
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 12, No. 7, pp. 1625-1639, October 2008
This paper is available online at http://www.tjm.nsysu.edu.tw/

WEIGHTED COMPOSITION OPERATORS BETWEEN
H∞ AND α-BLOCH SPACES IN THE UNIT BALL

Songxiao Li and Stevo Stević

Abstract. The boundedness and compactness of the weighted composition
operator betweenH∞ and the α-Bloch space Bα on the unit ball are discussed
in this paper.

1. INTRODUCTION

Let B = {z ∈ Cn : |z| < 1} be the open unit ball in Cn, and let dν denote the
normalized Lebesgue area measure on the unit ballB such that ν(B) = 1. LetH(B)
denote the class of all holomorphic functions on the unit ball and H∞ = H∞(B)
the space of all bounded holomorphic functions on the unit ball.

For a holomorphic function f we denote

∇f =
(
∂f

∂z1
, . . . ,

∂f

∂zn

)
.

For f ∈ H(B) with the Taylor expansion f(z) =
∑

|β|≥0 aβz
β , let �f(z) =∑

|β|≥0 |β|aβz
β be the radial derivative of f, where β = (β1, β2, . . . , βn) is a

multi-index and zβ = zβ1
1 · · · zβn

n . It is well known that

�f(z) =
n∑

j=1

zj
∂f

∂zj
(z),

see, for example [12].
Let α > 0. The α-Bloch space Bα = Bα(B) is the space of all holomorphic

functions f on B such that
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bα(f) = sup
z∈B

(1 − |z|2)α |�f(z)| <∞.

It is clear that Bα is a normed space under the norm ‖f‖Bα = |f(0)|+ bα(f). It is
well known (see, for example [12]) that f ∈ Bα(B) if and only if

aα(f) = sup
z∈B

(1 − |z|2)α |∇f(z)| <∞.(1)

Moreover, in [1] it was shown that the quantities

‖f‖Bα and |f(0)|+ aα(f)

are equivalent.
Let Bα

0 denote the subspace of Bα consisting of those f ∈ Bα for which

(1− |z|2)α|�f(z)| → 0 as |z| → 1.

This space is called the little α-Bloch space.
Let ψ be a holomorphic function on the open unit ball. Define a linear operator

ψCϕ on H(B), called weighted composition operator, by

(ψCϕf)(z) = ψ(z) · (f ◦ ϕ)(z),(2)

where f ∈ H(B). We can regard this operator as a generalization of a multiplication
operator and a composition operator. It is interesting to provide a function theoretic
characterization when ψ and ϕ induce a bounded or compact weighted composition
operator on various spaces. The book [3] contains much information on this topic.

In [4], Ohno has characterized the boundedness and compactness of weighted
composition operators between H∞ and the Bloch space B on the unit disk. In
Theorem 1 of [4], Ohno gave the following Proposition: The operator ψCϕ : B →
H∞ is compact if and only if ψ ∈ H∞ and for every sequence (zn)n∈N in the unit
disk U such that limn→∞ |ϕ(zn)| = 1, limn→∞ ψ(zn) = 0. However, in [5] we
showed that this result is in fact wrong.

In the setting of the unit ball, some necessary and sufficient conditions for a
composition operator to be compact on the Bloch space and the little Bloch space are
given in [8]. In the setting of the unit polydisk, we have given some necessary and
sufficient conditions for a weighted composition operator to be bounded or compact
from H∞ to the Bloch space in [5] (see, also papers [2] and [10]).

In this paper, we study the boundedness and compactness of the weighted com-
position operator betweenH∞ and the α-Bloch space Bα, generalizing some results
of [4]. Moreover, our method shows how one may improve Theorem 1 of [4].

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other. The notation a � b means that there is a
positive constant C such that a ≤ Cb. If both a � b and b � a hold, then we say
that a 
 b.
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2. THE BOUNDEDNESS AND COMPACTNESS OF ψCϕ : H∞ → Bα

In this section, we will discuss the boundedness and compactness of weighted
composition operators ψCϕ : Bα ( or Bα

0 ) → H∞.
The following lemma was proven in [9].

Lemma 1. Let f ∈ Bα(B), 0 < α <∞. Then

|f(z)| ≤ C




||f ||Bα , α ∈ (0, 1)

||f ||Bα ln
2

1− |z|2 , α = 1

||f ||Bα

(1− |z|2)α−1
, α > 1

,

for some C > 0 independent of f.

