GENERALIZED SKEW DERIVATIONS WITH ANNIHILATING ENGEL CONDITIONS

Jui-Chi Chang

Abstract

Let R be a noncommutative prime ring and $a \in R$. Suppose that f is a right generalized β-derivation of R such that $a[f(x), x]_{k}=0$ for all $x \in R$, where k is a fixed positive integer. Then $a=0$ or there exists $s \in C$ such that $f(x)=s x$ for all $x \in R$ except when $R=M_{2}(G F(2))$.

1. Introduction

Recently, C. L. Chuang, M. C. Chou and C. K. Liu [7] proved the following: Let R be a noncommutative prime ring and $a \in R$. Suppose that δ is a β-derivation of R such that $a[\delta(x), x]_{k}=0$ for all $x \in R$, where k is a fixed positive integer. Then $a=0$ or $\delta=0$ except when $R=M_{2}(G F(2))$. This result generalizes several known results, see for instance, [12], [13] and [16]. In this paper we will extend [7] further to the so-called right generalized skew derivations.

Throughout this paper, R is always a prime ring with center Z. For $x, y \in R$, set $[x, y]_{1}=[x, y]=x y-y x$ and $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for $k>1$.

Let β be an automorphism of R. A β-derivation of R is an additive mapping $\delta: R \rightarrow R$ satisfying $\delta(x y)=\delta(x) y+\beta(x) \delta(y)$ for all $x, y \in R$. β-derivations are also called skew derivations. When $\beta=1$, the identity map of R, β-derivations are merely ordinary derivations. If $\beta \neq 1$, then $1-\beta$ is a β-derivation. An additive mapping $f: R \rightarrow R$ is a right generalized β-derivation if there exists a β-derivation $\delta: R \rightarrow R$ such that $f(x y)=f(x) y+\beta(x) \delta(y)$ for all $x, y \in R$. The right generalized β-derivations generalize both β-derivations and generalized derivations. If $a, b \in R$ and $\beta \neq 1$ is an automorphism of R, then $f(x)=a x-\beta(x) b$ is a right generalized β-derivation. Moreover, if δ is a β-derivation of R, then $f(x)=a x+\delta(x)$ is a right generalized β-derivation.

[^0]We let ${ }_{\mathcal{F}} R$ denote the right Martindale quotient ring of R and Q the two sided Martindale quotient ring of R. Let C be the center of Q and ${ }_{\mathcal{F}} R$, which is called the extended centroid of R. Note that Q and ${ }_{\mathcal{F}} R$ are also prime rings and C is a field (see [1]). It is known that automorphisms, derivations and β-derivations of R can be uniquely extended to Q and $\mathcal{F} R$. In [2], we know that right generalized β-derivations of R can also be uniquely extended to $\mathcal{F} R$. Indeed, if f is a right generalized β-derivation of R, then $f(x)=f(1) x+\delta(x)$ for all $x \in R$, where δ is a β-derivation of R (Lemma 2 in [2]).

A β-derivation δ of R is called X-inner if $\delta(x)=b x-\beta(x) b$ for some $b \in Q$. δ is called X-outer if it is not X-inner. An automorphism β is called X-inner if $\beta(x)=u x u^{-1}$ for some invertible $u \in Q . \beta$ is called X-outer if it is not X-inner.

We are now ready to state the main result:
Main Theorem. Let R be a noncommutative prime ring and $a \in R$. Suppose that f is a right generalized β-derivation of R such that a $[f(x), x]_{k}=0$ for all $x \in R$, where k is a fixed positive integer. Then $a=0$ or there exists $s \in C$ such that $f(x)=s x$ for all $x \in R$ except when $R=M_{2}(G F(2))$.

We begin with two crucial lemmas.
Lemma 1. Let R be a noncommutative prime ring and let $a, b, c \in R$, with $a \neq 0$. If $a[b x-x c, x]_{k}=0$ for all $x \in R$, where k is a fixed positive integer. Then $b, c \in Z$.

