1

)
sin2 ϕ

)3
sin2 ϕ.
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Making a transform of h(r, ϕ), (4.7) becomes

(4.8)
∂T (l, r)

∂r
= −2

√
l

g
r
(
r2 + 1

)− 3
2

(
T +

∫ π
2

0
J(r, ϕ)dϕ

)

where

J(r, ϕ) =
1√(

1 − 1
2q1 sin2 ϕ

)3
((

1
2

+
1
2
q1 + 2q2

)
sin2 ϕ − q1q2 sin4 ϕ

)
,

and
q1 = 1 − 1√

r2 + 1
, q2 = 1− 1

2
√

r2 + 1
.

Like the same reason before, suppose r is small, then q1 → 0 and q2 → 1
2 ; thus

(4.8) becomes
∂T (l, r)

∂r
= −2

√
l

g
r(r2 + 1)−

3
2 (T +

3
8
π).

Hence, given that r is small, there is a change rate of T + 3
8π which is a function

of r in the form:

(4.9)
1

(T + 3
8π)

d(T + 3
8π)

dr
= −2

√
l

g
r(r2 + 1)−3/2.

From (3.6) we know T (l, 0) = 2π
√

l
g ; thus when r is small, solution of (4.9)

is

T (l, r) = −3
8
π +

(
2

√
l

g
+

3
8

)
π exp

(
−2

√
l

g

(
1 − 1√

r2 + 1

))

and (4.3) follows.
(3) For fixed r, by (3.6) and (4.1), (4.2) holds.

From (4.3), it can be observed that the duration T (l, r) is a decreasing function
in r. This result is the same with our past knowledge about deep earthquakes.

Define the right hand side of (4.3) to be T̃ (l, r), we will use the numerical data
from CWB to check this approximation of T (l, r) and finding the error ∆T :=∣∣∣T − T̃

∣∣∣ in the next subsection.
4.3. Numerical check of data

In order to check Theorem 4, we will quote the numerical data of the earthquakes
occurred from 2002 to 2004 nearby around Taiwan from [3]. In the above-mentioned
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data, for a earthquake, if the two stations have the same l, we can find that the ratios
T1
T2
and (r2

1+1)−1/4

(r2
2+1)−1/4 are nearly all the same and the error is less than 10−6; thus we

can get the result of (4.1) and the duration T is really a function of r and nearly
changes in the form (4.1) or (4.5) as r tends to zero. Moreover, from these tables it
can be observed that for two stations, the smaller T results from the same l and the
bigger r, and the smaller ∆T results from the smaller r, these results from the data
coincide with (4.9) (or (4.3)). By using Mathematica we can obtain the graphs of
T (l, r) and T̃ (l, r) respectively. The following are the graphs of T (l, r), T̃ (l, r). It
can be found that the following graphs and the above numerical data have the same
results of Theorem 4, and the graphs are coincide with the above data, providing
that the stations have the same r, the ratios T1

T2
and

√
l1√
l2
are nearly all the same and

the error is less than 10−16.

Fig. 2. Graphs of T (l, r) for 0 ≤ l Fig. 3. Graphs of T̃ (l, r) for 0
≤ 120km. ≤ l ≤ 120 km.

Fig. 4. Graphs of T (l, r) for 0 Fig. 5. Graphs of T̃ (l, r) 0 ≤
for ≤ 0.03. r ≤ r ≤ 0.03.

Comparing with the error from fixed l and changing r it can be seen that for the function
T in (3.6) which depends on r and l, the influence from l is dominant, and consequently
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this result and our intuition on deep earthquakes are the same; the reason is that the depth of
deep earthquakes consumes the force passing to the ground and then the horizontal shearing
force is too small (i.e. r is too small) so that its influence on T is small naturally. The
result (4.2) is obtained and the duration T is really a function of l, changes in the form
(4.2). Using Mathematica we have the graphs of T (l, r), T̃ (l, r). It can be found that the
following graphs are also coincide with the above numerical data.
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