The next lemma can be proved in a standard way (see, for example, Theorem
3.11 in [3]).

Lemma 2. Let X and Y be Bα or H∞. Then the operator ψCϕ : X →
Y is compact if and only if ψCϕ : X → Y is bounded and for any bounded
sequence (fk)k∈N in X which converges to zero uniformly on compact subsets of
B, ψCϕfk → 0 in Y as k → ∞.

The next lemma which follows is standard, but we will give a proof for the
benefit of the reader.

Lemma 3. If f ∈ H∞, then there exists a constant C such that ‖f‖B ≤
C‖f‖∞.

Proof. By Proposition 3.1.3 of [7], we have

f(z) =
∫

B

f(w)
(1 − 〈z, w〉)n+1

dν(w).

From this and by [7, Proposition 1.4.10], we have that

|�f(z)| =
∣∣∣∣
∫

B

(n+ 1)f(w)〈z, w〉
(1 − 〈z, w〉)n+2

dν(w)
∣∣∣∣

≤ C

∫
B

‖f‖∞
|1 − 〈z, w〉|n+2

dν(w) ≤ C
‖f‖∞

1 − |z|2 .

From this and since |f(0)| ≤ ‖f‖∞, we can obtain
‖f‖B = |f(0)|+ sup

z∈B
|�f(z)|(1− |z|2) ≤ C‖f‖∞.
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Theorem 1. Let ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of B and
ψ ∈ H(B). Then the following statements are equivalent:

(1) ψCϕ : B0 → H∞ is a bounded operator;
(2) ψCϕ : B → H∞ is a bounded operator;
(3)

K := sup
z∈B

|ψ(z)| ln 2
1 − |ϕ(z)|2 <∞.(3)

(4) Moreover, if ψCϕ : B → H∞ is bounded, then

‖ψCϕ‖B→H∞ 
 sup
z∈B

|ψ(z)| ln 2
1 − |ϕ(z)|2 .(4)

Proof. (2 ) ⇒ (1 ) is obvious.
(1 ) ⇒ (3 ). Suppose ψCϕ : B0 → H∞ is a bounded operator. For λ ∈ B, put

f(z) = ln
2

1− 〈z, ϕ(λ)〉.(5)

Since f(0) = ln 2 and

(1− |z|2)|�f(z)| ≤ (1 − |z|2) |∇f(z)| = (1− |z|2)
∣∣∣∣ ϕ(λ)
1 − 〈z, ϕ(λ)〉

∣∣∣∣
≤ (1 − |z|2)

|1− 〈z, ϕ(λ)〉| ≤ 2,

we get that ||f ||B ≤ 2 + ln2.
On the other hand, we have

(1 − |z|2)|�f(z)| ≤ (1 − |z|2)
|1 − 〈z, ϕ(λ)〉| ≤

(1 − |z|2)
1 − |ϕ(λ)| → 0,

as |z| → 1, hence f ∈ B0. Thus

(2+ln2)‖ψCϕ‖B→H∞ ≥ ‖ψCϕf‖∞ = sup
z∈B

|ψ(z)f(ϕ(z))| ≥ |ψ(λ)| ln 2
1 − |ϕ(λ)|2 .

Therefore

sup
z∈B

|ψ(z)| ln 2
1 − |ϕ(z)|2 ≤ (2 + ln2)‖ψCϕ‖B→H∞ <∞.(6)
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(3 ) ⇒ (2 ). Assume that (3) holds. For any f ∈ B, by Lemma 1, we have that

|(ψCϕf)(z)| = |ψ(z)||f(ϕ(z))|

≤ C|ψ(z)| ln 2
1 − |ϕ(z)|2‖f‖B ≤ CK‖f‖B,

(7)

for any z ∈ B. Taking the supremum in (7) over z ∈ B, it follows that

‖ψCϕf‖∞ ≤ CK‖f‖B.(8)

Thus ψCϕ : B → H∞ is bounded. By (8), we get

‖ψCϕ‖B→H∞ = sup
‖f‖B≤1

‖ψCϕf‖∞ ≤ sup
‖f‖B≤1

CK‖f‖B ≤ CK.(9)

Combining (6) and (9), we obtain (4). This completes the proof of the theorem.

Theorem 2. Let α ∈ (0, 1), ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of
B and ψ ∈ H(B). Then, the following statements are equivalent:

(1) ψCϕ : Bα
0 → H∞ is a bounded operator;

(2) ψCϕ : Bα → H∞ is a bounded operator;
(3) ψ ∈ H∞.