Proof. We claim first that $c \in Z$. If not, then

$$
g(x)=a[b x-x c, x]_{k}=a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i}(b x-x c) x^{k-i}=0
$$

is a nontrivial GPI of R. By [3], $g(x)=0$ is also a nontrivial GPI of Q. Let F be the algebraic closure of C if C is infinite, otherwise let F be C. By a standard argument [14, Proposition], $g(x)=0$ is also a GPI of $Q \otimes_{C} F$. Since $Q \otimes_{C} F$ is a centrally closed prime F-algebra [8, Theorem 3.5], by replacing R, C with $Q \otimes_{C} F$ and F respectively, we may assume that R is centrally closed and the field C is either algebraically closed or finite. By [15, Theorem 3], R is a primitive ring having nonzero socle with field C as its associated division ring. By [9, p.75], R is isomorphic to a dense subring of the ring of linear transformations of a vector space V over C, containing nonzero linear transformations of finite rank. Since R is not commutative, we may assume that $\operatorname{dim} V_{C} \geq 2$.

We claim that there exists $v \in V$ such that v and $c v$ are C-independent. If not, v and $c v$ are C-dependent for all $v \in V$. That is, for each $v \in V$ there exists $\lambda_{v} \in C$
such that $c v=v \lambda_{v}$. By [7, Lemma 1], there exists $\lambda \in C$ such that $c v=v \lambda$ for all $v \in V$. Then

$$
(b x-x c) v=b x v-x c v=b x v-x v \lambda=b x v-c x v=(b-c) x v
$$

for all $v \in V$. Since $a[b x-c x, x]_{k}=a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i}(b x-x c) x^{k-i}=0$, we have

$$
\begin{aligned}
0 & =\left(a[b x-x c, x]_{k}\right) v=\left(a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i}(b x-x c) x^{k-i}\right) v \\
& =\left(a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i}(b-c) x^{k-i}\right) x v=\left(a[b-c, x]_{k} x\right) v
\end{aligned}
$$

for all $v \in V$. Since V is faithful, we have

$$
a[b-c, x]_{k} x=a[(b-c) x, x]_{k}=0
$$

for all $x \in R$. Since $b x-x c=(b-c) x+c x-x c$, we have

$$
\begin{aligned}
0 & =a[b x-c x, x]_{k}=a[(b-c) x+c x-x c, x]_{k} \\
& =a[(b-c) x, x]_{k}+a[c x-x c, x]_{k}=a[c, x]_{k+1}
\end{aligned}
$$

and hence $a[c, x]_{k+1}=0$ for all $x \in R$. By a result of Shiue [16], we can conclude that $a=0$ or $c \in Z$, which is a contradiction. So there exists $v_{0} \in V$ such that v_{0} and $c v_{0}$ are C-independent.

Assume $\operatorname{dim} V_{C} \geq 3$. Choose $w \in V$ such that w, v_{0} and $c v_{0}$ are C-independent. By the density of R there exists $x \in R$ such that

$$
x v_{0}=0, x c v_{0}=w, x w=w
$$

and

$$
\begin{aligned}
a[b x-x c, x]_{k} v_{0} & =a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i}(b x-x c) x^{k-i} v_{0} \\
& =(-1)^{k+1} a x^{k+1} c v_{0}=(-1)^{k+1} a w .
\end{aligned}
$$

Hence $a w=0$. Since $w+v_{0}$ is also C-independent of v_{0} and $c v_{0}$, we have $a\left(w+v_{0}\right)=0$. Similarly $a\left(w+c v_{0}\right)=0$. So $a v_{0}=0$ and $a c v_{0}=0$. Therefore $a V=0$ and hence $a=0$, a contradiction.

Now we may assume $\operatorname{dim} V_{C}=2$. In this case, v_{0} and $c v_{0}$ form a basis for V_{C}. If $w \notin v_{0} C$, then $w=v_{0} \lambda+c v_{0} \mu$, where $\mu \neq 0$. By the density
of R, there exists $x \in R$ such that $x v_{0}=0$ and $x c v_{0}=w$. This implies that $x w=x\left(v_{0} \lambda+c v_{0} \mu\right)=\left(x c v_{0}\right) \mu=w \mu$ and

$$
\begin{aligned}
0 & =a[b x-x c, x]_{k} v_{0}=a\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i}(b x-x c) x^{k-i} v_{0}\right) \\
& =a(-1)^{k+1} x^{k+1} c v_{0}=(-1)^{k+1} a x^{k} w=(-1)^{k+1} a w \mu^{k}
\end{aligned}
$$

So $a w=0$. Replacing w by $w+v_{0}$, we also have $a\left(w+v_{0}\right)=a v_{0}=0$. Since w and v_{0} are C-independent and $\operatorname{dim} V_{C}=2$, we have $a V=0$ and hence $a=0$, a contradiction. This last contradiction shows $c \in Z$.

