Vol. 11, No. 5, pp. 1397-1406, December 2007

This paper is available online at http://www.math.nthu.edu.tw/tjm/

GENERALIZED JORDAN TRIPLE (θ, ϕ) -DERIVATIONS ON SEMIPRIME RINGS

Cheng-Kai Liu and Wen-Kwei Shiue

Abstract. Let R be a 2-torsion free semiprime ring. In this paper we will show that every Jordan triple (θ,ϕ) -derivation on R is a (θ,ϕ) -derivation. Also every Jordan triple left centralizer on R is a left centralizer. As a consequence, every generalized Jordan triple (θ,ϕ) -derivation on R is a generalized (θ,ϕ) -derivation. This result gives an affirmative answer to the question posed by Wu and Lu in [14].

0. Introduction and Results

Throughout this paper R will denote an associative ring with center Z(R). For any $x,y\in R$, we denote the commutator [x,y]=xy-yx. A ring R is said to be 2-torsion free whenever 2x=0, with $x\in R$, implies x=0. Recall that R is said to be semiprime if xRx=0 implies x=0 and R is said to be prime if xRy=0 implies that x=0 or y=0. A mapping $\delta:R\to R$ is called additive if $\delta(x+y)=\delta(x)+\delta(y)$ for all $x,y\in R$. Let θ,ϕ be automorphisms of R and let 1 denote the identity mapping of R. An additive mapping $\delta:R\to R$ is called a (θ,ϕ) -derivation of R if $\delta(xy)=\delta(x)\theta(y)+\phi(x)\delta(y)$ for all $x,y\in R$. An additive mapping $\delta:R\to R$ is called a Jordan (θ,ϕ) -derivation of R if $\delta(x^2)=\delta(x)\theta(x)+\phi(x)\delta(x)$ for all $x\in R$. An additive mapping $\delta:R\to R$ is called a Jordan triple (θ,ϕ) -derivation of R if

$$\delta(xyx) = \delta(x)\theta(y)\theta(x) + \phi(x)\delta(y)\theta(x) + \phi(x)\phi(y)\delta(x)$$

for all $x, y \in R$. Obviously, every (θ, ϕ) -derivation is a Jordan (θ, ϕ) -derivation. In view of [7, Proposition 3] every Jordan (θ, ϕ) -derivation is a Jordan triple (θ, ϕ) -derivation. For brevity, (1, 1)-derivations are simply called derivations. A famous

Received October 5, 2005, accepted January 23, 2006.

Communicated by Wen-Fong Ke.

2000 Mathematics Subject Classification: 16W25, 16R50, 16N60, 16U80.

Key words and phrases: Generalized (θ, ϕ) -derivation, Generalized Jordan (θ, ϕ) -derivation, Generalized Jordan triple (θ, ϕ) -derivation.

Corresponding author: Cheng-Kai Liu.

result of Herstein [10] states that every Jordan derivation on a 2-torsion free prime ring is a derivation. Later Bresar [4] showed that the same result is true in semiprime rings. Since every Jordan derivation is also a Jordan triple derivation, furthermore Bresar [5] proved that every Jordan triple derivation on a 2-torsion free semiprime ring is a derivation. Recently, the above results have been extended to Jordan (θ, ϕ) -derivations on prime rings by Bresar and Vukman [7]. In the present paper we will generalize these results to semiprime rings and prove the following:

Theorem 1. Let R be a 2-torsion free semiprime ring and let θ, ϕ be automorphisms of R. If $\delta: R \to R$ is a Jordan triple (θ, ϕ) -derivation, then δ is a (θ, ϕ) -derivation.

Corollary 1. Let R be a 2-torsion free semiprime ring and let θ, ϕ be automorphisms of R. Then every Jordan (θ, ϕ) -derivation of R is a (θ, ϕ) -derivation.

