Vol. 12, No. 7, pp. 1625-1639, October 2008

This paper is available online at http://www.tjm.nsysu.edu.tw/

WEIGHTED COMPOSITION OPERATORS BETWEEN H^{∞} AND α -BLOCH SPACES IN THE UNIT BALL

Songxiao Li and Stevo Stević

Abstract. The boundedness and compactness of the weighted composition operator between H^{∞} and the α -Bloch space \mathcal{B}^{α} on the unit ball are discussed in this paper.

1. Introduction

Let $B=\{z\in\mathbb{C}^n:|z|<1\}$ be the open unit ball in \mathbb{C}^n , and let $d\nu$ denote the normalized Lebesgue area measure on the unit ball B such that $\nu(B)=1$. Let H(B) denote the class of all holomorphic functions on the unit ball and $H^\infty=H^\infty(B)$ the space of all bounded holomorphic functions on the unit ball.

For a holomorphic function f we denote

$$\nabla f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right).$$

For $f \in H(B)$ with the Taylor expansion $f(z) = \sum_{|\beta| \geq 0} a_{\beta} z^{\beta}$, let $\Re f(z) = \sum_{|\beta| \geq 0} |\beta| a_{\beta} z^{\beta}$ be the radial derivative of f, where $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$ is a multi-index and $z^{\beta} = z_1^{\beta_1} \cdots z_n^{\beta_n}$. It is well known that

$$\Re f(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z),$$

see, for example [12].

Let $\alpha > 0$. The α -Bloch space $\mathcal{B}^{\alpha} = \mathcal{B}^{\alpha}(B)$ is the space of all holomorphic functions f on B such that

Received July 22, 2006, accepted September 7, 2006.

Communicated by Der-Chen Chang.

2000 Mathematics Subject Classification: Primary 47B35, Secondary 30H05.

Key words and phrases: Weighted composition operator, Unit ball, α -Bloch spaces, Boundedness, Compactness.

$$b_{\alpha}(f) = \sup_{z \in B} (1 - |z|^2)^{\alpha} |\Re f(z)| < \infty.$$

It is clear that \mathcal{B}^{α} is a normed space under the norm $||f||_{\mathcal{B}^{\alpha}} = |f(0)| + b_{\alpha}(f)$. It is well known (see, for example [12]) that $f \in \mathcal{B}^{\alpha}(B)$ if and only if

(1)
$$a_{\alpha}(f) = \sup_{z \in B} (1 - |z|^2)^{\alpha} |\nabla f(z)| < \infty.$$

Moreover, in [1] it was shown that the quantities

$$||f||_{\mathcal{B}^{\alpha}}$$
 and $|f(0)| + a_{\alpha}(f)$

are equivalent.

Let \mathcal{B}_0^{α} denote the subspace of \mathcal{B}^{α} consisting of those $f \in \mathcal{B}^{\alpha}$ for which

$$(1-|z|^2)^{\alpha}|\Re f(z)| \to 0 \text{ as } |z| \to 1.$$

This space is called the little α -Bloch space.

Let ψ be a holomorphic function on the open unit ball. Define a linear operator ψC_{φ} on H(B), called weighted composition operator, by

(2)
$$(\psi C_{\omega} f)(z) = \psi(z) \cdot (f \circ \varphi)(z),$$

where $f \in H(B)$. We can regard this operator as a generalization of a multiplication operator and a composition operator. It is interesting to provide a function theoretic characterization when ψ and φ induce a bounded or compact weighted composition operator on various spaces. The book [3] contains much information on this topic.

In [4], Ohno has characterized the boundedness and compactness of weighted composition operators between H^{∞} and the Bloch space $\mathcal B$ on the unit disk. In Theorem 1 of [4], Ohno gave the following Proposition: The operator $\psi C_{\varphi}: \mathcal B \to H^{\infty}$ is compact if and only if $\psi \in H^{\infty}$ and for every sequence $(z_n)_{n \in \mathbb N}$ in the unit disk U such that $\lim_{n \to \infty} |\varphi(z_n)| = 1$, $\lim_{n \to \infty} \psi(z_n) = 0$. However, in [5] we showed that this result is in fact wrong.

In the setting of the unit ball, some necessary and sufficient conditions for a composition operator to be compact on the Bloch space and the little Bloch space are given in [8]. In the setting of the unit polydisk, we have given some necessary and sufficient conditions for a weighted composition operator to be bounded or compact from H^{∞} to the Bloch space in [5] (see, also papers [2] and [10]).

In this paper, we study the boundedness and compactness of the weighted composition operator between H^{∞} and the α -Bloch space \mathcal{B}^{α} , generalizing some results of [4]. Moreover, our method shows how one may improve Theorem 1 of [4].

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $a \leq b$ means that there is a positive constant C such that $a \leq Cb$. If both $a \leq b$ and $b \leq a$ hold, then we say that $a \approx b$.

2. The Boundedness and Compactness of $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}^{\alpha}$

In this section, we will discuss the boundedness and compactness of weighted composition operators $\psi C_{\varphi} : \mathcal{B}^{\alpha} (or \mathcal{B}_{0}^{\alpha}) \to H^{\infty}$.

The following lemma was proven in [9].