Since $c \in Z$, we have $a[b x-x c, x]_{k}=a[b x, x]_{k}$ and hence

$$
\begin{equation*}
a[b x-x c, x]_{k}=a[b, x]_{k} x=0 \tag{1}
\end{equation*}
$$

for all $x \in R$. If $b \notin Z$, then

$$
h(x)=a[b, x]_{k} x=a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} b x^{k-i+1}=0
$$

is a nontrivial GPI of R. Again by the same argument as we did in first paragraph we can conclude that R is isomorphic to a dense subring of the ring of linear transformations of a vector space V over the field C, containing nonzero linear transformation of finite rank. Also, $\operatorname{dim} V_{C} \geq 2$.

Again, if $b v$ and v are C-dependent for all $v \in V$, then as before, there exists $\lambda \in C$ such that $b v=v \lambda$ for all $v \in V$. This implies

$$
\begin{aligned}
{[b, x]_{k} v } & =\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} b x^{k-i}\right) v \\
& =\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} x^{k-i} v \lambda \\
& =\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\right) x^{k} v \lambda \\
& =0
\end{aligned}
$$

for all $v \in V$. Since V is faithful, we have $[b, x]_{k}=0$ for all $x \in R$ and hence $b \in Z$ by [13], which is a contradiction. So we may assume that there exists $v_{0} \in V$ such that $b v_{0}$ and v_{0} are C-independent. By the density of R, there exists $x \in R$ such that $x v_{0}=v_{0}$ and $x b v_{0}=0$. By (1) we have

$$
\begin{aligned}
0 & =a[b, x]_{k} x v_{0}=a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} b x^{k-i+1} v_{0} \\
& =a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} b v_{0}=a b v_{0}
\end{aligned}
$$

We also have $x \in R$ such that $x v_{0}=v_{0}$ and $x b v_{0}=v_{0}$. Again by (1) we get

$$
\begin{aligned}
0 & =a[b, x]_{k} x v_{0}=a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} b x^{k-i+1} v_{0} \\
& =a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} b v_{0}=a b v_{0}+a \sum_{i=1}^{k}(-1)^{i}\binom{k}{i} x^{i} b v_{0} \\
& =a \sum_{i=1}^{k}(-1)^{i}\binom{k}{i} v_{0}=-a v_{0}+a\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\right) v_{0} \\
& =-a v_{0}
\end{aligned}
$$

Now if $\operatorname{dim} V_{C}=2$, then v_{0} and $b v_{0}$ form a basis for V. Since $a v_{0}=0$ and $a b v_{0}=0$, we have $a V=0$ and hence $a=0$, a contradiction.

So we may assume that $\operatorname{dim} V_{C} \geq 3$. In this case, let $w \in V$ be C-independent of v_{0} and $b v_{0}$. Again, by the density of R, there exists $x \in R$ such that $x v_{0}=v_{0}$, $x b v_{0}=w$ and $x w=w$. From (1) we get

$$
\begin{aligned}
0 & =a[b, x]_{k} x v_{0}=a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} b x^{k-i+1} v_{0} \\
& =a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i} b v_{0}=a b v_{0}+a \sum_{i=1}^{k}(-1)^{i}\binom{k}{i} x^{i} b v_{0} \\
& =a \sum_{i=1}^{k}(-1)^{i}\binom{k}{i} w=-a w
\end{aligned}
$$

Therefore $a V=0$ and this implies $a=0$, a contradiction. Hence $b \in Z$ and the proof is complete.

