TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 7, pp. 1641-1650, October 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

GENERALIZED SKEW DERIVATIONS WITH ANNIHILATING ENGEL CONDITIONS

Jui-Chi Chang

Abstract. Let R be a noncommutative prime ring and $a \in R$. Suppose that f is a right generalized β -derivation of R such that $a[f(x), x]_k = 0$ for all $x \in R$, where k is a fixed positive integer. Then a = 0 or there exists $s \in C$ such that f(x) = sx for all $x \in R$ except when $R = M_2(GF(2))$.

1. INTRODUCTION

Recently, C. L. Chuang, M. C. Chou and C. K. Liu [7] proved the following: Let R be a noncommutative prime ring and $a \in R$. Suppose that δ is a β -derivation of R such that $a[\delta(x), x]_k = 0$ for all $x \in R$, where k is a fixed positive integer. Then a = 0 or $\delta = 0$ except when $R = M_2(GF(2))$. This result generalizes several known results, see for instance, [12], [13] and [16]. In this paper we will extend [7] further to the so-called right generalized skew derivations.

Throughout this paper, R is always a prime ring with center Z. For $x, y \in R$, set $[x, y]_1 = [x, y] = xy - yx$ and $[x, y]_k = [[x, y]_{k-1}, y]$ for k > 1.

Let β be an automorphism of R. A β -derivation of R is an additive mapping $\delta: R \to R$ satisfying $\delta(xy) = \delta(x)y + \beta(x)\delta(y)$ for all $x, y \in R$. β -derivations are also called skew derivations. When $\beta = 1$, the identity map of R, β -derivations are merely ordinary derivations. If $\beta \neq 1$, then $1 - \beta$ is a β -derivation. An additive mapping $f: R \to R$ is a right generalized β -derivation if there exists a β -derivation $\delta: R \to R$ such that $f(xy) = f(x)y + \beta(x)\delta(y)$ for all $x, y \in R$. The right generalized β -derivations generalize both β -derivations and generalized derivations. If $a, b \in R$ and $\beta \neq 1$ is an automorphism of R, then $f(x) = ax - \beta(x)b$ is a right generalized β -derivation. Moreover, if δ is a β -derivation of R, then $f(x) = ax + \delta(x)$ is a right generalized β -derivation.

Accepted July 24, 2006.

Communicated by Wen-Fong Ke.

²⁰⁰⁰ Mathematics Subject Classification: 16W20, 16W25, 16W55.

Key words and phrases: Skew derivation, Generalized skew derivation, Automorphism, Prime ring, Generalized polynomial identity (GPI).

We let $\mathcal{F}R$ denote the right Martindale quotient ring of R and Q the two sided Martindale quotient ring of R. Let C be the center of Q and $\mathcal{F}R$, which is called the extended centroid of R. Note that Q and $\mathcal{F}R$ are also prime rings and C is a field (see [1]). It is known that automorphisms, derivations and β -derivations of R can be uniquely extended to Q and $\mathcal{F}R$. In [2], we know that right generalized β -derivations of R can also be uniquely extended to $\mathcal{F}R$. Indeed, if f is a right generalized β -derivation of R, then $f(x) = f(1)x + \delta(x)$ for all $x \in R$, where δ is a β -derivation of R (Lemma 2 in [2]).

A β -derivation δ of R is called X-inner if $\delta(x) = bx - \beta(x)b$ for some $b \in Q$. δ is called X-outer if it is not X-inner. An automorphism β is called X-inner if $\beta(x) = uxu^{-1}$ for some invertible $u \in Q$. β is called X-outer if it is not X-inner. We are now ready to state the main result:

Main Theorem. Let R be a noncommutative prime ring and $a \in R$. Suppose that f is a right generalized β -derivation of R such that $a[f(x), x]_k = 0$ for all $x \in R$, where k is a fixed positive integer. Then a = 0 or there exists $s \in C$ such that f(x) = sx for all $x \in R$ except when $R = M_2(GF(2))$.