Lemma 1. Let $f \in \mathcal{B}^{\alpha}(B)$, $0 < \alpha < \infty$. Then

$$|f(z)| \le C \begin{cases} ||f||_{\mathcal{B}^{\alpha}} &, & \alpha \in (0,1) \\ ||f||_{\mathcal{B}^{\alpha}} \ln \frac{2}{1 - |z|^{2}} &, & \alpha = 1 \\ \frac{||f||_{\mathcal{B}^{\alpha}}}{(1 - |z|^{2})^{\alpha - 1}} &, & \alpha > 1 \end{cases}$$

for some C > 0 independent of f.

The next lemma can be proved in a standard way (see, for example, Theorem 3.11 in [3]).

Lemma 2. Let X and Y be \mathcal{B}^{α} or H^{∞} . Then the operator $\psi C_{\varphi}: X \to Y$ is compact if and only if $\psi C_{\varphi}: X \to Y$ is bounded and for any bounded sequence $(f_k)_{k \in \mathbb{N}}$ in X which converges to zero uniformly on compact subsets of B, $\psi C_{\varphi} f_k \to 0$ in Y as $k \to \infty$.

The next lemma which follows is standard, but we will give a proof for the benefit of the reader.

Lemma 3. If $f \in H^{\infty}$, then there exists a constant C such that $||f||_{\mathcal{B}} \leq C||f||_{\infty}$.

Proof. By Proposition 3.1.3 of [7], we have

$$f(z) = \int_{B} \frac{f(w)}{(1 - \langle z, w \rangle)^{n+1}} d\nu(w).$$

From this and by [7, Proposition 1.4.10], we have that

$$\begin{split} |\Re f(z)| &= \left| \int_B \frac{(n+1)f(w)\langle z, w \rangle}{(1 - \langle z, w \rangle)^{n+2}} d\nu(w) \right| \\ &\leq C \int_B \frac{\|f\|_{\infty}}{|1 - \langle z, w \rangle|^{n+2}} d\nu(w) \leq C \frac{\|f\|_{\infty}}{1 - |z|^2}. \end{split}$$

From this and since $|f(0)| \leq ||f||_{\infty}$, we can obtain

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in B} |\Re f(z)|(1 - |z|^2) \le C||f||_{\infty}.$$

Theorem 1. Let $\varphi = (\varphi_1, ..., \varphi_n)$ be a holomorphic self-map of B and $\psi \in H(B)$. Then the following statements are equivalent:

- (1) $\psi C_{\varphi}: \mathcal{B}_0 \to H^{\infty}$ is a bounded operator;
- (2) $\psi C_{\varphi}: \mathcal{B} \to H^{\infty}$ is a bounded operator;
- (3)

(3)
$$K := \sup_{z \in B} |\psi(z)| \ln \frac{2}{1 - |\varphi(z)|^2} < \infty.$$

(4) Moreover, if $\psi C_{\varphi}: \mathcal{B} \to H^{\infty}$ is bounded, then

(4)
$$\|\psi C_{\varphi}\|_{\mathcal{B}\to H^{\infty}} \asymp \sup_{z\in B} |\psi(z)| \ln \frac{2}{1-|\varphi(z)|^2}.$$

Proof. $(2) \Rightarrow (1)$ is obvious.

 $(1) \Rightarrow (3)$. Suppose $\psi C_{\varphi} : \mathcal{B}_0 \to H^{\infty}$ is a bounded operator. For $\lambda \in B$, put

(5)
$$f(z) = \ln \frac{2}{1 - \langle z, \varphi(\lambda) \rangle}.$$

Since $f(0) = \ln 2$ and

$$(1 - |z|^2)|\Re f(z)| \le (1 - |z|^2)|\nabla f(z)| = (1 - |z|^2)\left|\frac{\varphi(\lambda)}{1 - \langle z, \varphi(\lambda)\rangle}\right|$$
$$\le \frac{(1 - |z|^2)}{|1 - \langle z, \varphi(\lambda)\rangle|} \le 2,$$

we get that $||f||_{\mathcal{B}} \leq 2 + \ln 2$.

On the other hand, we have

$$(1 - |z|^2)|\Re f(z)| \le \frac{(1 - |z|^2)}{|1 - \langle z, \varphi(\lambda) \rangle|} \le \frac{(1 - |z|^2)}{1 - |\varphi(\lambda)|} \to 0,$$

as $|z| \to 1$, hence $f \in \mathcal{B}_0$. Thus

$$(2+\ln 2)\|\psi C_{\varphi}\|_{\mathcal{B}\to H^{\infty}} \ge \|\psi C_{\varphi} f\|_{\infty} = \sup_{z\in B} |\psi(z)f(\varphi(z))| \ge |\psi(\lambda)| \ln \frac{2}{1-|\varphi(\lambda)|^2}.$$

Therefore

(6)
$$\sup_{z \in B} |\psi(z)| \ln \frac{2}{1 - |\varphi(z)|^2} \le (2 + \ln 2) \|\psi C_{\varphi}\|_{\mathcal{B} \to H^{\infty}} < \infty.$$

 $(3) \Rightarrow (2)$. Assume that (3) holds. For any $f \in \mathcal{B}$, by Lemma 1, we have that

(7)
$$|(\psi C_{\varphi} f)(z)| = |\psi(z)||f(\varphi(z))|$$

$$\leq C|\psi(z)|\ln \frac{2}{1 - |\varphi(z)|^2} ||f||_{\mathcal{B}} \leq CK ||f||_{\mathcal{B}},$$

for any $z \in B$. Taking the supremum in (7) over $z \in B$, it follows that

(8)
$$\|\psi C_{\varphi} f\|_{\infty} \leq CK \|f\|_{\mathcal{B}}.$$

Thus $\psi C_{\varphi}: \mathcal{B} \to H^{\infty}$ is bounded. By (8), we get

$$(9) \qquad \|\psi C_{\varphi}\|_{\mathcal{B}\to H^{\infty}} = \sup_{\|f\|_{\mathcal{B}} \le 1} \|\psi C_{\varphi} f\|_{\infty} \le \sup_{\|f\|_{\mathcal{B}} \le 1} CK \|f\|_{\mathcal{B}} \le CK.$$

Combining (6) and (9), we obtain (4). This completes the proof of the theorem.

