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GENERALIZED SKEW DERIVATIONS
WITH ANNIHILATING ENGEL CONDITIONS

Jui-Chi Chang

Abstract. Let R be a noncommutative prime ring and a € R. Suppose that
f is a right generalized (-derivation of R such that a[f(z), x]r = 0 for all
x € R, where k is a fixed positive integer. Then a = 0 or there exists s € C
such that f(x) = sz for all x € R except when R = M>(GF(2)).

1. INTRODUCTION

Recently, C. L. Chuang, M. C. Chou and C. K. Liu [7] proved the following:
Let R be a noncommutative prime ring and a € R. Suppose that § is a -derivation
of R such that a[d(x), z]r = O for all € R, where k is a fixed positive integer.
Then a = 0 or § = 0 except when R = Ms(GF'(2)). This result generalizes several
known results, see for instance, [12], [13] and [16]. In this paper we will extend
[7] further to the so-called right generalized skew derivations.

Throughout this paper, R is always a prime ring with center Z. For =,y € R,
set [x,y]1 = [z,y] = 2y — yx and [z, y]x = [[z, y]k—1, y] for k& > 1.

Let 8 be an automorphism of R. A (-derivation of R is an additive mapping
d : R — R satisfying 6(zy) = 6(x)y + B(x)d(y) for all z,y € R. [-derivations
are also called skew derivations. When 3 = 1, the identity map of R, §-derivations
are merely ordinary derivations. If 8 # 1, then 1 — (3 is a (-derivation. An
additive mapping f : R — R is a right generalized (-derivation if there exists a
B-derivation 6 : R — R such that f(zy) = f(x)y + B(z)d(y) for all z,y € R.
The right generalized (-derivations generalize both [3-derivations and generalized
derivations. If a,b € Rand 8 # 1 is an automorphism of R, then f(x) = ax— ()b
is a right generalized (-derivation. Moreover, if ¢ is a [-derivation of R, then
f(z) = ax + d(x) is a right generalized (-derivation.
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We let =R denote the right Martindale quotient ring of R and () the two sided
Martindale quotient ring of R. Let C' be the center of () and xR, which is called
the extended centroid of R. Note that () and zR are also prime rings and C is a
field (see [1]). It is known that automorphisms, derivations and (-derivations of
R can be uniquely extended to (Q and =R. In [2], we know that right generalized
(B-derivations of R can also be uniquely extended to zR. Indeed, if f is a right
generalized [-derivation of R, then f(z) = f(1)z 4 d(z) for all x € R, where 0 is
a [-derivation of R (Lemma 2 in [2]).

A [-derivation 0 of R is called X -inner if §(z) = bz — 5(z)b for some b € Q.
0 is called X -outer if it is not X-inner. An automorphism [ is called X-inner if
B(x) = uzu~" for some invertible u € Q. 3 is called X -outer if it is not X -inner.

We are now ready to state the main result:

Main Theorem. Let R be a noncommutative prime ring and a € R. Suppose
that f is a right generalized [3-derivation of R such that a[f(x),x] = 0 for all
x € R, where k is a fixed positive integer. Then a = 0 or there exists s € C such
that f(x) = sz for all x € R except when R = My(GF(2)).

We begin with two crucial lemmas.

Lemma 1. Let R be a noncommutative prime ring and let a,b,c € R, with
a # 0. If albx — zc, x|, = 0 for all x € R, where k is a fixed positive integer.
Then b,c € Z.

Proof. We claim first that ¢ € Z. If not, then

k
g(z) = albx — xc, x]), = aZ(—l)i <k> 2 (bx — ze)zF P =0

- 1
=0

is a nontrivial GPI of R. By [3], g(z) = 0 is also a nontrivial GPI of ). Let F'
be the algebraic closure of C' if C is infinite, otherwise let F' be C. By a standard
argument [14, Proposition], g(z) = 0 is also a GPI of Q ®¢ F. Since Q ®¢ F
is a centrally closed prime F'-algebra [8, Theorem 3.5], by replacing R, C with
Q ®¢ F and F respectively, we may assume that R is centrally closed and the field
C is either algebraically closed or finite. By [15, Theorem 3], R is a primitive ring
having nonzero socle with field C as its associated division ring. By [9, p.75], R
is isomorphic to a dense subring of the ring of linear transformations of a vector
space V over C, containing nonzero linear transformations of finite rank. Since R
is not commutative, we may assume that dim Vo > 2.