An additive mapping $T:R\to R$ is called a left (right) centralizer of R if T(xy)=T(x)y (T(xy)=xT(y)) for all $x,y\in R$. An additive mapping $T:R\to R$ is called a Jordan left (right) centralizer of R if $T(x^2)=T(x)x$ ($T(x^2)=xT(x)$) for all $x\in R$. An additive mapping $T:R\to R$ is called a Jordan triple left (right) centralizer of R if T(xyx)=T(x)yx (T(xyx)=xyT(x)) for all $x,y\in R$. In [15], Zalar proved that every Jordan left (right) centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. It is easy to see that every Jordan left (right) centralizer is also a Jordan triple left (right) centralizer. We now generalize Zalar's result as follows.

Theorem 2. Let R be a 2-torsion free semiprime ring. If $T: R \to R$ is a Jordan triple left (right) centralizer, then T is a left (right) centralizer.

An additive mapping $F:R\to R$ is called a generalized (θ,ϕ) -derivation of R if there exists a (θ,ϕ) -derivation δ of R such that $F(xy)=F(x)\theta(y)+\phi(x)\delta(y)$ for all $x,y\in R$ (see [11,13]). As usual, generalized (1,1)-derivations are called generalized derivations. Motivated by the concept of generalized derivations, Wu and Lu [14] initiated the study of generalized Jordan derivations and generalized Jordan triple derivations. An additive mapping $F:R\to R$ is called a generalized Jordan (θ,ϕ) -derivation of R if there exists a Jordan (θ,ϕ) -derivation δ of R such that $F(x^2)=\delta(x)\theta(x)+\phi(x)\delta(x)$ for all $x\in R$. An additive mapping $F:R\to R$ is called a generalized Jordan triple (θ,ϕ) -derivation δ of R such that

(††)
$$F(xyx) = F(x)\theta(y)\theta(x) + \phi(x)\delta(y)\theta(x) + \phi(x)\phi(y)\delta(x)$$

for all $x, y \in R$. Moreover, δ is called the relating Jordan triple (θ, ϕ) -derivation of F. In [14], Wu and Lu proved that every generalized Jordan derivation on a prime

ring is a generalized derivation. Recently Ashraf et al. [1,2] extended this result to generalized Jordan (θ, ϕ) -derivations on Lie ideals of prime rings. Now applying Theorem 1 and 2, we can solve the conjecture raised by Wu and Lu in [14, page 608 and 611].

Theorem 3. Let R be a 2-torsion free semiprime ring and let θ, ϕ be automorphisms of R. If $F: R \to R$ is a generalized Jordan triple (θ, ϕ) -derivation, then F is a generalized (θ, ϕ) -derivation.

Proof. Let δ be the relating Jordan triple (θ, ϕ) -derivation of F satisfying (\dagger) . By Theorem 1, δ must be a (θ, ϕ) -derivation. Set $G = F - \delta$. Then in view of (\dagger) and $(\dagger\dagger)$, we have $G(xyx) = G(x)\theta(y)\theta(x)$. So $\theta^{-1}G$ becomes a Jordan triple left centralizer. Applying Theorem 2 yields that $\theta^{-1}G(xy) = \theta^{-1}G(x)y$ for all $x, y \in R$. That is, $G(xy) = G(x)\theta(y)$. Then $F(xy) = \delta(xy) + F(x)\theta(y) - \delta(x)\theta(y) = F(x)\theta(y) + \phi(x)\delta(y)$, implying that F is a generalized (θ, ϕ) -derivation.

Since every generalized Jordan (θ, ϕ) -derivation is also a generalized Jordan triple (θ, ϕ) -derivation [1, Lemma 2.1], we immediately obtain

Corollary 2. Let R be a 2-torsion free semiprime ring and let θ , ϕ be automorphisms of R. Then every generalized Jordan (θ, ϕ) -derivation of R is a generalized (θ, ϕ) -derivation.

By using the fact that every linear (θ, ϕ) -derivation on a semisimple Banach algebra is continuous, now we can extend [4, Theorem 6] to generalized (θ, ϕ) -derivations.

Theorem 4. Let A be a complex semisimple Banach algebra and let θ, ϕ be linear automorphisms of A. If $F: A \to A$ is a linear generalized Jordan triple (θ, ϕ) -derivation and δ is the relating linear Jordan triple (θ, ϕ) -derivation of F, then F is continuous.