We begin with two crucial lemmas.

Lemma 1. Let R be a noncommutative prime ring and let $a, b, c \in R$, with $a \neq 0$. If $a[bx - xc, x]_k = 0$ for all $x \in R$, where k is a fixed positive integer. Then $b, c \in Z$.

Proof. We claim first that $c \in Z$. If not, then

$$g(x) = a[bx - xc, x]_k = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i (bx - xc) x^{k-i} = 0$$

is a nontrivial GPI of R. By [3], g(x) = 0 is also a nontrivial GPI of Q. Let F be the algebraic closure of C if C is infinite, otherwise let F be C. By a standard argument [14, Proposition], g(x) = 0 is also a GPI of $Q \otimes_C F$. Since $Q \otimes_C F$ is a centrally closed prime F-algebra [8, Theorem 3.5], by replacing R, C with $Q \otimes_C F$ and F respectively, we may assume that R is centrally closed and the field C is either algebraically closed or finite. By [15, Theorem 3], R is a primitive ring having nonzero socle with field C as its associated division ring. By [9, p.75], R is isomorphic to a dense subring of the ring of linear transformations of a vector space V over C, containing nonzero linear transformations of finite rank. Since R is not commutative, we may assume that dim $V_C \ge 2$.

We claim that there exists $v \in V$ such that v and cv are C-independent. If not, v and cv are C-dependent for all $v \in V$. That is, for each $v \in V$ there exists $\lambda_v \in C$

1642

such that $cv = v\lambda_v$. By [7, Lemma 1], there exists $\lambda \in C$ such that $cv = v\lambda$ for all $v \in V$. Then

$$(bx - xc)v = bxv - xcv = bxv - xv\lambda = bxv - cxv = (b - c)xv$$

for all $v \in V$. Since $a[bx - cx, x]_k = a \sum_{i=0}^k (-1)^i {k \choose i} x^i (bx - xc) x^{k-i} = 0$, we have

$$0 = (a[bx - xc, x]_k)v = \left(a\sum_{i=0}^k (-1)^i \binom{k}{i} x^i (bx - xc) x^{k-i}\right)v$$
$$= \left(a\sum_{i=0}^k (-1)^i \binom{k}{i} x^i (b-c) x^{k-i}\right)xv = (a[b-c, x]_k x)v$$

for all $v \in V$. Since V is faithful, we have

$$a[b-c, x]_k x = a[(b-c)x, x]_k = 0$$

for all $x \in R$. Since bx - xc = (b - c)x + cx - xc, we have

$$0 = a[bx - cx, x]_k = a[(b - c)x + cx - xc, x]_k$$
$$= a[(b - c)x, x]_k + a[cx - xc, x]_k = a[c, x]_{k+1}$$

and hence $a[c, x]_{k+1} = 0$ for all $x \in R$. By a result of Shiue [16], we can conclude that a = 0 or $c \in Z$, which is a contradiction. So there exists $v_0 \in V$ such that v_0 and cv_0 are C-independent.

Assume dim $V_C \ge 3$. Choose $w \in V$ such that w, v_0 and cv_0 are C-independent. By the density of R there exists $x \in R$ such that

$$xv_0 = 0, xcv_0 = w, xw = w$$

and

$$a[bx - xc, x]_k v_0 = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i (bx - xc) x^{k-i} v_0$$
$$= (-1)^{k+1} a x^{k+1} c v_0 = (-1)^{k+1} a w.$$

Hence aw = 0. Since $w + v_0$ is also *C*-independent of v_0 and cv_0 , we have $a(w + v_0) = 0$. Similarly $a(w + cv_0) = 0$. So $av_0 = 0$ and $acv_0 = 0$. Therefore aV = 0 and hence a = 0, a contradiction.