Moreover, if ψCϕ : Bα → H∞ is bounded, then

‖ψCϕ‖Bα→H∞ 
 ‖ψ‖∞.(10)

Proof. (2 ) ⇒ (1 ) is obvious.
(1 ) ⇒ (3 ). Suppose ψCϕ : Bα

0 → H∞ is bounded. Choose f(z) = 1, then
f ∈ Bα

0 and ‖f‖Bα ≤ 1. Thus

‖ψ‖∞ = ‖ψCϕf‖∞ ≤ ‖ψCϕ‖Bα→H∞‖f‖Bα ≤ ‖ψCϕ‖Bα→H∞ .(11)

Hence ψ ∈ H∞.
(3 ) ⇒ (2 ). Suppose ψ ∈ H∞, then for any f ∈ Bα, by Lemma 1, we have

|(ψCϕf)(z)| = |ψ(z)||f(ϕ(z))| ≤ C|ψ(z)|‖f‖Bα ≤ C‖ψ‖∞‖f‖Bα ,(12)

where C depends only on α. Taking the supremum in (12) over B we obtain

‖ψCϕf‖∞ ≤ C‖ψ‖∞‖f‖Bα ,

from which the boundedness of ψCϕ : Bα → H∞ follows.
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From this and (11), we get

‖ψCϕ‖Bα→H∞ 
 ‖ψ‖∞,
finishing the proof of the theorem.

Theorem 3. Let α > 1, ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of B
and ψ ∈ H(B). Then, the following statements are equivalent:

(1) ψCϕ : Bα
0 → H∞ is a bounded operator;

(2) ψCϕ : Bα → H∞ is a bounded operator;
(3)

M1 := sup
z∈B

|ψ(z)|
(1− |ϕ(z)|2)α−1

<∞.(13)

Furthermore, if ψCϕ : Bα → H∞ is bounded, then

‖ψCϕ‖Bα→H∞ 
 sup
z∈B

|ψ(z)|
(1 − |ϕ(z)|2)α−1

.(14)

Proof. (2 ) ⇒ (1 ) is obvious.
(1 ) ⇒ (3 ). Suppose ψCϕ : Bα

0 → H∞ is bounded. For λ ∈ B, let

f(z) =
1

(1− 〈z, ϕ(λ)〉)α−1
.

It is clear that f ∈ Bα and that ‖f‖Bα ≤ 2α(α− 1) + 1. Moreover,

(1 − |z|2)α|∇f(z)| ≤ 2α(α− 1)
(1− |z|2)α

(1− |ϕ(λ)|)α
→ 0

as z → ∂B. This implies that f ∈ Bα
0 . Similar to the proof of “(1 ) ⇒ (3 )” in

Theorem 1, we have

sup
z∈B

|ψ(z)|
(1 − |ϕ(z)|2)α−1

≤ sup
z∈B

|ψ(z)f(ϕ(z))|

≤ (2α(α− 1) + 1)‖ψCϕ‖Bα→H∞ <∞,

(15)

hence (13) holds.
(3 ) ⇒ (2 ). Assume that (13) holds. Then, by Lemma 1, for every f ∈ Bα and

z ∈ B, we obtain

|(ψCϕf)(z)| = |ψ(z)||f(ϕ(z))|
≤ C|ψ(z)|(1− |ϕ(z)|2)1−α‖f‖Bα ≤ CM1‖f‖Bα,
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and consequently

‖ψCϕf‖∞ ≤ CM1‖f‖Bα .(16)

Thus ψCϕ : Bα → H∞ is bounded.
Similar to the proof of Theorem 1, combining (15) and (16), we have

‖ψCϕ‖Bα→H∞ 
 sup
z∈B

|ψ(z)|
(1 − |ϕ(z)|2)α−1

.

Next, we will discuss the compactness of the operator ψCϕ : Bα → H∞ or
ψCϕ : Bα

0 → H∞.