We claim that there exists v € V such that v and cv are C-independent. If not, v
and cv are C'-dependent for all v € V. That is, for each v € V there exists A, € C
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such that cv = vA,. By [7, Lemma 1], there exists A € C such that cv = vA for
all v € V. Then

(bx — zc)v = baxv — xcv = bxv — zvA = brv — cxv = (b — ¢)zv

for all v € V. Since a[bx — cx, x|, = aZfZO(—l)i(I;)xi(bx — xc)xFt = 0, we
have

for all v € V. Since V is faithful, we have
alb— ¢, zlpxr = a[(b—c)x, x|, =0
for all z € R. Since bx — zc = (b — ¢)x + cx — xc, we have

0 = a[bx — cx, x| = a[(b— ¢)x + cx — xe, x]y,

= a[(b— ¢)z, x|k + a[cx — xc, x| = alc, T]p41

and hence a[c, x]i4+1 = 0 for all z € R. By a result of Shiue [16], we can conclude
that « = 0 or ¢ € Z, which is a contradiction. So there exists vg € V such that v
and cvg are C-independent.

Assume dim Vo > 3. Choose w € V such that w, vy and cvg are C-independent.
By the density of R there exists z € R such that

zvg = 0, zcvg = w, xwW = W

and
albr — xc, x|y = aZ(—l)Z< ,)x’(bx — ze)zF iy
=0 !

= (=) azFevy = (=1 aw.

Hence aw = 0. Since w + vy is also C-independent of vy and cvg, we have
a(w + vp) = 0. Similarly a(w + cvp) = 0. So avy = 0 and acvg = 0. Therefore
aV = 0 and hence a = 0, a contradiction.

Now we may assume dim Vo = 2. In this case, vy and cvy form a basis
for Vo. If w ¢ vC, then w = v\ + cvpu, where o # 0. By the density
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of R, there exists x € R such that xvg = 0 and xcvg = w. This implies that
zw = (VoA + cvop) = (xevg)p = wy and

0 = afbz — z¢, alxvy = a (Zk:(—w‘ (’:) 2 (ba — xc)x’f—im)

i=0
= (-1 eyy = (1) azbw = (=1) M awpk

So aw = 0. Replacing w by w + vy, we also have a(w +vy) = avg = 0. Since
w and vg are C-independent and dim Vo = 2, we have aV = 0 and hence a = 0,
a contradiction. This last contradiction shows ¢ € Z.

Since ¢ € Z, we have albx — xc, z];, = a[bx, z];, and hence

(1) aflbr — zc, x|k = alb, x]px =0

forall z € R. If b ¢ Z, then

h(z) = alb, sz = azk:(—mi(’?) )

- 1
=0

is a nontrivial GPI of R. Again by the same argument as we did in first paragraph
we can conclude that R is isomorphic to a dense subring of the ring of linear
transformations of a vector space V' over the field C, containing nonzero linear
transformation of finite rank. Also, dim Vo > 2.

Again, if bv and v are C'-dependent for all v € V, then as before, there exists
A € C such that bv = v for all v € V. This implies

b, ol = (Zk:(—mi(’:)xibxk—i) v

for all v € V. Since V is faithful, we have [b, z]; = 0 for all z € R and hence
b € Z by [13], which is a contradiction. So we may assume that there exists vg € V'
such that bvy and vy are C-independent. By the density of R, there exists x € R
such that xvy = vy and xbvy = 0. By (1) we have
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k
0 = a[b, x]pxvy = aZ(—l)Z<i>x’bxk_’+lvo
=0

— a;(—l)i (’:) 2'bug = abug

We also have x € R such that xvg = vg and xbvg = vg. Again by (1) we get

k
0 = a[b, x]pzvy = aZ(—l)Z<i>x’bxk_’+1vo
=0

_ af)(_mi(’:)xibvo — abuo + azk:(—mi(’:) b,

=0 =1
_ aizk;(—l)i<]:>vo — —awp+a (Z:(—m(’:)) "
.