Now we may assume dim $V_C = 2$. In this case, v_0 and cv_0 form a basis for V_C . If $w \notin v_0C$, then $w = v_0\lambda + cv_0\mu$, where $\mu \neq 0$. By the density

of R, there exists $x \in R$ such that $xv_0 = 0$ and $xcv_0 = w$. This implies that $xw = x(v_0\lambda + cv_0\mu) = (xcv_0)\mu = w\mu$ and

$$0 = a[bx - xc, x]_k v_0 = a\left(\sum_{i=0}^k (-1)^i \binom{k}{i} x^i (bx - xc) x^{k-i} v_0\right)$$
$$= a(-1)^{k+1} x^{k+1} c v_0 = (-1)^{k+1} a x^k w = (-1)^{k+1} a w \mu^k$$

So aw = 0. Replacing w by $w + v_0$, we also have $a(w + v_0) = av_0 = 0$. Since w and v_0 are C-independent and dim $V_C = 2$, we have aV = 0 and hence a = 0, a contradiction. This last contradiction shows $c \in Z$.

Since $c \in Z$, we have $a[bx - xc, x]_k = a[bx, x]_k$ and hence

(1)
$$a[bx - xc, x]_k = a[b, x]_k x = 0$$

for all $x \in R$. If $b \notin Z$, then

$$h(x) = a[b, x]_k x = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i b x^{k-i+1} = 0$$

is a nontrivial GPI of R. Again by the same argument as we did in first paragraph we can conclude that R is isomorphic to a dense subring of the ring of linear transformations of a vector space V over the field C, containing nonzero linear transformation of finite rank. Also, dim $V_C \ge 2$.

Again, if bv and v are C-dependent for all $v \in V$, then as before, there exists $\lambda \in C$ such that $bv = v\lambda$ for all $v \in V$. This implies

$$[b, x]_k v = \left(\sum_{i=0}^k (-1)^i \binom{k}{i} x^i b x^{k-i}\right) v$$
$$= \sum_{i=0}^k (-1)^i \binom{k}{i} x^i x^{k-i} v \lambda$$
$$= \left(\sum_{i=0}^k (-1)^i \binom{k}{i}\right) x^k v \lambda$$
$$= 0$$

for all $v \in V$. Since V is faithful, we have $[b, x]_k = 0$ for all $x \in R$ and hence $b \in Z$ by [13], which is a contradiction. So we may assume that there exists $v_0 \in V$ such that bv_0 and v_0 are C-independent. By the density of R, there exists $x \in R$ such that $xv_0 = v_0$ and $xbv_0 = 0$. By (1) we have

$$0 = a[b, x]_k x v_0 = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i b x^{k-i+1} v_0$$
$$= a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i b v_0 = a b v_0$$

We also have $x \in R$ such that $xv_0 = v_0$ and $xbv_0 = v_0$. Again by (1) we get

$$0 = a[b, x]_k x v_0 = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i b x^{k-i+1} v_0$$

= $a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i b v_0 = a b v_0 + a \sum_{i=1}^k (-1)^i \binom{k}{i} x^i b v_0$
= $a \sum_{i=1}^k (-1)^i \binom{k}{i} v_0 = -a v_0 + a \left(\sum_{i=0}^k (-1)^i \binom{k}{i} \right) v_0$
= $-a v_0$

Now if dim $V_C = 2$, then v_0 and bv_0 form a basis for V. Since $av_0 = 0$ and $abv_0 = 0$, we have aV = 0 and hence a = 0, a contradiction.

So we may assume that dim $V_C \ge 3$. In this case, let $w \in V$ be C-independent of v_0 and bv_0 . Again, by the density of R, there exists $x \in R$ such that $xv_0 = v_0$, $xbv_0 = w$ and xw = w. From (1) we get

$$0 = a[b, x]_k x v_0 = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i b x^{k-i+1} v_0$$

= $a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i b v_0 = a b v_0 + a \sum_{i=1}^k (-1)^i \binom{k}{i} x^i b v_0$
= $a \sum_{i=1}^k (-1)^i \binom{k}{i} w = -a w$

Therefore aV = 0 and this implies a = 0, a contradiction. Hence $b \in Z$ and the proof is complete.