Theorem 2. Let $\alpha \in (0,1)$, $\varphi = (\varphi_1, \dots, \varphi_n)$ be a holomorphic self-map of B and $\psi \in H(B)$. Then, the following statements are equivalent:

- (1) $\psi C_{\varphi}: \mathcal{B}_{0}^{\alpha} \to H^{\infty}$ is a bounded operator;
- (2) $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ is a bounded operator;
- (3) $\psi \in H^{\infty}$.

Moreover, if $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ is bounded, then

(10)
$$\|\psi C_{\varphi}\|_{\mathcal{B}^{\alpha} \to H^{\infty}} \simeq \|\psi\|_{\infty}.$$

Proof. $(2) \Rightarrow (1)$ is obvious.

 $(1) \Rightarrow (3)$. Suppose $\psi C_{\varphi} : \mathcal{B}_0^{\alpha} \to H^{\infty}$ is bounded. Choose f(z) = 1, then $f \in \mathcal{B}_0^{\alpha}$ and $\|f\|_{\mathcal{B}^{\alpha}} \leq 1$. Thus

$$(11) \quad \|\psi\|_{\infty} = \|\psi C_{\varphi} f\|_{\infty} \le \|\psi C_{\varphi}\|_{\mathcal{B}^{\alpha} \to H^{\infty}} \|f\|_{\mathcal{B}^{\alpha}} \le \|\psi C_{\varphi}\|_{\mathcal{B}^{\alpha} \to H^{\infty}}.$$

Hence $\psi \in H^{\infty}$.

 $(3) \Rightarrow (2)$. Suppose $\psi \in H^{\infty}$, then for any $f \in \mathcal{B}^{\alpha}$, by Lemma 1, we have

$$(12) |(\psi C_{\varphi} f)(z)| = |\psi(z)||f(\varphi(z))| \le C|\psi(z)|||f||_{\mathcal{B}^{\alpha}} \le C||\psi||_{\infty}||f||_{\mathcal{B}^{\alpha}},$$

where C depends only on α . Taking the supremum in (12) over B we obtain

$$\|\psi C_{\varphi} f\|_{\infty} \le C \|\psi\|_{\infty} \|f\|_{\mathcal{B}^{\alpha}},$$

from which the boundedness of $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to H^{\infty}$ follows.

From this and (11), we get

$$\|\psi C_{\varphi}\|_{\mathcal{B}^{\alpha}\to H^{\infty}} \simeq \|\psi\|_{\infty},$$

finishing the proof of the theorem.

Theorem 3. Let $\alpha > 1$, $\varphi = (\varphi_1, \dots, \varphi_n)$ be a holomorphic self-map of B and $\psi \in H(B)$. Then, the following statements are equivalent:

- (1) $\psi C_{\varphi}: \mathcal{B}_{0}^{\alpha} \to H^{\infty}$ is a bounded operator;
- (2) $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ is a bounded operator;

(3)

(13)
$$M_1 := \sup_{z \in B} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{\alpha - 1}} < \infty.$$

Furthermore, if $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ is bounded, then

(14)
$$\|\psi C_{\varphi}\|_{\mathcal{B}^{\alpha} \to H^{\infty}} \approx \sup_{z \in B} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{\alpha - 1}}.$$

Proof. $(2) \Rightarrow (1)$ is obvious.

 $(1) \Rightarrow (3)$. Suppose $\psi C_{\varphi} : \mathcal{B}_0^{\alpha} \to H^{\infty}$ is bounded. For $\lambda \in B$, let

$$f(z) = \frac{1}{(1 - \langle z, \varphi(\lambda) \rangle)^{\alpha - 1}}.$$

It is clear that $f \in \mathcal{B}^{\alpha}$ and that $||f||_{\mathcal{B}^{\alpha}} \leq 2^{\alpha}(\alpha - 1) + 1$. Moreover,

$$(1-|z|^2)^{\alpha}|\nabla f(z)| \le 2^{\alpha}(\alpha-1)\frac{(1-|z|^2)^{\alpha}}{(1-|\varphi(\lambda)|)^{\alpha}} \to 0$$

as $z \to \partial B$. This implies that $f \in \mathcal{B}_0^{\alpha}$. Similar to the proof of " $(1) \Rightarrow (3)$ " in Theorem 1, we have

(15)
$$\sup_{z \in B} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{\alpha - 1}} \le \sup_{z \in B} |\psi(z)f(\varphi(z))|$$
$$\le (2^{\alpha}(\alpha - 1) + 1) \|\psi C_{\varphi}\|_{\mathcal{B}^{\alpha} \to H^{\infty}} < \infty,$$

hence (13) holds.