Lemma 2. Let R be a dense subring of the ring of linear transformations of a vector space V over a division ring D, where $\operatorname{dim} V_{D} \geq 2$ and let R contain nonzero linear transformations of finite rank. Let β be an automorphism of R. Suppose that $a, b, c \in R$ and $f(x)=b x-\beta(x) c$ satisfy $a[f(x), x]_{k}=0$ for all $x \in R$, where k is a fixed positive integer. Then $a=0$ or $b-c \in Z$ and $f(x)=(b-c) x$ for all $x \in R$ except $\operatorname{dim} V_{D}=2$ and $D=G F(2)$, the Galois field of two elements.

Proof. We will adopt the proof of Lemma 2 in [7] with some modification. We assume that $a \neq 0$ and proceed to show that $b-c \in Z$ and $f(x)=(b-c) x$ for all $x \in R$ except $\operatorname{dim} V_{D}=2$ and $D=G F(2)$. Since R is a primitive ring with nonzero socle, by a result in [9, p. 79], there exists a semi-linear automorphism $T \in \operatorname{End}(V)$ such that $\beta(x)=T x T^{-1}$ for all $x \in R$. Hence $a[b x-\beta(x) c, x]_{k}=$ $a\left[b x-T x T^{-1} c, x\right]_{k}=0$ for all $x \in R$.

We claim that there exists $v_{0} \in V$ such that v_{0} and $T^{-1} c v_{0}$ are D-independent. If not, then v and $T^{-1} c v$ are D-dependent for all $v \in V$. As before there exists $\lambda \in D$ such that $T^{-1} c v=v \lambda$ for all $v \in V$. Then

$$
\begin{aligned}
f(x) v & =(b x-\beta(x) c) v=\left(b x-T x T^{-1} c\right) v \\
& =b x v-T x T^{-1} c v=b x v-T(x v \lambda) \\
& =b x v-T((x v) \lambda)=b x v-T\left(T^{-1} c\right)(x v) \\
& =b x v-c x v=(b-c) x v
\end{aligned}
$$

for all $x \in R$ and for all $v \in V$. Hence $(f(x)-(b-c) x) V=0$ for all $x \in R$. Since V is faithful, we have $f(x)=(b-c) x$ for all $x \in R$ and therefore

$$
\begin{equation*}
a[(b-c) x, x]_{k}=0 \tag{2}
\end{equation*}
$$

for all $x \in R$. By (2) and Lemma 1 , it follows that $b, c \in Z$. If $c=0$, then we are done. So we may assume $c \neq 0$.

Since $f(x)=b x-\beta(x) c=(b-c) x+c(x-\beta(x))$, by the hypothesis and (2), we have

$$
\begin{aligned}
0 & =a[f(x), x]_{k}=a[(b-c) x+c(x-\beta(x)), x]_{k} \\
& =a[(b-c) x, x]_{k}+a[c(x-\beta(x)), x]_{k} \\
& =c a[x-\beta(x), x]_{k}
\end{aligned}
$$

and hence $a[x-\beta(x), x]_{k}=0$ for all $x \in R$. By the Main Theorem in [7] and assumption, we have $x-\beta(x)=0$ for all $x \in R$ except $\operatorname{dim} V_{D}=2$ and $D=G F(2)$ and hence $f(x)=(b-c) x$ for all $x \in R$ except $\operatorname{dim} V_{D}=2$ and $D=G F(2)$.

So we may assume that v_{0} and $T^{-1} c v_{0}$ are D-independent for some $v_{0} \in V$. First assume $\operatorname{dim} V_{D} \geq 3$. Choose $w \in V$ such that w, v_{0} and $T^{-1} c v_{0}$ are D independent. By the density of R, there exists $x \in R$ such that

$$
x v_{0}=0, x T^{-1} c v_{0}=T^{-1} w, x w=w
$$

This implies that

$$
\begin{aligned}
0 & =a\left[b x-T x T^{-1} c, x\right]_{k} v_{0}=a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i}\left(b x-T x T^{-1} c\right) x^{k-i} v_{0} \\
& =(-1)^{k+1} a x^{k} T x T^{-1} c v_{0}=(-1)^{k+1} a x^{k} w=(-1)^{k+1} a w
\end{aligned}
$$

and so $a w=0$. Since $v_{0}+w$ is also D-independent of v_{0} and $T^{-1} c v_{0}$, we also have $a\left(v_{0}+w\right)=0$. Similarly, $a\left(T^{-1} c v_{0}+w\right)=0$. Therefore $a v_{0}=a T^{-1} c v_{0}=0$. But then $a V=0$ and $a=0$, a contradiction.