Lemma 2. Let R be a dense subring of the ring of linear transformations of a vector space V over a division ring D, where dim $V_D \ge 2$ and let R contain nonzero linear transformations of finite rank. Let β be an automorphism of R. Suppose that $a, b, c \in R$ and $f(x) = bx - \beta(x)c$ satisfy $a[f(x), x]_k = 0$ for all $x \in R$, where k is a fixed positive integer. Then a = 0 or $b - c \in Z$ and f(x) = (b - c)x for all $x \in R$ except dim $V_D = 2$ and D = GF(2), the Galois field of two elements.

Proof. We will adopt the proof of Lemma 2 in [7] with some modification. We assume that $a \neq 0$ and proceed to show that $b - c \in Z$ and f(x) = (b - c)x for all $x \in R$ except dim $V_D = 2$ and D = GF(2). Since R is a primitive ring with nonzero socle, by a result in [9, p. 79], there exists a semi-linear automorphism $T \in \text{End}(V)$ such that $\beta(x) = TxT^{-1}$ for all $x \in R$. Hence $a[bx - \beta(x)c, x]_k = a[bx - TxT^{-1}c, x]_k = 0$ for all $x \in R$.

We claim that there exists $v_0 \in V$ such that v_0 and $T^{-1}cv_0$ are *D*-independent. If not, then v and $T^{-1}cv$ are *D*-dependent for all $v \in V$. As before there exists $\lambda \in D$ such that $T^{-1}cv = v\lambda$ for all $v \in V$. Then

$$f(x)v = (bx - \beta(x)c)v = (bx - TxT^{-1}c)v$$

= $bxv - TxT^{-1}cv = bxv - T(xv\lambda)$
= $bxv - T((xv)\lambda) = bxv - T(T^{-1}c)(xv)$
= $bxv - cxv = (b - c)xv$

for all $x \in R$ and for all $v \in V$. Hence (f(x) - (b - c)x)V = 0 for all $x \in R$. Since V is faithful, we have f(x) = (b - c)x for all $x \in R$ and therefore

(2)
$$a[(b-c)x, x]_k = 0$$

for all $x \in R$. By (2) and Lemma 1, it follows that $b, c \in Z$. If c = 0, then we are done. So we may assume $c \neq 0$.

Since $f(x) = bx - \beta(x)c = (b - c)x + c(x - \beta(x))$, by the hypothesis and (2), we have

$$0 = a[f(x), x]_{k} = a[(b - c)x + c(x - \beta(x)), x]_{k}$$

= $a[(b - c)x, x]_{k} + a[c(x - \beta(x)), x]_{k}$
= $ca[x - \beta(x), x]_{k}$

and hence $a[x - \beta(x), x]_k = 0$ for all $x \in R$. By the Main Theorem in [7] and assumption, we have $x - \beta(x) = 0$ for all $x \in R$ except dim $V_D = 2$ and D = GF(2) and hence f(x) = (b - c)x for all $x \in R$ except dim $V_D = 2$ and D = GF(2).

So we may assume that v_0 and $T^{-1}cv_0$ are *D*-independent for some $v_0 \in V$. First assume dim $V_D \geq 3$. Choose $w \in V$ such that w, v_0 and $T^{-1}cv_0$ are *D*-independent. By the density of *R*, there exists $x \in R$ such that

$$xv_0 = 0, xT^{-1}cv_0 = T^{-1}w, xw = w$$

This implies that

$$0 = a[bx - TxT^{-1}c, x]_k v_0 = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i (bx - TxT^{-1}c) x^{k-i} v_0$$

= $(-1)^{k+1} a x^k TxT^{-1} c v_0 = (-1)^{k+1} a x^k w = (-1)^{k+1} a w$

1646

and so aw = 0. Since $v_0 + w$ is also *D*-independent of v_0 and $T^{-1}cv_0$, we also have $a(v_0 + w) = 0$. Similarly, $a(T^{-1}cv_0 + w) = 0$. Therefore $av_0 = aT^{-1}cv_0 = 0$. But then aV = 0 and a = 0, a contradiction.