 $(3) \Rightarrow (2)$. Assume that (13) holds. Then, by Lemma 1, for every $f \in \mathcal{B}^{\alpha}$ and $z \in B$, we obtain

$$|(\psi C_{\varphi} f)(z)| = |\psi(z)||f(\varphi(z))|$$

$$\leq C|\psi(z)|(1 - |\varphi(z)|^2)^{1-\alpha}||f||_{\mathcal{B}^{\alpha}} \leq CM_1||f||_{\mathcal{B}^{\alpha}},$$

and consequently

(16)
$$\|\psi C_{\varphi} f\|_{\infty} \le C M_1 \|f\|_{\mathcal{B}^{\alpha}}.$$

Thus $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ is bounded.

Similar to the proof of Theorem 1, combining (15) and (16), we have

$$\|\psi C_{\varphi}\|_{\mathcal{B}^{\alpha} \to H^{\infty}} \simeq \sup_{z \in B} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{\alpha - 1}}.$$

Next, we will discuss the compactness of the operator $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ or $\psi C_{\varphi}: \mathcal{B}^{\alpha}_{0} \to H^{\infty}$.

Theorem 4. Let $\varphi = (\varphi_1, \dots, \varphi_n)$ be a holomorphic self-map of B and $\psi \in H(B)$. Then, the following statements are equivalent:

- (1) $\psi C_{\varphi}: \mathcal{B}_0 \to H^{\infty}$ is a compact operator;
- (2) $\psi C_{\varphi}: \mathcal{B} \to H^{\infty}$ is a compact operator;
- (3) $\psi \in H^{\infty}$ and

(17)
$$\lim_{|\varphi(z)| \to 1} |\psi(z)| \ln \frac{2}{1 - |\varphi(z)|^2} = 0.$$

Proof. $(2) \Rightarrow (1)$ is obvious.

 $(1)\Rightarrow (3)$. Suppose $\psi C_{\varphi}:\mathcal{B}_0\to H^{\infty}$ is compact. We have that $\psi=\psi C_{\varphi}1\in H^{\infty}$. Assume that $(z_k)_{k\in\mathbb{N}}$ is a sequence in B such that $\lim_{k\to\infty}|\varphi(z_k)|=1$. Let

(18)
$$g_k(z) = \left[\ln \frac{2}{1 - |\varphi(z_k)|^2} \right]^{-1} \left[\ln \frac{2}{1 - \langle z, \varphi(z_k) \rangle} \right]^2.$$

For any $z \in B$,

$$\Re g_k(z) = 2 \left[\ln \frac{2}{1 - |\varphi(z_k)|^2} \right]^{-1} \left(\ln \frac{2}{1 - \langle z, \varphi(z_k) \rangle} \right) \frac{\langle z, \varphi(z_k) \rangle}{1 - \langle z, \varphi(z_k) \rangle}.$$

Thus for any $z \in B$,

$$(1 - |z|^2)|\Re g_k(z)| \le 2(1 - |z|^2) \left| \frac{\ln \frac{2}{1 - \langle z, \varphi(z_k) \rangle}}{\ln \frac{2}{1 - |\varphi(z_k)|^2}} \right| \frac{1}{1 - |z|}$$

$$\le 4 \frac{C + \ln \frac{2}{1 - |\varphi(z_k)|^2}}{\ln \frac{2}{1 - |\varphi(z_k)|^2}} \le C$$

On the other hand,

$$|g_k(0)| \le \left(\ln \frac{2}{1 - |\varphi(z_k)|^2}\right)^{-1} (\ln 2)^2 \le \ln 2.$$

Thus $||g_k||_{\mathcal{B}} \leq M$, where M is a constant independent of k. It is obvious that $g_k \in H(\overline{B})$, thus $g_k \in \mathcal{B}_0$ for every $k \in \mathbb{N}$. Since for |z| = r < 1, we have

$$|g_k(z)| = \frac{\left| \ln \frac{2}{1 - \langle z, \varphi(z_k) \rangle} \right|^2}{\ln \frac{2}{1 - |\varphi(z_k)|^2}} \le \frac{\left(\ln \frac{2}{1 - r} + C \right)^2}{\ln \frac{2}{1 - |\varphi(z_k)|^2}} \to 0 \quad (k \to \infty),$$

that is, $g_k \to 0$ uniformly on compact subsets of B as $k \to \infty$. Since ψC_φ is compact, by Lemma 2, we have $\lim_{k\to\infty} \|\psi C_\varphi g_k\|_\infty = 0$. On the other hand, the following estimate holds

$$\|\psi C_{\varphi} g_k\|_{\infty} = \sup_{z \in B} |\psi(z)| |g_k(\varphi(z))| \ge |\psi(z_k)| \ln \frac{2}{1 - |\varphi(z_k)|^2}.$$

Thus

$$\lim_{k \to \infty} |\psi(z_k)| \ln \frac{2}{1 - |\varphi(z_k)|^2} = 0,$$

which implies (17).