Theorem 4. Let ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of B and
ψ ∈ H(B). Then, the following statements are equivalent:

(1) ψCϕ : B0 → H∞ is a compact operator;
(2) ψCϕ : B → H∞ is a compact operator;
(3) ψ ∈ H∞ and

lim
|ϕ(z)|→1

|ψ(z)| ln 2
1 − |ϕ(z)|2 = 0.(17)

Proof. (2 ) ⇒ (1 ) is obvious.
(1 ) ⇒ (3 ). Suppose ψCϕ : B0 → H∞ is compact. We have that ψ = ψCϕ1 ∈

H∞. Assume that (zk)k∈N is a sequence in B such that limk→∞ |ϕ(zk)| = 1. Let

gk(z) =
[

ln
2

1 − |ϕ(zk)|2
]−1[

ln
2

1 − 〈z, ϕ(zk)〉
]2

.(18)

For any z ∈ B,

�gk(z) = 2
[

ln
2

1 − |ϕ(zk)|2
]−1 (

ln
2

1 − 〈z, ϕ(zk)〉
) 〈z, ϕ(zk)〉

1 − 〈z, ϕ(zk)〉 .

Thus for any z ∈ B,

(1 − |z|2)|�gk(z)| ≤ 2(1 − |z|2)
∣∣∣∣∣
ln 2

1−〈z,ϕ(zk)〉
ln 2

1−|ϕ(zk)|2

∣∣∣∣∣
1

1 − |z|

≤ 4
C + ln 2

1−|ϕ(zk)|
ln 2

1−|ϕ(zk)|2
≤ C
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On the other hand,

|gk(0)| ≤
(

ln
2

1 − |ϕ(zk)|2
)−1

(ln 2)2 ≤ ln 2.

Thus ‖gk‖B ≤ M , where M is a constant independent of k. It is obvious that
gk ∈ H(B), thus gk ∈ B0 for every k ∈ N. Since for |z| = r < 1, we have

|gk(z)| =

∣∣∣∣ ln 2
1−〈z,ϕ(zk)〉

∣∣∣∣
2

ln 2
1−|ϕ(zk)|2

≤

(
ln 2

1−r + C

)2

ln 2
1−|ϕ(zk)|2

→ 0 (k → ∞),

that is, gk → 0 uniformly on compact subsets of B as k → ∞. Since ψCϕ is
compact, by Lemma 2, we have limk→∞ ‖ψCϕgk‖∞ = 0. On the other hand, the
following estimate holds

‖ψCϕgk‖∞ = sup
z∈B

|ψ(z)||gk(ϕ(z))| ≥ |ψ(zk)| ln 2
1 − |ϕ(zk)|2 .

Thus
lim

k→∞
|ψ(zk)| ln 2

1 − |ϕ(zk)|2 = 0,

which implies (17).
(3)⇒(2). Suppose ψ ∈ H∞ and condition (17) hold, then it is easy to see that

sup
z∈B

|ψ(z)| ln 2
1 − |ϕ(z)|2 <∞.

By Theorem 1, ψCϕ : B → H∞ is bounded. Assume that (fk)k∈N is a bounded se-
quence and fk → 0 uniformly on compact subsets of B. DenoteK = supk∈N ‖fk‖B.
For any ε > 0, by (17), there exists a δ ∈ (0, 1) such that if δ < |ϕ(z)| < 1,

|ψ(z)| ln 2
1 − |ϕ(z)|2 < ε.

Thus if |ϕ(z)| > δ, for every k ∈ N, we have

|ψ(z)||fk(ϕ(z))| ≤ C‖fk‖B|ψ(z)| ln 2
1 − |ϕ(z)|2 ≤ CKε.(19)

On the other hand, since fk → 0 uniformly on the compact {w : |w| ≤ δ} as
k → ∞, there exists a k0 such that |fk(ϕ(z))| < ε if |ϕ(z)| ≤ δ and k ≥ k0. Hence
for |ϕ(z)| ≤ δ and k ≥ k0, we have

|ψ(z)||fk(ϕ(z))| ≤ ‖ψ‖∞ε.
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This and (19) imply that limk→∞ ‖ψCϕfk‖∞ = 0. By Lemma 2, it follows that
ψCϕ : B → H∞ is a compact operator, as desired.

Theorem 5. Let α > 1, ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of B
and ψ ∈ H(B). Then, the following statements are equivalent:

(1) ψCϕ : Bα
0 → H∞ is a compact operator;

(2) ψCϕ : Bα → H∞ is a compact operator;
(3) ψ ∈ H∞ and

lim
|ϕ(z)|→1

|ψ(z)|
(1 − |ϕ(z)|2)α−1

= 0.(20)

Proof. (2)⇒(1) is obvious.
(3)⇒(2) Assume that ψ ∈ H∞ and condition (20) holds, then

sup
z∈B

|ψ(z)|
(1 − |ϕ(z)|2)α−1

<∞.