Second, assume dim $V_D = 2$. Then v_0 and $T^{-1}cv_0$ form a basis for V_D . We claim that there exists $w \in V$ such that $w \notin v_0 D$ and $Tw \notin v_0 D$. Suppose on the contrary, for each $w \in V$ we have either $w \in v_0 D$ or $w \in (T^{-1}v_0)D$. Then $V = v_0 D \cup (T^{-1}v_0)D$. As a vector space cannot be the union of two proper subspaces, we must have dim $V_D = 1$, a contradiction. For such $w, w \notin v_0 D$ and $w \notin (T^{-1}v_0)D$, we write $w = v_0\lambda + (T^{-1}v_0)\mu$ and $Tw = v_0\sigma + (T^{-1}cv_0)\tau$, where $\lambda, \mu, \sigma, \tau \in D$ and $\mu, \tau \neq 0$. By the density of R, there exists $x \in R$ such that $xv_0 = 0, xT^{-1}cv_0 = w$. This implies that $xw = x(v_0\lambda + (T^{-1}cv_0)\mu) = x(T^{-1}cv_0)\mu = w\mu$ and $xTw = x(v_0\sigma + (T^{-1}cv_0)\tau) = w\tau$. Therefore,

$$0 = a[bx - TxT^{-1}c, x]_k v_0 = a \sum_{i=0}^k (-1)^i \binom{k}{i} x^i (bx - TxT^{-1}c) x^{k-i} v_0$$

= $(-1)^{k+1} a x^k T x T^{-1} c v_0 = (-1)^{k+1} a x^k T w = (-1)^{k+1} a x^{k-1} w \tau$
= $(-1)^{k+1} a w \mu^{k-1} \tau$

and so aw = 0. If there exists a nonzero $\lambda \in D$ such that $T(v_0\lambda + w) \notin v_0D$, then replacing w by $v_0\lambda + w$, we have $0 = a(v_0\lambda + w) = av_0\lambda$ and so $av_0 = 0$. Since w and v_0 are D-independent and dim $V_D = 2$, we have aV = 0, again a contradiction. Thus $T(v_0\lambda + w) \in v_0D$ for all nonzero $\lambda \in D$. If |D| > 2, then we can choose two nonzero elements of D, say λ_1 , λ_2 with $\lambda_1 \neq \lambda_2$. Then $T(v_0(\lambda_1 - \lambda_2)) = T(v_0\lambda_1 + w) - T(v_0\lambda_2 + w) \in v_0D$. Using semi-linearity of T, we have $T(v_0) \in v_0D$ and then $T(w) \in v_0D$, a contradiction. The proof is complete.

Now we are ready to prove our Main Theorem.

Proof of Main Theorem. By [2, Lemma 2], we can write $f(x) = sx + \delta(x)$ for all $x \in R$, where $s = f(1) \in \mathcal{F}R$ and δ is a β -derivation of R. By [3, Theorem 2],

(3)
$$a[sx + \delta(x), x]_k = 0$$

for all $x \in \mathcal{F}R$. Assume $a \neq 0$. If $\delta = 0$, then f(x) = sx and $a[sx, x]_k = 0$ for all $x \in \mathcal{F}R$. By Lemma 1, $s \in C$ and we are done. So we may assume $\delta \neq 0$. If δ is X-outer, then by [6, Theorem 1], we have $a[sx+y, x]_k = 0$ for all $x, y \in \mathcal{F}R$. Pick $t \in \mathcal{F}R \setminus C$ and replace y by -xt. Then we have $a[sx - xt, x]_k = 0$ for all $x \in \mathcal{F}R$, which is contrary to Lemma 1. Hence we may assume that δ is X-inner and write $\delta(x) = cx - \beta(x)c$, where $c \in Q$. Suppose that β is X-inner. Thus there exists an