(3) \Rightarrow (2). Suppose $\psi \in H^{\infty}$ and condition (17) hold, then it is easy to see that

$$\sup_{z \in B} |\psi(z)| \ln \frac{2}{1 - |\varphi(z)|^2} < \infty.$$

By Theorem 1, $\psi C_{\varphi}: \mathcal{B} \to H^{\infty}$ is bounded. Assume that $(f_k)_{k \in \mathbb{N}}$ is a bounded sequence and $f_k \to 0$ uniformly on compact subsets of B. Denote $K = \sup_{k \in \mathbb{N}} \|f_k\|_{\mathcal{B}}$. For any $\epsilon > 0$, by (17), there exists a $\delta \in (0,1)$ such that if $\delta < |\varphi(z)| < 1$,

$$|\psi(z)| \ln \frac{2}{1 - |\varphi(z)|^2} < \epsilon.$$

Thus if $|\varphi(z)| > \delta$, for every $k \in \mathbb{N}$, we have

(19)
$$|\psi(z)||f_k(\varphi(z))| \le C||f_k||_{\mathcal{B}}|\psi(z)| \ln \frac{2}{1 - |\varphi(z)|^2} \le CK\epsilon.$$

On the other hand, since $f_k \to 0$ uniformly on the compact $\{w : |w| \le \delta\}$ as $k \to \infty$, there exists a k_0 such that $|f_k(\varphi(z))| < \epsilon$ if $|\varphi(z)| \le \delta$ and $k \ge k_0$. Hence for $|\varphi(z)| \le \delta$ and $k \ge k_0$, we have

$$|\psi(z)||f_k(\varphi(z))| \le ||\psi||_{\infty}\epsilon.$$

This and (19) imply that $\lim_{k\to\infty} \|\psi C_{\varphi} f_k\|_{\infty} = 0$. By Lemma 2, it follows that $\psi C_{\varphi} : \mathcal{B} \to H^{\infty}$ is a compact operator, as desired.

Theorem 5. Let $\alpha > 1$, $\varphi = (\varphi_1, \dots, \varphi_n)$ be a holomorphic self-map of B and $\psi \in H(B)$. Then, the following statements are equivalent:

- (1) $\psi C_{\varphi}: \mathcal{B}_0^{\alpha} \to H^{\infty}$ is a compact operator;
- (2) $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ is a compact operator;
- (3) $\psi \in H^{\infty}$ and

(20)
$$\lim_{|\varphi(z)| \to 1} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{\alpha - 1}} = 0.$$

Proof. (2) \Rightarrow (1) is obvious.

(3) \Rightarrow (2) Assume that $\psi \in H^{\infty}$ and condition (20) holds, then

$$\sup_{z \in B} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{\alpha - 1}} < \infty.$$

By Theorem 3, $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ is bounded. Now assume that $(f_k)_{k \in \mathbb{N}}$ is a bounded sequence and $f_k \to 0$ uniformly on compact subsets of B. Denote $K_1 = \sup_{k \in \mathbb{N}} \|f_k\|_{\mathcal{B}^{\alpha}}$. From (20) we have that, for every $\epsilon > 0$, there is a $\delta \in (0,1)$ such that if $\delta < |\varphi(z)| < 1$,

$$\frac{|\psi(z)|}{(1-|\varphi(z)|^2)^{\alpha-1}} < \epsilon.$$

This shows that if $|\varphi(z)| > \delta$, for any $k \in \mathbb{N}$, we have

(21)
$$|\psi(z)||f_k(\varphi(z))| \le C||f_k||_{\mathcal{B}^{\alpha}} \frac{|\psi(z)|}{(1-|\varphi(z)|^2)^{\alpha-1}} \le CK_1\epsilon.$$

The rest of the proof is similar to the corresponding proof of Theorem 4 and will be omitted.

(1) \Rightarrow (3). Let $(z_k)_{k\in\mathbb{N}}$ be a sequence of B such that $\lim_{k\to\infty} |\varphi(z_k)|=1$. Choose

$$f_k(z) = \frac{1 - |\varphi(z_k)|^2}{(1 - \langle z, \varphi(z_k) \rangle)^{\alpha}}.$$

It is easy to see that $f_k \in \mathcal{B}_0^{\alpha}$, $\sup_{k \in \mathbb{N}} \|f_k\|_{\mathcal{B}^{\alpha}} \leq C$ and $f_k \to 0$ uniformly on compact subsets of B as $k \to \infty$. Since ψC_{φ} is compact, by Lemma 2, we have $\lim_{k \to \infty} \|\psi C_{\varphi} f_k\|_{\infty} = 0$. From this and since

$$\|\psi C_{\varphi} f_k\|_{\infty} = \sup_{z \in B} |\psi(z)| |f_k(\varphi(z))| \ge \frac{|\psi(z_k)|}{(1 - |\varphi(z_k)|^2)^{\alpha - 1}},$$

we obtain

$$\lim_{k \to \infty} \frac{|\psi(z_k)|}{(1 - |\varphi(z_k)|^2)^{\alpha - 1}} = 0,$$

which implies (20).

Similar to the proof of Theorem 4, the following theorem can be obtained.

Theorem 6. Let $0 < \alpha < 1$, $\varphi = (\varphi_1, \dots, \varphi_n)$ be a holomorphic self-map of B, $\psi \in H^{\infty}(B)$ and $\lim_{|\varphi(z)| \to 1} |\psi(z)| = 0$. Then, $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to H^{\infty}$ is a compact operator.

Remark 1. Note that if $\|\varphi\|_{\infty} < 1$, then similar to the proof of Theorem 5, it can be proved that the compactness of the operator $\psi C_{\varphi}: \mathcal{B}^{\alpha} \to H^{\infty}$ implies that $\lim_{|\varphi(z)| \to 1} |\psi(z)| = 0$. However, if $\|\varphi\|_{\infty} = 1$, we do not know, at the moment, if this is true.

3. The Boundedness and Compactness of $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}^{\alpha}$

In this section, we characterize the boundedness and compactness of the operator $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}^{\alpha}$. For simplicity of notation, we restrict ourselves to the case of $\alpha = 1$. We will begin by introducing some preliminary notation.