Second, assume $\operatorname{dim} V_{D}=2$. Then v_{0} and $T^{-1} c v_{0}$ form a basis for V_{D}. We claim that there exists $w \in V$ such that $w \notin v_{0} D$ and $T w \notin v_{0} D$. Suppose on the contrary, for each $w \in V$ we have either $w \in v_{0} D$ or $w \in\left(T^{-1} v_{0}\right) D$. Then $V=v_{0} D \cup\left(T^{-1} v_{0}\right) D$. As a vector space cannot be the union of two proper subspaces, we must have $\operatorname{dim} V_{D}=1$, a contradiction. For such $w, w \notin v_{0} D$ and $w \notin\left(T^{-1} v_{0}\right) D$, we write $w=v_{0} \lambda+\left(T^{-1} v_{0}\right) \mu$ and $T w=v_{0} \sigma+\left(T^{-1} c v_{0}\right) \tau$, where $\lambda, \mu, \sigma, \tau \in D$ and $\mu, \tau \neq 0$. By the density of R, there exists $x \in R$ such that $x v_{0}=0, x T^{-1} c v_{0}=w$. This implies that $x w=x\left(v_{0} \lambda+\left(T^{-1} c v_{0}\right) \mu\right)=$ $x\left(T^{-1} c v_{0}\right) \mu=w \mu$ and $x T w=x\left(v_{0} \sigma+\left(T^{-1} c v_{0}\right) \tau\right)=w \tau$. Therefore,

$$
\begin{aligned}
0 & =a\left[b x-T x T^{-1} c, x\right]_{k} v_{0}=a \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{i}\left(b x-T x T^{-1} c\right) x^{k-i} v_{0} \\
& =(-1)^{k+1} a x^{k} T x T^{-1} c v_{0}=(-1)^{k+1} a x^{k} T w=(-1)^{k+1} a x^{k-1} w \tau \\
& =(-1)^{k+1} a w \mu^{k-1} \tau
\end{aligned}
$$

and so $a w=0$. If there exists a nonzero $\lambda \in D$ such that $T\left(v_{0} \lambda+w\right) \notin v_{0} D$, then replacing w by $v_{0} \lambda+w$, we have $0=a\left(v_{0} \lambda+w\right)=a v_{0} \lambda$ and so $a v_{0}=0$. Since w and v_{0} are D-independent and $\operatorname{dim} V_{D}=2$, we have $a V=0$, again a contradiction. Thus $T\left(v_{0} \lambda+w\right) \in v_{0} D$ for all nonzero $\lambda \in D$. If $|D|>2$, then we can choose two nonzero elements of D, say λ_{1}, λ_{2} with $\lambda_{1} \neq \lambda_{2}$. Then $T\left(v_{0}\left(\lambda_{1}-\lambda_{2}\right)\right)=T\left(v_{0} \lambda_{1}+w\right)-T\left(v_{0} \lambda_{2}+w\right) \in v_{0} D$. Using semi-linearity of T, we have $T\left(v_{0}\right) \in v_{0} D$ and then $T(w) \in v_{0} D$, a contradiction. The proof is complete.

Now we are ready to prove our Main Theorem.
Proof of Main Theorem. By [2, Lemma 2], we can write $f(x)=s x+\delta(x)$ for all $x \in R$, where $s=f(1) \in{ }_{\mathcal{F}} R$ and δ is a β-derivation of R. By [3, Theorem 2],

$$
\begin{equation*}
a[s x+\delta(x), x]_{k}=0 \tag{3}
\end{equation*}
$$

for all $x \in{ }_{\mathcal{F}} R$. Assume $a \neq 0$. If $\delta=0$, then $f(x)=s x$ and $a[s x, x]_{k}=0$ for all $x \in{ }_{\mathcal{F}} R$. By Lemma $1, s \in C$ and we are done. So we may assume $\delta \neq 0$. If δ is X-outer, then by [6, Theorem 1], we have $a[s x+y, x]_{k}=0$ for all $x, y \in{ }_{\mathcal{F}} R$. Pick $t \in{ }_{\mathcal{F}} R \backslash C$ and replace y by $-x t$. Then we have $a[s x-x t, x]_{k}=0$ for all $x \in{ }_{\mathcal{F}} R$, which is contrary to Lemma 1 . Hence we may assume that δ is X-inner and write $\delta(x)=c x-\beta(x) c$, where $c \in Q$. Suppose that β is X-inner. Thus there exists an
invertible element $u \in Q$ such that $\beta(x)=u x u^{-1}$ for all $x \in R$. We rewrite (3) as