invertible element $u \in Q$ such that $\beta(x) = uxu^{-1}$ for all $x \in R$. We rewrite (3) as

$$a[(s+c)x - uxu^{-1}c, x]_k = 0$$

for all $x \in R$ and also for all $x \in \mathcal{F}R$. If $u^{-1}c \in C$, then $\delta(x) = cx - uxu^{-1}c = cx - u(u^{-1}c)x = cx - cx = 0$ for all $x \in R$, which is not the case. So we may assume that $u^{-1}c \notin C$. With this, we can see easily that

$$g(x) = a[(s+c)x - uxu^{-1}c, x]_k$$

= $a \sum_{i=0}^{k-1} (-1)^i {k \choose i} x^i ((s+c)x - uxu^{-1}c) x^{k-i}$
+ $(-1)^k a x^k (s+c) x + (-1)^{k+1} a x^k u x u^{-1}c$
= 0

is a nontrivial GPI of R. By [3], g(x) = 0 is also a GPI of $\mathcal{F}R$. By the same argument as we did in Lemma 1, we may assume that R is centrally closed and the field C is either finite or algebraically closed. By Martindale's theorem [15], R is a primitive ring having nonzero socle with the field C as its associated divising ring. By [9, p. 75] R is isomorphic to a dense subring of the ring of linear transformations of a vector space V over C, containing nonzero linear transformations of finite rank. Since R is not commutative, we may assume dim $V_C \ge 2$. By Lemma 2, we are done in this case.

So we may assume that β is X-outer. Since $a \neq 0$ and $c \neq 0$, R is a GPI-ring by [4] and $\mathcal{F}R$ is also GPI-ring by [3]. By Martindale's theorem [15], $\mathcal{F}R$ is a primitive ring having nonzero socle and its associated division ring D is finite dimensional over C. Hence $\mathcal{F}R$ is isomorphic to a dense subring of the ring of linear transformations of a vector space V over D, containing nonzero linear transformations of finite rank. If dim $V_D \ge 2$, then we are done by Lemma 2. Hence we may assume that dim $V_D = 1$, that is $\mathcal{F}R \cong D$. If C is finite, then dim $D_C < \infty$ implies that D is also finite. Thus D is a field by Wedderburn's theorem [9, p. 183] and so $\mathcal{F}R$ is commutative. In particular, R is commutative, a contradiction. Hence from now on we assume that C is infinite and $\mathcal{F}R$ is a division ring. By the assumption $a \neq 0$, we have $[(s + c)x - \beta(x)c, x]_k = 0$ for all $x \in \mathcal{F}R$.

Suppose that β is not Frobenius. Then by [5], $[(s+c)x - yc, x]_k = 0$ for all $x \in \mathcal{F}R$. Putting y = x, we have $[(s+c)x - xc, x]_k = 0$ for all $x \in \mathcal{F}R$. By Lemma 1, $c, s \in C$ and $[cx - \beta(x)c, x]_k = 0$ for all $x \in \mathcal{F}R$. But then $cx - \beta(x)c = 0$ for all $x \in \mathcal{F}R$ by the Main Theorem in [7], which is a contradiction.

Finally, we assume that β is Frobenius. Then char $_{\mathcal{F}}R = p > 0$ and $\beta(\lambda) = \lambda^{p^n}$ for all $\lambda \in C$, where n is some fixed integer. Since β is X-outer, $n \neq 0$. Replacing

x by $x + \lambda$, where $0 \neq \lambda \in C$, we have from (3) that

$$0 = \left[(s+c)(x+\lambda) - \beta(x+\lambda)c, x+\lambda \right]_k$$

= $\left[(s+c)(x+\lambda) - \left(\beta(x) + \lambda^{p^n}\right)c, x \right]_k$
= $\left[(s+c)x - \beta(x)c, x \right]_k + \left[(s+c)\lambda - c\lambda^{p^n}, x \right]_k$
= $\left[(s+c)\lambda - c\lambda^{p^n}, x \right]_k$