Proof. By Theorem 3, F is a generalized (θ, ϕ) -derivation. Since θ and ϕ are continuous [12], it follows from [8, Corollary 4.3] that δ is continuous. Set $G = F - \delta$. Then $\theta^{-1}G$ becomes a left centralizer. Hence $\theta^{-1}G$ is continuous by [15, Corollary 1.5] and so G is continuous as well. This implies that F is continuous, as desired.

Corollary 3. Let A be a complex semisimple Banach algebra and let θ , ϕ be linear automorphisms of A. Then every linear generalized Jordan (θ, ϕ) -derivation is continuous.

1. Preliminaries

Throughout this section we shall denote by δ a Jordan triple $(1,\phi)$ -derivation of a ring R. Then

(1)
$$\delta(aba) = \delta(a)ba + \phi(a)\delta(b)a + \phi(a)\phi(b)\delta(a)$$

for all $a, b \in R$. Replacing a with a + c in (1), we obtain that

(2)
$$\delta(abc + cba) = \delta(a)bc + \phi(a)\delta(b)c + \phi(a)\phi(b)\delta(c) + \delta(c)ba + \phi(c)\delta(b)a + \phi(c)\phi(b)\delta(a),$$

for all $a, b, c \in R$. A direct expansion by using (1) yields that

$$\delta(abcxcba) = \delta(a(b(cxc)b)a)$$

$$= \delta(a)bcxcba + \phi(a)\delta(b(cxc)b)a + \phi(a)\phi(bcxcb)\delta(a)$$

$$= \delta(a)bcxcba + \phi(a)\left(\delta(b)cxcb + \phi(b)\delta(cxc)b\right)$$

$$+\phi(b)\phi(cxc)\delta(b)a + \phi(a)\phi(bcxcb)\delta(a)$$

$$= \delta(a)bcxcba + \phi(a)\delta(b)cxcba + \phi(a)\phi(b)\delta(c)xcba$$

$$+\phi(a)\phi(b)\phi(c)\delta(x)cba + \phi(a)\phi(b)\phi(c)\phi(x)\delta(c)ba$$

$$+\phi(a)\phi(b)\phi(cxc)\delta(b)a + \phi(a)\phi(bcxcb)\delta(a).$$

Following Bresar [5], we write $A(a,b,c)=\delta(abc)-\delta(a)bc-\phi(a)\delta(b)c-\phi(a)\phi(b)\delta(c)$ and B(a,b,c)=abc-cba. In view of (2) we have A(a,b,c)+A(c,b,a)=0. We begin with some lemmas which will be used in the sequel.

Lemma 1.1. Let R be a ring and δ a Jordan triple $(1, \phi)$ -derivation of R. Then

$$A(a,b,c)xB(a,b,c) + \phi(B(a,b,c))\phi(x)A(a,b,c) = 0$$

for all $a, b, c, x \in R$.

Proof. Consider
$$W = \delta(abcxcba + cbaxabc)$$
. Use (2) to obtain that
$$W = \delta((abc)x(cba) + (cba)x(abc))$$
$$= \delta(abc)xcba + \phi(abc)\delta(x)cba + \phi(abc)\phi(x)\delta(cba)$$
$$+\delta(cba)xabc + \phi(cba)\delta(x)abc + \phi(cba)\phi(x)\delta(abc).$$

On the other hand, in view of (3)