By Theorem 3, ψCϕ : Bα → H∞ is bounded. Now assume that (fk)k∈N is
a bounded sequence and fk → 0 uniformly on compact subsets of B. Denote
K1 = supk∈N ‖fk‖Bα . From (20) we have that, for every ε > 0, there is a δ ∈ (0, 1)
such that if δ < |ϕ(z)| < 1,

|ψ(z)|
(1− |ϕ(z)|2)α−1

< ε.

This shows that if |ϕ(z)| > δ, for any k ∈ N, we have

|ψ(z)||fk(ϕ(z))| ≤ C‖fk‖Bα
|ψ(z)|

(1− |ϕ(z)|2)α−1
≤ CK1ε.(21)

The rest of the proof is similar to the corresponding proof of Theorem 4 and will
be omitted.

(1)⇒(3). Let (zk)k∈N be a sequence of B such that limk→∞ |ϕ(zk)| = 1.
Choose

fk(z) =
1 − |ϕ(zk)|2

(1− 〈z, ϕ(zk)〉)α
.

It is easy to see that fk ∈ Bα
0 , supk∈N ‖fk‖Bα ≤ C and fk → 0 uniformly on

compact subsets of B as k → ∞. Since ψCϕ is compact, by Lemma 2, we have
limk→∞ ‖ψCϕfk‖∞ = 0. From this and since

‖ψCϕfk‖∞ = sup
z∈B

|ψ(z)||fk(ϕ(z))| ≥ |ψ(zk)|
(1 − |ϕ(zk)|2)α−1

,
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we obtain
lim

k→∞
|ψ(zk)|

(1− |ϕ(zk)|2)α−1
= 0,

which implies (20).
Similar to the proof of Theorem 4, the following theorem can be obtained.

Theorem 6. Let 0 < α < 1, ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of
B, ψ ∈ H∞(B) and lim|ϕ(z)|→1 |ψ(z)| = 0. Then, ψCϕ : Bα → H∞ is a compact
operator.

Remark 1. Note that if ‖ϕ‖∞ < 1, then similar to the proof of Theorem 5, it
can be proved that the compactness of the operator ψCϕ : Bα → H∞ implies that
lim|ϕ(z)|→1 |ψ(z)| = 0. However, if ‖ϕ‖∞ = 1, we do not know, at the moment, if
this is true.

3. THE BOUNDEDNESS AND COMPACTNESS OF ψCϕ : H∞ → Bα

In this section, we characterize the boundedness and compactness of the operator
ψCϕ : H∞ → Bα. For simplicity of notation, we restrict ourselves to the case of
α = 1. We will begin by introducing some preliminary notation.

Let ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of B, denote

Dϕ(z) =




∂ϕ1(z)
∂z1

· · · ∂ϕ1(z)
∂zn

· · · · · · · · ·
∂ϕn(z)
∂z1

· · · ∂ϕn(z)
∂zn




and Dϕ(z)T be the transpose of the matrix Dϕ(z) (see [11]). Here

|Dϕ(z)| =

 n∑

k,l=1

∣∣∣∂ϕl(z)
∂zk

∣∣∣2



1/2

.

Theorem 7. Let ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of B and
ψ ∈ H(B). If

(a) ψ ∈ B
(b)

sup
z∈B

(1 − |z|2)
1 − |ϕ(z)|2 |ψ(z)| |Dϕ(z)|<∞,(22)
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then, ψCϕ : H∞ → B is bounded.
Conversely, if ψCϕ : H∞ → B is bounded, then

(c) ψ ∈ B

(d)

sup
z∈B

|ψ(z)|(1− |z|2)
1 − |ϕ(z)|2 |Dϕ(z)Tϕ(z)T | <∞.(23)

Proof. Suppose that (a) and (b) hold. For a function f ∈ H∞(B), we have

|∇(ψCϕf)|(1− |z|2)
≤ (1− |z|2)|∇ψ(z)||f(ϕ(z))|+ |ψ(z)||∇(f ◦ ϕ)(z))|(1− |z|2)

= (1−|z|2)|∇ψ(z)||f(ϕ(z))|+|ψ(z)|(1−|z|2)
( n∑

k=1

∣∣∣
n∑

l=1

∂f

∂ζl
(ϕ(z))