for all $x \in \mathcal{F}R$ and hence $(s+c)\lambda - c\lambda^{p^n} \in C$ by [13]. Since β is X-outer, there exists $t \in C$ such that $t \neq t^{p^n}$. Let $\lambda_1 = \lambda t$. Then we have $(s+c)\lambda - c\lambda^{p^n} = \tau \in C$ and $(s+c)\lambda_1 - c\lambda_1^{p^n} = \tau_1 \in C$. Solving these two equations, we have $s + c \in C$ and $c \in C$ and hence $s \in C$. Therefore $0 = [sx + cx - \beta(x)c, x]_k = c[\beta(x), x]_k$. Since $c \neq 0$ and $c[\beta(x) - x, x]_k = 0$ for all $x \in \mathcal{F}R$, by the Main Theorem in [7], $\beta(x) - x = 0$ for all $x \in \mathcal{F}R$, which is a contradiction. The proof is now complete.

The following example shows that the exceptional case does exist.

Example. Let $R = M_2(GF(2))$, $a = e_{11} + e_{12}$, $b = e_{21}$ and $c = e_{21} + e_{22}$. Let $\beta(x) = gxg^{-1}$, where $g = e_{12} + e_{21}$. Let $f(x) = bx - \beta(x)c$ for all $x \in R$. Then by a direct computation we have a[[f(x), x], x] = 0 for all $x \in R$.

REFERENCES

- 1. K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, *Rings with Generalized Identities*, Marcel Dekker, Inc. N York-Basel-Hongkang, 1996.
- 2. I. C. Chang, On the Identity h(x) = af(x) + g(x)b, Taiwanese J. of Math, 7(1) (2003), 103-113.
- C. L. Chuang, GPIs having coefficients in Utumi guotient rings, *Proc. Amer. Math. Soc.*, 103 (1988), 723-728.
- 4. C. L. Chuang, Differential idenities with automorphisms and antiautomorphisms I, *J. Algebra*, **149** (1992), 371-404.
- C. L. Chuang, Differential idenities with automorphisms and antiautomorphisms II, J. Algebra, 160 (1993), 292-335.
- C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. Algebra, 288 (2005), 59-77.
- C. L. Chuang, M. C. Chou and C. K. Liu, Skew derivations with annihilating Engel conditions, *Publ. Math. Debrecen*, 68(1-2) (2006), 161-170.
- T. S. Erickson, W. S. Martindale 3rd and J. M. Osborn, Prime non-associative algebras, *Pacific J. Math.*, 60 (1975), 49-63.

- 9. N. Jacobson, *Stucture of rings*, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.
- 10. V. K. Kharchenko, Generalized identities with automorphisms, *Algebra i Logika* **14(2)** (1975), 215-237; *Engl. Transl: Algebra and Logic* **14(2)** (1975), 132-148.
- 11. V. K. Kharchenko and A. Z. Popov, Skew derivation of prime rings, *Comm. Algebra*, **20** (1992), 3321-3345.
- 12. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), 75-80.
- 13. C. Lanski, An Engel condition with derivation for left ideals, *Proc. Amer. Math. Soc.*, **125** (1997), 339-345.
- 14. P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, *Bull. Inst. Math. Acad. Sinica*, 23 (1995), 1-5.
- 15. W. S. Martindale 3rd, Prime rings satifying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
- 16. W. K. Shiue, Annihilators of derivations with Engel conditions, *Rend. Del Cire. Math. Di Palermo, Serie* П, **52** (2003), 505-509.

Jui-Chi Chang Department of Computer Science and Information Engineering, Chang Jung Christian University, Tainan, Taiwan E-mail: jc2004@mail.cjcu.edu.tw