Now if dim Vo = 2, then vy and bvg form a basis for V. Since avg = 0 and
abvg = 0, we have aV = 0 and hence a = 0, a contradiction.

So we may assume that dim Vo > 3. In this case, let w € V be C-independent
of vg and bvg. Again, by the density of R, there exists x € R such that xvy = vy,
xbvg = w and rw = w. From (1) we get

Therefore aV = 0 and this implies a = 0, a contradiction. Hence b € Z and the
proof is complete. u

Lemma 2. Let R be a dense subring of the ring of linear transformations of
a vector space V' over a division ring D, where dimVp > 2 and let R contain
nonzero linear transformations of finite rank. Let 3 be an automorphism of R.
Suppose that a, b, c€ R and f(x)=bx — B(x)c satisfy a[f(z), x] ,=0 for all x € R,
where k is a fixed positive integer. Then a = 0 orb—c € Z and f(x) = (b—c)x for
all x € R except dim Vp = 2 and D = GF(2), the Galois field of two elements.
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Proof.  We will adopt the proof of Lemma 2 in [7] with some modification.
We assume that a # 0 and proceed to show that b—c € Z and f(z) = (b—c¢)z for
all z € R except dimVp = 2 and D = GF(2). Since R is a primitive ring with
nonzero socle, by a result in [9, p. 79], there exists a semi-linear automorphism
T € End(V) such that 3(z) = T2T~! for all z € R. Hence a[bx — B3(x)c, z] =
albx — TaT e, z]; = 0 for all 2 € R.

We claim that there exists vg € V' such that vg and T~ cvg are D-independent.
If not, then v and T~ 'cv are D-dependent for all v € V. As before there exists
A € D such that T~'cv = v for all v € V. Then

f(x)v = (bx — B(x)c)v = (bx — T2T ' e)v
= bxv — TxT ev = bav — T(zv))
= bxv — T((xv)\) = bav — T(T " e)(zv)
= bxv — cxv = (b — c)av
for all z € R and for all v € V. Hence (f(z) — (b — ¢)x)V =0 for all z € R.
Since V is faithful, we have f(z) = (b — ¢)z for all x € R and therefore
(2) al(b—c)z,z]x =0

for all x € R. By (2) and Lemma 1, it follows that b, c € Z. If ¢ = 0, then we are
done. So we may assume ¢ # 0.
Since f(x) = bz — B(x)c = (b— ¢)x + c(x — B(x)), by the hypothesis and (2),
we have
0=a

= a

f(@), 2]k = a[(b = )z + c(x — B(x)), 2]k
b— )z, x]i + a[e(x — B(x)), x|k
= calz — f(x), ]k

and hence a[r — B(x),z]ry = 0 for all x € R. By the Main Theorem in [7]
and assumption, we have z — f(x) = 0 for all z € R except dimVp = 2 and
D = GF(2) and hence f(z) = (b — c¢)x for all x € R except dim Vp = 2 and
D =GF(2).

So we may assume that vy and 7 'cvy are D-independent for some vy € V.
First assume dimVp > 3. Choose w € V such that w, vy and T 'cvy are D-
independent. By the density of R, there exists x € R such that

—~

zvo = 0,27 tevg = T w, 2w = w
This implies that
0 = afbx — TaT te, x| = aZ(—l)Z< )xz(bﬂv — TaT ™ )z g
i

i=0
= (—1)k+1akaxT_lcvo = (—1)k+1aka = (—1)k+1aw



Generalized Skew Derivations with Annihilating Engel Conditions 1647

and so aw = 0. Since vy +w is also D-independent of v and T~ cvg, we also have
a(vo +w) = 0. Similarly, a(T'cvg +w) = 0. Therefore avy = aT 'cvy = 0.
But then ¢V = 0 and a = 0, a contradiction.