Let $\varphi = (\varphi_1, \dots, \varphi_n)$ be a holomorphic self-map of B, denote

$$D\varphi(z) = \begin{pmatrix} \frac{\partial \varphi_1(z)}{\partial z_1} & \cdots & \frac{\partial \varphi_1(z)}{\partial z_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial \varphi_n(z)}{\partial z_1} & \cdots & \frac{\partial \varphi_n(z)}{\partial z_n} \end{pmatrix}$$

and $D\varphi(z)^T$ be the transpose of the matrix $D\varphi(z)$ (see [11]). Here

$$|D\varphi(z)| = \left(\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_l(z)}{\partial z_k} \right|^2 \right)^{1/2}.$$

Theorem 7. Let $\varphi = (\varphi_1, \dots, \varphi_n)$ be a holomorphic self-map of B and $\psi \in H(B)$. If

- (a) $\psi \in \mathcal{B}$
- (b)

(22)
$$\sup_{z \in B} \frac{(1 - |z|^2)}{1 - |\varphi(z)|^2} |\psi(z)| |D\varphi(z)| < \infty,$$

then, $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$ is bounded.

Conversely, if $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$ is bounded, then

- (c) $\psi \in \mathcal{B}$
- (d)

(23)
$$\sup_{z \in B} \frac{|\psi(z)|(1-|z|^2)}{1-|\varphi(z)|^2} |D\varphi(z)^T \overline{\varphi(z)^T}| < \infty.$$

Proof. Suppose that (a) and (b) hold. For a function $f \in H^{\infty}(B)$, we have

$$\begin{split} &|\nabla(\psi C_{\varphi}f)|(1-|z|^{2})\\ &\leq (1-|z|^{2})|\nabla\psi(z)||f(\varphi(z))|+|\psi(z)||\nabla(f\circ\varphi)(z))|(1-|z|^{2})\\ &= (1-|z|^{2})|\nabla\psi(z)||f(\varphi(z))|+|\psi(z)|(1-|z|^{2})\left(\sum_{k=1}^{n}\Big|\sum_{l=1}^{n}\frac{\partial f}{\partial\zeta_{l}}(\varphi(z))\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\Big|^{2}\right)^{1/2}\\ &\leq (1-|z|^{2})|\nabla\psi(z)||f(\varphi(z))|\\ &+|\psi(z)|(1-|z|^{2})\left(\sum_{k=1}^{n}\sum_{l=1}^{n}\Big|\frac{\partial\varphi_{l}}{\partial z_{k}}(z)\Big|^{2}\right)^{1/2}\left(\sum_{l=1}^{n}\Big|\frac{\partial f}{\partial\zeta_{l}}(\varphi(z))\Big|^{2}\right)^{1/2}\\ &\leq (1-|z|^{2})|\nabla\psi(z)||f(\varphi(z))|+|\psi(z)|(1-|z|^{2})|D\varphi(z)|\,|(\nabla f)(\varphi(z))|\\ &\leq C\|\psi\|_{\mathcal{B}}\|f\|_{\infty}+C\|f\|_{\mathcal{B}}\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}}|\psi(z)||D\varphi(z)|. \end{split}$$

By Lemma 3 we know that $||f||_{\mathcal{B}} \le C||f||_{\infty}$ for every $f \in H^{\infty}(B)$. This along with conditions (a) and (b) show that the operator $\psi C_{\varphi} : H^{\infty}(B) \to \mathcal{B}(B)$ is bounded.

Conversely, suppose that $\psi C_{\varphi}: H^{\infty}(B) \to \mathcal{B}(B)$ is bounded, i.e. there exists a constant C such that

$$\|\psi C_{\omega} f\|_{\mathcal{B}} \le C \|f\|_{\infty}$$

for all $f \in H^{\infty}(B)$. Taking $f(z) \equiv 1$ and $f(z) = z_l, l = 1, ..., n$, it follows that $\psi \in \mathcal{B}(B)$ and $\psi \varphi_l \in \mathcal{B}(B)$.

For fixed $\lambda \in B$, we define the test function

$$f(z) = \frac{1 - |\varphi(\lambda)|^2}{1 - \langle z, \varphi(\lambda) \rangle}.$$

It is easy to see that $f \in H^{\infty}(B)$ and $||f||_{\infty} \leq 2$. Therefore we have

$$2\|\psi C_{\varphi}\|_{H^{\infty}\to\mathcal{B}} \ge \|\psi C_{\varphi}f\|_{\mathcal{B}}$$

$$\ge \sup_{z\in B} (1-|z|^{2})|\nabla\psi(z)f(\varphi(z)) + \psi(z)\nabla(f\circ\varphi)(z))|$$

$$\ge (1-|\lambda|^{2})|\nabla\psi(\lambda)f(\varphi(\lambda)) + \psi(\lambda)\nabla(f\circ\varphi)(\lambda))|$$

$$\ge (1-|\lambda|^{2})|\psi(\lambda)\nabla(f\circ\varphi)(\lambda))| - (1-|\lambda|^{2})|\nabla\psi(\lambda)f(\varphi(\lambda))|$$

$$= (1-|\lambda|^{2})|\psi(\lambda)|\left(\sum_{k=1}^{n} \left|\sum_{l=1}^{n} \frac{\partial f}{\partial \zeta_{l}}(\varphi(\lambda))\frac{\partial \varphi_{l}}{\partial z_{k}}(\lambda)\right|^{2}\right)^{1/2} - (1-|\lambda|^{2})|\nabla\psi(\lambda)|$$

$$= (1-|\lambda|^{2})|\psi(\lambda)|\left(\sum_{k=1}^{n} \left|\sum_{l=1}^{n} \frac{\overline{\varphi_{l}(\lambda)}}{1-|\varphi(\lambda)|^{2}}\frac{\partial \varphi_{l}}{\partial z_{k}}(\lambda)\right|^{2}\right)^{1/2} - (1-|\lambda|^{2})|\nabla\psi(\lambda)|$$

$$= \frac{|\psi(\lambda)|(1-|\lambda|^{2})}{1-|\varphi(\lambda)|^{2}}|D\varphi(z)^{T}\overline{\varphi(\lambda)^{T}}| - |\nabla\psi(\lambda)|(1-|\lambda|^{2}).$$