∂ϕl

∂zk
(z)

∣∣∣2)1/2

≤ (1− |z|2)|∇ψ(z)||f(ϕ(z))|

+|ψ(z)|(1− |z|2)
( n∑

k=1

n∑
l=1

∣∣∣∂ϕl

∂zk
(z)

∣∣∣2)1/2( n∑
l=1

∣∣∣ ∂f
∂ζl

(ϕ(z))
∣∣∣2)1/2

≤ (1− |z|2)|∇ψ(z)||f(ϕ(z))|+ |ψ(z)|(1− |z|2)|Dϕ(z)| |(∇f)(ϕ(z))|
≤ C‖ψ‖B‖f‖∞ + C‖f‖B 1 − |z|2

1 − |ϕ(z)|2 |ψ(z)||Dϕ(z)|.

By Lemma 3 we know that ‖f‖B≤C‖f‖∞ for every f ∈H∞(B). This along with
conditions (a) and (b) show that the operator ψCϕ : H∞(B) → B(B) is bounded.

Conversely, suppose that ψCϕ : H∞(B) → B(B) is bounded, i.e. there exists
a constant C such that

‖ψCϕf‖B ≤ C‖f‖∞(24)

for all f ∈ H∞(B). Taking f(z) ≡ 1 and f(z) = zl, l = 1, . . . , n, it follows that
ψ ∈ B(B) and ψϕl ∈ B(B).

For fixed λ ∈ B, we define the test function

f(z) =
1 − |ϕ(λ)|2

1− 〈z, ϕ(λ)〉.
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It is easy to see that f ∈ H∞(B) and ‖f‖∞ ≤ 2. Therefore we have

(25)

2‖ψCϕ‖H∞→B ≥ ‖ψCϕf‖B
≥ sup

z∈B
(1 − |z|2)|∇ψ(z)f(ϕ(z)) + ψ(z)∇(f ◦ ϕ)(z))|

≥ (1 − |λ|2)
∣∣∣∇ψ(λ)f(ϕ(λ)) + ψ(λ)∇(f ◦ ϕ)(λ))

∣∣∣
≥ (1 − |λ|2)∣∣ψ(λ)∇(f ◦ ϕ)(λ))

∣∣ − (1 − |λ|2)∣∣∇ψ(λ)f(ϕ(λ))
∣∣

=(1−|λ|2)|ψ(λ)|
( n∑

k=1

∣∣∣
n∑

l=1

∂f

∂ζl
(ϕ(λ))

∂ϕl

∂zk
(λ)

∣∣∣2)1/2

−(1−|λ|2)|∇ψ(λ)|

=(1−|λ|2)|ψ(λ)|
( n∑

k=1

∣∣∣
n∑

l=1

ϕl(λ)
1−|ϕ(λ)|2

∂ϕl

∂zk
(λ)

∣∣∣2)1/2

−(1−|λ|2)|∇ψ(λ)|

=
|ψ(λ)|(1 − |λ|2)

1 − |ϕ(λ)|2 |Dϕ(z)Tϕ(λ)T | − |∇ψ(λ)|(1 − |λ|2).

Since ψ ∈ B(B), we obtain

sup
λ∈B

|ψ(λ)|(1− |λ|2)
1 − |ϕ(λ)|2 |Dϕ(λ)Tϕ(λ)T | <∞.(26)

Which completes the proof of the theorem.

Theorem 8. Let ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of B and
ψ ∈ H(B). If

(a) lim|z|→1(1 − |z|2)|∇ψ(z)| = 0;
(b)

(27) lim
|z|→1

1 − |z|2
1 − |ϕ(z)|2 |ψ(z)||Dϕ(z)|= 0,

then, ψCϕ : H∞ → B is compact.
Conversely, if ψCϕ : H∞ → B is compact, then

(c) lim|ϕ(z)|→1(1− |z|2)|∇ψ(z)| = 0;
(d)

lim
|ϕ(z)|→1

|ψ(z)|(1− |z|2)
1 − |ϕ(z)|2 |Dϕ(z)Tϕ(z)T | = 0.(28)

Proof. Suppose that conditions (a) and (b) hold. Then it is clear that ψCϕ :
H∞ → B is bounded. Let (fk)k∈N be a sequence inH∞ such that supk∈N ‖fk‖∞ ≤
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L and fk converges to 0 uniformly on compact subsets of B as k → ∞. By the
assumptions, for any ε > 0, there is a δ ∈ (0, 1), such that