Second, assume dim Vp = 2. Then vy and T~ 'cvg form a basis for Vp. We
claim that there exists w € V such that w ¢ voD and Tw ¢ vyD. Suppose on
the contrary, for each w € V we have either w € wD or w € (T 1vg)D. Then
V = voD U (T~ 'vg)D. As a vector space cannot be the union of two proper
subspaces, we must have dim Vp = 1, a contradiction. For such w, w ¢ vgD and
w ¢ (T ) D, we write w = voA + (T 'vo)p and Tw = wvoo + (T tewo)T,
where A\, u, 0,7 € D and u, 7 # 0. By the density of R, there exists z € R such
that zvg = 0, 2T 'cvg = w. This implies that zw = x(vo\ + (T tevg)p) =
(T evg)pu = wp and 2Tw = x(voo + (T Lcvo)7) = wr. Therefore,

k
0 = afbx — TzT e, z]pvo = a,z:(—l)Z <i>x’(bx — TaT Le)zh "ty
=0

= (=) aabTaTtevy = (-1 azbTw = (—1)* Laz®twr
= (=D lawpk1r

and so aw = 0. If there exists a nonzero A\ € D such that T'(vo\ + w) ¢ voD,
then replacing w by voA + w, we have 0 = a(vpA + w) = avpA and so avy = 0.
Since w and vy are D-independent and dim Vp = 2, we have alVV = 0, again a
contradiction. Thus T'(voA + w) € voD for all nonzero A € D. If |D| > 2,
then we can choose two nonzero elements of D, say A\, Ao with A1 £ Xo. Then
T(vo(A1 — A2)) = T(voA1 +w) — T(voA2 + w) € voD. Using semi-linearity of
T, we have T'(vg) € voD and then T(w) € voD, a contradiction. The proof is
complete. ]

Now we are ready to prove our Main Theorem.

Proof of Main Theorem. By [2, Lemma 2], we can write f(z) = sz + () for
all x € R, where s = f(1) € £R and 0 is a $-derivation of R. By [3, Theorem 2],

(3) a[sz + 0(z), ] =0

for all z € zR. Assume a # 0. If 6 = 0, then f(x) = sz and a[sz, x]; = 0 for all
x € gFR. By Lemma 1, s € C' and we are done. So we may assume 0 #= 0. If § is
X -outer, then by [6, Theorem 1], we have a[sz +y, x];, = 0 for all z,y € £R. Pick
t € zR\C and replace y by —xt. Then we have a[sx — zt, 2| = 0 for all x € £R,
which is contrary to Lemma 1. Hence we may assume that § is X -inner and write
d(z) = cx — B(x)c, where ¢ € Q. Suppose that 3 is X -inner. Thus there exists an
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invertible element u € Q such that 3(x) = uzu~! for all x € R. We rewrite (3) as

al(s + ¢)x — uzu e,z = 0
for all x € R and also for all x € zR. If u"'c € C, then §(z) =cx — urule =
cr —u(ule)z = cx — cx = 0 for all z € R, which is not the case. So we may
assume that u~'c ¢ C. With this, we can see easily that

[(s +c)x —uzute, x]g
(_
=0

S

g(z) =

S BT r———

~Dkaz®(s + c)x + (1) azkuzule

+ ~

is a nontrivial GPI of R. By [3], g(x) = 0 is also a GPI of zR. By the same
argument as we did in Lemma 1, we may assume that R is centrally closed and the
field C is either finite or algebraically closed. By Martindale’s theorem [15], R is a
primitive ring having nonzero socle with the field C' as its associated divising ring.
By [9, p. 75] R is isomorphic to a dense subring of the ring of linear transformations
of a vector space V over C, containing nonzero linear transformations of finite rank.
Since R is not commutative, we may assume dim Vi > 2. By Lemma 2, we are
done in this case.

So we may assume that 3 is X -outer. Since a # 0 and ¢ # 0, R is a GPI-ring by
[4] and £R is also GPI-ring by [3]. By Martindale’s theorem [15], £R is a primitive
ring having nonzero socle and its associated division ring D is finite dimensional
over C. Hence £R is isomorphic to a dense subring of the ring of linear transfor-
mations of a vector space V over D, containing nonzero linear transformations of
finite rank. If dim Vp > 2, then we are done by Lemma 2. Hence we may assume
that dim Vp = 1, that is zR = D. If C' is finite, then dim D¢ < oo implies that D
is also finite. Thus D is a field by Wedderburn’s theorem [9, p. 183] and so £R is
commutative. In particular, R is commutative, a contradiction. Hence from now on
we assume that C' is infinite and £R is a division ring. By the assumption a # 0,
we have [(s + ¢)z — B(x)c, z];, = 0 for all z € £R.