Since $\psi \in \mathcal{B}(B)$, we obtain

(26)
$$\sup_{\lambda \in B} \frac{|\psi(\lambda)|(1-|\lambda|^2)}{1-|\varphi(\lambda)|^2} |D\varphi(\lambda)^T \overline{\varphi(\lambda)^T}| < \infty.$$

Which completes the proof of the theorem.

Theorem 8. Let $\varphi = (\varphi_1, \ldots, \varphi_n)$ be a holomorphic self-map of B and $\psi \in H(B)$. If

(a)
$$\lim_{|z|\to 1} (1-|z|^2) |\nabla \psi(z)| = 0;$$

(b)

(27)
$$\lim_{|z| \to 1} \frac{1 - |z|^2}{1 - |\varphi(z)|^2} |\psi(z)| |D\varphi(z)| = 0,$$

then, $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$ is compact.

Conversely, if $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$ is compact, then

(c)
$$\lim_{|\varphi(z)| \to 1} (1 - |z|^2) |\nabla \psi(z)| = 0;$$

(d)

(28)
$$\lim_{|\varphi(z)| \to 1} \frac{|\psi(z)|(1-|z|^2)}{1-|\varphi(z)|^2} |D\varphi(z)^T \overline{\varphi(z)^T}| = 0.$$

Proof. Suppose that conditions (a) and (b) hold. Then it is clear that $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$ is bounded. Let $(f_k)_{k \in \mathbb{N}}$ be a sequence in H^{∞} such that $\sup_{k \in \mathbb{N}} \|f_k\|_{\infty} \leq$

L and f_k converges to 0 uniformly on compact subsets of B as $k \to \infty$. By the assumptions, for any $\epsilon > 0$, there is a $\delta \in (0,1)$, such that

$$(29) (1-|z|^2)|\nabla \psi(z)| < \epsilon$$

and

(30)
$$\frac{1-|z|^2}{1-|\varphi(z)|^2}|\psi(z)||D\varphi(z)|<\epsilon.$$

whenever $\delta < |z| < 1$. Let $K = \{w \in B : |w| \le \delta\}$. Note that K is a compact subset of B. Then, by employing (29), (30) and Lemma 3, we have that

$$\|\psi C_{\varphi} f_{k}\|_{\mathcal{B}}$$

$$= \sup_{z \in B} |\nabla(\psi C_{\varphi} f_{k})|(1 - |z|^{2}) + |\psi(0) f_{k}(\varphi(0))|$$

$$\leq \sup_{z \in B} (1 - |z|^{2})|\nabla\psi(z)||f_{k}(\varphi(z))|$$

$$+ \sup_{z \in B} |\psi(z)||\nabla(f_{k} \circ \varphi)(z)|(1 - |z|^{2}) + |\psi(0) f_{k}(\varphi(0))|$$

$$\leq \sup_{z \in K} (1 - |z|^{2})|\nabla\psi(z)||f_{k}(\varphi(z))| + \sup_{\delta < |z| < 1} (1 - |z|^{2})|\nabla\psi(z)||f_{k}(\varphi(z))|$$

$$+ \sup_{z \in K} (1 - |\varphi(z)|^{2})|\nabla f_{k}(\varphi(z))| \frac{(1 - |z|^{2})}{1 - |\varphi(z)|^{2}}|\psi(z)||D\varphi(z)|$$

$$+ \sup_{\delta < |z| < 1} (1 - |\varphi(z)|^{2})|\nabla f_{k}(\varphi(z))| \frac{(1 - |z|^{2})}{1 - |\varphi(z)|^{2}}|\psi(z)||D\varphi(z)| + |\psi(0) f_{k}(\varphi(0))|$$

$$\leq \sup_{w \in \varphi(K)} |f_{k}(w)||\psi||_{\mathcal{B}} + \sup_{w \in \varphi(K)} M(1 - |w|^{2})|\nabla f_{k}(w)|$$

$$+ |\psi(0) f_{k}(\varphi(0))| + C\epsilon,$$

where

$$M = \sup_{z \in B} \frac{1 - |z|^2}{1 - |\varphi(z)|^2} |\psi(z)| |D\varphi(z)|.$$

Note that M is finite in view of (27). Cauchy's estimate gives that $|\nabla f_k(w)| \to 0$ as $k \to \infty$ on compacta, in particular on $\varphi(K)$. Hence, letting $k \to \infty$ in (31) we obtain

$$\lim_{k \to \infty} \|\psi C_{\varphi} f_k\|_{\mathcal{B}} = 0.$$

From this and applying Lemma 2 the result follows.