(1− |z|2)|∇ψ(z)|< ε(29)

and

1 − |z|2
1 − |ϕ(z)|2 |ψ(z)||Dϕ(z)|< ε.(30)

whenever δ < |z| < 1. Let K = {w ∈ B : |w| ≤ δ}. Note that K is a compact
subset of B. Then, by employing (29), (30) and Lemma 3, we have that

(31)

‖ψCϕfk‖B

= sup
z∈B

|∇(ψCϕfk)|(1 − |z|2) + |ψ(0)fk(ϕ(0))|

≤ sup
z∈B

(1 − |z|2)|∇ψ(z)||fk(ϕ(z))|

+ sup
z∈B

|ψ(z)||∇(fk ◦ ϕ)(z)|(1 − |z|2) + |ψ(0)fk(ϕ(0))|

≤ sup
z∈K

(1 − |z|2)|∇ψ(z)||fk(ϕ(z))| + sup
δ<|z|<1

(1 − |z|2)|∇ψ(z)||fk(ϕ(z))|

+ sup
z∈K

(1 − |ϕ(z)|2)|∇fk(ϕ(z))| (1 − |z|2)
1 − |ϕ(z)|2 |ψ(z)||Dϕ(z)|

+ sup
δ<|z|<1

(1−|ϕ(z)|2)|∇fk(ϕ(z))| (1−|z|2)
1−|ϕ(z)|2 |ψ(z)||Dϕ(z)|+|ψ(0)fk(ϕ(0))|

≤ sup
w∈ϕ(K)

|fk(w)|‖ψ‖B + sup
w∈ϕ(K)

M(1 − |w|2)|∇fk(w)|

+|ψ(0)fk(ϕ(0))| +Cε,

where
M = sup

z∈B

1 − |z|2
1 − |ϕ(z)|2 |ψ(z)||Dϕ(z)|.

Note that M is finite in view of (27). Cauchy’s estimate gives that |∇fk(w)| → 0
as k → ∞ on compacta, in particular on ϕ(K). Hence, letting k → ∞ in (31) we
obtain

lim
k→∞

‖ψCϕfk‖B = 0.

From this and applying Lemma 2 the result follows.
Now, suppose that ψCϕ : H∞ → B is compact. Let (zk)k∈N be a sequence in

B such that |ϕ(zk)| → 1 as k → ∞. Let

fk(z) =
1 − |ϕ(zk)|2

1 − 〈z, ϕ(zk)〉 .
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Then fk ∈ H∞, supk∈N ‖fk‖∞ ≤ 2 and fk converges to 0 uniformly on compact
subsets of B as k → ∞. Since ψCϕ : H∞ → B is compact, we have

lim
k→∞

‖ψCϕfk‖B = 0.

Therefore, similar to the proof of Theorem 7, we obtain

‖ψCϕfk‖B ≥
∣∣∣ 1 − |zk|2
1− |ϕ(zk)|2 |ψ(zk)||Dϕ(zk)Tϕ(zk)T | − (1− |zk|2)|∇ψ(zk)|

∣∣∣.
Hence

(32)
lim

|ϕ(zk)|→1
(1− |zk|2)|∇ψ(zk)|

= lim
|ϕ(zk)|→1

1 − |zk|2
1 − |ϕ(zk)|2 |ψ(zk)||Dϕ(zk)Tϕ(zk)T |,

if one of these two limits exists.
Next for a sequence (zk)k∈N in B such that |ϕ(zk)| → 1 as k → ∞, we take

gk(z) =
1 − |ϕ(zk)|2

1 − 〈z, ϕ(zk)〉 −
(

1 − |ϕ(zk)|2
1 − 〈z, ϕ(zk)〉

)1/2

, k ∈ N.

We notice that gk is a sequence in H∞ and gk converges to 0 uniformly on compact
subsets of B as k → ∞. Note also that gk(ϕ(zk)) = 0 and

∇gk(ϕ(zk)) =
ϕ(zk)

2(1 − |ϕ(zk)|2) .

Similar to (25), we obtain

1− |zk|2
2(1− |ϕ(zk)|2) |ψ(zk)||Dϕ(zk)Tϕ(zk)T | ≤ ‖ψCϕgk‖B → 0,

as k → ∞. Therefore we get the condition (d) and so by (32), we obtain (c).
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