$$
a\left[(s+c) x-u x u^{-1} c, x\right]_{k}=0
$$

for all $x \in R$ and also for all $x \in{ }_{\mathcal{F}} R$. If $u^{-1} c \in C$, then $\delta(x)=c x-u x u^{-1} c=$ $c x-u\left(u^{-1} c\right) x=c x-c x=0$ for all $x \in R$, which is not the case. So we may assume that $u^{-1} c \notin C$. With this, we can see easily that

$$
\begin{aligned}
g(x)= & a\left[(s+c) x-u x u^{-1} c, x\right]_{k} \\
= & a \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i} x^{i}\left((s+c) x-u x u^{-1} c\right) x^{k-i} \\
& +(-1)^{k} a x^{k}(s+c) x+(-1)^{k+1} a x^{k} u x u^{-1} c \\
= & 0
\end{aligned}
$$

is a nontrivial GPI of R. By [3], $g(x)=0$ is also a GPI of ${ }_{\mathcal{F}} R$. By the same argument as we did in Lemma 1, we may assume that R is centrally closed and the field C is either finite or algebraically closed. By Martindale's theorem [15], R is a primitive ring having nonzero socle with the field C as its associated divising ring. By [9, p. 75] R is isomorphic to a dense subring of the ring of linear transformations of a vector space V over C, containing nonzero linear transformations of finite rank. Since R is not commutative, we may assume $\operatorname{dim} V_{C} \geq 2$. By Lemma 2, we are done in this case.

So we may assume that β is X-outer. Since $a \neq 0$ and $c \neq 0, R$ is a GPI-ring by [4] and ${ }_{\mathcal{F}} R$ is also GPI-ring by [3]. By Martindale's theorem [15], $\mathcal{F} R$ is a primitive ring having nonzero socle and its associated division ring D is finite dimensional over C. Hence ${ }_{\mathcal{F}} R$ is isomorphic to a dense subring of the ring of linear transformations of a vector space V over D, containing nonzero linear transformations of finite rank. If $\operatorname{dim} V_{D} \geq 2$, then we are done by Lemma 2. Hence we may assume that $\operatorname{dim} V_{D}=1$, that is $\mathcal{F} R \cong D$. If C is finite, then $\operatorname{dim} D_{C}<\infty$ implies that D is also finite. Thus D is a field by Wedderburn's theorem [9, p. 183] and so ${ }_{\mathcal{F}} R$ is commutative. In particular, R is commutative, a contradiction. Hence from now on we assume that C is infinite and $\mathcal{F} R$ is a division ring. By the assumption $a \neq 0$, we have $[(s+c) x-\beta(x) c, x]_{k}=0$ for all $x \in{ }_{\mathcal{F}} R$.

Suppose that β is not Frobenius. Then by [5], $[(s+c) x-y c, x]_{k}=0$ for all $x \in{ }_{\mathcal{F}} R$. Putting $y=x$, we have $[(s+c) x-x c, x]_{k}=0$ for all $x \in{ }_{\mathcal{F}} R$. By Lemma $1, c, s \in C$ and $[c x-\beta(x) c, x]_{k}=0$ for all $x \in{ }_{\mathcal{F}} R$. But then $c x-\beta(x) c=0$ for all $x \in{ }_{\mathcal{F}} R$ by the Main Theorem in [7], which is a contradiction.