Now, suppose that $\psi C_{\varphi}: H^{\infty} \to \mathcal{B}$ is compact. Let $(z_k)_{k \in \mathbb{N}}$ be a sequence in B such that $|\varphi(z_k)| \to 1$ as $k \to \infty$. Let

$$f_k(z) = \frac{1 - |\varphi(z_k)|^2}{1 - \langle z, \varphi(z_k) \rangle}.$$

Then $f_k \in H^{\infty}$, $\sup_{k \in \mathbb{N}} \|f_k\|_{\infty} \leq 2$ and f_k converges to 0 uniformly on compact subsets of B as $k \to \infty$. Since $\psi C_{\varphi} : H^{\infty} \to \mathcal{B}$ is compact, we have

$$\lim_{k \to \infty} \|\psi C_{\varphi} f_k\|_{\mathcal{B}} = 0.$$

Therefore, similar to the proof of Theorem 7, we obtain

$$\|\psi C_{\varphi} f_k\|_{\mathcal{B}} \ge \left| \frac{1 - |z_k|^2}{1 - |\varphi(z_k)|^2} |\psi(z_k)| |D\varphi(z_k)^T \overline{\varphi(z_k)^T}| - (1 - |z_k|^2) |\nabla \psi(z_k)| \right|.$$

Hence

(32)
$$\lim_{|\varphi(z_k)| \to 1} (1 - |z_k|^2) |\nabla \psi(z_k)| \\ = \lim_{|\varphi(z_k)| \to 1} \frac{1 - |z_k|^2}{1 - |\varphi(z_k)|^2} |\psi(z_k)| |D\varphi(z_k)^T \overline{\varphi(z_k)^T}|,$$

if one of these two limits exists.

Next for a sequence $(z_k)_{k\in\mathbb{N}}$ in B such that $|\varphi(z_k)|\to 1$ as $k\to\infty$, we take

$$g_k(z) = \frac{1 - |\varphi(z_k)|^2}{1 - \langle z, \varphi(z_k) \rangle} - \left(\frac{1 - |\varphi(z_k)|^2}{1 - \langle z, \varphi(z_k) \rangle}\right)^{1/2}, \quad k \in \mathbb{N}.$$

We notice that g_k is a sequence in H^{∞} and g_k converges to 0 uniformly on compact subsets of B as $k \to \infty$. Note also that $g_k(\varphi(z_k)) = 0$ and

$$\nabla g_k(\varphi(z_k)) = \frac{\overline{\varphi(z_k)}}{2(1 - |\varphi(z_k)|^2)}.$$

Similar to (25), we obtain

$$\frac{1 - |z_k|^2}{2(1 - |\varphi(z_k)|^2)} |\psi(z_k)| |D\varphi(z_k)^T \overline{\varphi(z_k)^T}| \le \|\psi C_{\varphi} g_k\|_{\mathcal{B}} \to 0,$$

as $k \to \infty$. Therefore we get the condition (d) and so by (32), we obtain (c).

ACKNOWLEDGMENT

The first author is supported in part by the NNSF of China (No. 10771130, 10671115) and NSF of Guangdong Province (No. 7300614).

REFERENCES

1. D. Clahane and S. Stević, *Norm equivalence and composition operators between Bloch/Lipschitz spaces of the unit ball*, J. Inequal. Appl., 2006, Article ID 61018, 11 pages.

- 2. D. Clahane, S. Stević and Z. Zhou, On composition operators between Bloch-type spaces in polydisc, preprint, 2004, http://arxiv.org/abs/math.CV/0506424.
- 3. C. C. Cowen and B. D. MacCluer, *Composition Operators on Spaces of Analytic Functions*, CRC Press, Boca Raton, FL, 1995.
- 4. S. Ohno, Weighted composition operators between H^{∞} and the Bloch space, *Taiwanese J. Math.*, **5** (2001), 555-563.
- 5. S. Li and S. Stević, Weighted composition operator from H^{∞} to Bloch space in the polydisk, *Abstr. Appl. Anal.*, 2007, Art. ID 48478, p. 13.
- 6. K. Madigan and A. Matheson, Compact composition operators on the Bloch space, *Trans. Amer. Math. Soc.*, **347(7)** (1995), 2679-2687.
- 7. W. Rudin, *Function theory in the unit ball of* \mathbb{C}^n , Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- 8. J. H. Shi and L. Luo, Composition operators on the Bloch space, *Acta Math. Sinica*, **16** 2000, 85-98.
- 9. S. Stević, On an integral operator on the unit ball in \mathbb{C}^n , *J. Inequal. Appl.*, **1** (2005), 81-88.
- 10. S. Stević, Composition operators between H^{∞} and the α -Bloch spaces on the polydisc, *Z. Anal. Anwendungen*, **25(4)** (2006), 457-466.
- 11. Z. Zhou, Composition operators between *p*-Bloch space and *q*-Bloch space in the unit ball, *Progress in Natural Sci.* **13(3)** (2003), 233-236.
- 12. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, New York, 2005.

Songxiao Li
Department of Mathematics,
Shantou University,
515063 Shantou, Guangdong,
P. R. China
and
Department of Mathematics,
Jia-Ying University,
514015 Meizhou, Guangdong,
P. R. China
E-mail: jyulsx@163.com
lsx@mail.zjxu.edu.cn

Stevo Stević
Mathematical Institute of the Serbian Academy of Science,
Knez Mihailova 35/I,
11000 Beograd, Serbia
E-mail: sstevic@ptt.yu
sstevo@matf.bg.ac.yu