Suppose that 3 is not Frobenius. Then by [5], [(s + ¢)z — yc, x| = 0 for all
x € FR. Putting y = z, we have [(s+c¢)x —zc, x|, = 0 for all z € zR. By Lemma
1, ¢,s € C and [cx — B(z)c, x|, = 0 for all x € £R. But then cx — B(x)c = 0 for
all x € £R by the Main Theorem in [7], which is a contradiction.

Finally, we assume that 3 is Frobenius. Then char zR = p > 0 and 3()\) = AP"
for all A € C, where n is some fixed integer. Since 3 is X -outer, n # 0. Replacing
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x by x + A, where 0 # A € C, we have from (3) that

0=[(s+c)(z+A) —ﬁ(m—i—)\)c,x—i—)\]k
= [(s+o)(@+A) = (B(z) + X")e,z],
= [(s+ o)z = Bla)e,z], + [(s+ )X — X", z],
= [(s—i—c))\—c)\pn,x]k

for all € #R and hence (s + c)\ — cAP" € C by [13]. Since 3 is X -outer, there
exists t € C such thatt # tP". Let Ay = \t. Then we have (s—i—c))\—c)\pn =7¢eC
and (s +c)\1 — c)\ll’n = 11 € C. Solving these two equations, we have s +c¢ € C
and ¢ € C and hence s € C. Therefore 0 = [sx + cx — [(z)c, z|x = c[B(x), z].
Since ¢ # 0 and c[f(z) — z,z]x = 0 for all z € £R, by the Main Theorem in
[7], B(z) —x = 0 for all z € xR, which is a contradiction. The proof is now
complete. ]

The following example shows that the exceptional case does exist.

Example. Let R = M(GF(2)), a = e11 + €12, b = ez1 and ¢ = eg1 + e99.
Let 3(x) = grg~ ", where g = ejo + eo1. Let f(x) = bz — B(x)c for all € R.
Then by a direct computation we have a[[f(z), x],z] = 0 for all z € R.

REFERENCES
1. K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized
Identities, Marcel Dekker, Inc. N York-Basel-Hongkang, 1996.

2. I. C. Chang, On the Identity h(xz) = af(z) + g(x)b, Taiwanese J. of Math, T(1)
(2003), 103-113.

3. C. L. Chuang, GPIs having coefficients in Utumi guotient rings, Proc. Amer. Math.
Soc., 103 (1988), 723-728.

4. C. L. Chuang, Differential idenities with automorphisms and antiautomorphisms I, J.
Algebra, 149 (1992), 371-404.

5. C. L. Chuang, Differential idenities with automorphisms and antiautomorphisms II,
J. Algebra, 160 (1993), 292-335.

6. C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. Algebra, 288
(2005), 59-717.

7. C. L. Chuang, M. C. Chou and C. K. Liu, Skew derivations with annihilating Engel
conditions, Publ. Math. Debrecen, 68(1-2) (2006), 161-170.

8. T. S. Erickson, W. S. Martindale 3rd and J. M. Osborn, Prime non-associative alge-
bras, Pacific J. Math., 60 (1975), 49-63.



1650

10.

11.

12.

13.

14.

15.

16.

Jui-Chi Chang

N. Jacobson, Stucture of rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode
Island, 1964.

V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika
14(2) (1975), 215-237; Engl. Transl: Algebra and Logic 14(2) (1975), 132-148.

V. K. Kharchenko and A. Z. Popov, Skew derivation of prime rings, Comm. Algebra,
20 (1992), 3321-3345.

C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993),
75-80.

C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math.
Soc., 125 (1997), 339-345.

P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math.
Acad. Sinica, 23 (1995), 1-5.

W. S. Martindale 3rd, Prime rings satifying a generalized polynomial identity, J.
Algebra, 12 (1969), 576-584.

W. K. Shiue, Annihilators of derivations with Engel conditions, Rend. Del Cire.
Math. Di Palermo, Serie 11, 52 (2003), 505-509.

Jui-Chi Chang

Department of Computer Science and Information Engineering,
Chang Jung Christian University,

Tainan, Taiwan

E-mail: jc2004@mail.cjcu.edu.tw