Finally, we assume that β is Frobenius. Then $\operatorname{char}_{\mathcal{F}} R=p>0$ and $\beta(\lambda)=\lambda^{p^{n}}$ for all $\lambda \in C$, where n is some fixed integer. Since β is X-outer, $n \neq 0$. Replacing
x by $x+\lambda$, where $0 \neq \lambda \in C$, we have from (3) that

$$
\begin{aligned}
0 & =[(s+c)(x+\lambda)-\beta(x+\lambda) c, x+\lambda]_{k} \\
& =\left[(s+c)(x+\lambda)-\left(\beta(x)+\lambda^{p^{n}}\right) c, x\right]_{k} \\
& =[(s+c) x-\beta(x) c, x]_{k}+\left[(s+c) \lambda-c \lambda^{p^{n}}, x\right]_{k} \\
& =\left[(s+c) \lambda-c \lambda^{p^{n}}, x\right]_{k}
\end{aligned}
$$

for all $x \in{ }_{\mathcal{F}} R$ and hence $(s+c) \lambda-c \lambda^{p^{n}} \in C$ by [13]. Since β is X-outer, there exists $t \in C$ such that $t \neq t^{p^{n}}$. Let $\lambda_{1}=\lambda t$. Then we have $(s+c) \lambda-c \lambda^{p^{n}}=\tau \in C$ and $(s+c) \lambda_{1}-c \lambda_{1}^{p^{n}}=\tau_{1} \in C$. Solving these two equations, we have $s+c \in C$ and $c \in C$ and hence $s \in C$. Therefore $0=[s x+c x-\beta(x) c, x]_{k}=c[\beta(x), x]_{k}$. Since $c \neq 0$ and $c[\beta(x)-x, x]_{k}=0$ for all $x \in{ }_{\mathcal{F}} R$, by the Main Theorem in [7], $\beta(x)-x=0$ for all $x \in{ }_{F} R$, which is a contradiction. The proof is now complete.

The following example shows that the exceptional case does exist.
Example. Let $R=M_{2}(G F(2)), a=e_{11}+e_{12}, b=e_{21}$ and $c=e_{21}+e_{22}$. Let $\beta(x)=g x g^{-1}$, where $g=e_{12}+e_{21}$. Let $f(x)=b x-\beta(x) c$ for all $x \in R$. Then by a direct computation we have $a[[f(x), x], x]=0$ for all $x \in R$.

References

1. K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc. N York-Basel-Hongkang, 1996.
2. I. C. Chang, On the Identity $h(x)=a f(x)+g(x) b$, Taiwanese J. of Math, 7(1) (2003), 103-113.
3. C. L. Chuang, GPIs having coefficients in Utumi guotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
4. C. L. Chuang, Differential idenities with automorphisms and antiautomorphisms I, J. Algebra, 149 (1992), 371-404.
5. C. L. Chuang, Differential idenities with automorphisms and antiautomorphisms II, J. Algebra, 160 (1993), 292-335.
6. C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. Algebra, 288 (2005), 59-77.
7. C. L. Chuang, M. C. Chou and C. K. Liu, Skew derivations with annihilating Engel conditions, Publ. Math. Debrecen, 68(1-2) (2006), 161-170.
8. T. S. Erickson, W. S. Martindale 3rd and J. M. Osborn, Prime non-associative algebras, Pacific J. Math., 60 (1975), 49-63.
9. N. Jacobson, Stucture of rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.
10. V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika 14(2) (1975), 215-237; Engl. Transl: Algebra and Logic 14(2) (1975), 132-148.
11. V. K. Kharchenko and A. Z. Popov, Skew derivation of prime rings, Comm. Algebra, 20 (1992), 3321-3345.
12. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), 75-80.
13. C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc., 125 (1997), 339-345.
14. P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica, 23 (1995), 1-5.
15. W. S. Martindale 3rd, Prime rings satifying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
16. W. K. Shiue, Annihilators of derivations with Engel conditions, Rend. Del Cire. Math. Di Palermo, Serie П, 52 (2003), 505-509.
[^1]
[^0]: Accepted July 24, 2006.
 Communicated by Wen-Fong Ke.
 2000 Mathematics Subject Classification: 16W20, 16W25, 16W55.
 Key words and phrases: Skew derivation, Generalized skew derivation, Automorphism, Prime ring, Generalized polynomial identity (GPI).

[^1]: Jui-Chi Chang
 Department of Computer Science and Information Engineering, Chang Jung Christian University,
 Tainan, Taiwan
 E-mail: jc2004@mail.cjcu.edu.tw