$$W = \delta((a(b(cxc)b)a) + (c(b(axa)b)c))$$

$$= \delta(a)bcxcba + \phi(a)\delta(b)cxcba + \phi(a)\phi(b)\delta(c)xcba$$

$$+\phi(a)\phi(b)\phi(c)\delta(x)cba + \phi(a)\phi(b)\phi(c)\phi(x)\delta(c)ba$$

$$+\phi(a)\phi(b)\phi(cxc)\delta(b)a + \phi(a)\phi(bcxcb)\delta(a)$$

$$+\delta(c)baxabc + \phi(c)\delta(b)axabc + \phi(c)\phi(b)\delta(a)xabc$$

$$+\phi(c)\phi(b)\phi(a)\delta(x)abc + \phi(c)\phi(b)\phi(a)\phi(x)\delta(a)bc$$

$$+\phi(c)\phi(b)\phi(axa)\delta(b)c + \phi(c)\phi(baxab)\delta(c).$$

Comparing the above two equations, we see that

 $A(a,b,c)xcba + \phi(abc)\phi(x)A(c,b,a) + A(c,b,a)xabc + \phi(cba)\phi(x)A(a,b,c) = 0$

for all $a, b, c \in R$. Recall that A(c, b, a) = -A(a, b, c). Thus $A(a, b, c)xB(a, b, c) + \phi(B(a, b, c))\phi(x)A(a, b, c) = 0$, as asserted.

Lemma 1.2. Let R be a semiprime ring and let R_i be additive subgroups of R for $i=1,\dots,n$, where n is a positive integer. If $H,K:R^n=R\times\dots\times R\to R$ are n-additive mappings such that $H(a_1,\dots,a_n)xK(a_1,\dots,a_n)=0$ for all $a_i\in R_i$ and $x\in R$, then $H(a_1,\dots,a_n)xK(b_1,\dots,b_n)=0$ for all $a_i,b_i\in R_i$ and $x\in R$.

Proof. Replacing a_1 with $a_1 + b_1$ and using the additivity of H and K, we have

$$H(a_1, a_2, \dots, a_n)xK(b_1, a_2, \dots, a_n) + H(b_1, a_2, \dots, a_n)xK(a_1, a_2, \dots, a_n) = 0,$$

for all $x \in R$. Next replacing x with $xK(b_1,a_2,\cdots,a_n)yH(a_1,a_2,\cdots,a_n)x$, it follows $H(a_1,a_2,\cdots,a_n)xK(b_1,a_2,\cdots,a_n)yH(a_1,a_2,\cdots,a_n)$ $xK(b_1,a_2,\cdots,a_n)xK(b_1,a_2,\cdots,a_n)=0$ for all $x,y\in R$. By semiprimeness of R, $H(a_1,a_2,\cdots,a_n)xK(b_1,a_2,\cdots,a_n)=0$ for all $x\in R$. Replacing a_i with a_i+b_i for $i\geq 2$ and continuing the same process as above, we will obtain the assertion of this lemma.

For an arbitrary ring R, we set $S = \{ \alpha \in Z(R) \mid \alpha R \subseteq Z(R) \}$. Obviously, S is an ideal of R and $\alpha bc = cb\alpha$ for all $\alpha \in S$ and $b, c \in R$.

Lemma 1.3. Let R be a semiprime ring and $a \in R$. If axy = yxa for all $x, y \in R$, then $a \in S$.

Proof. Let $x,y,z,w\in R$. Then a(wz)yx=yx(wz)a=ya(wz)x=y(zwa)x=(yzwa)x=awyzx. By semiprimeness of R, awzy=awyz. Thus aw[z,y]=0 for all $w,z,y\in R$. Hence ayw[a,y]=yaw[a,y]=0. In particular, [a,y]w[a,y]=0 for all $y,w\in R$. Since R is semiprime, [a,y]=0 for all $y\in R$. This implies that $a\in Z(R)$. So now axy=yxa=yax for all $x,y\in R$. Thus $ax\in Z(R)$ for all $x\in R$, as asserted.

We let $Q=Q_s(R)$ be the symmetric Martindale ring of quotients of a semiprime ring R. The center of Q denoted by C is called the extended centroid of R (see [3, chapter 2]). An element $\varepsilon \in C$ is called a central idempotent if $\varepsilon^2 = \varepsilon$. The following lemma is a special case of [9, Theorem 3.1] and we state its form needed here.

Lemma 1.4. Let R be a semiprime ring and let ϕ be an automorphism of R. If $a,b,c,d \in R$ and $axb = c\phi(x)d$ for all $x \in R$, then there exist central idempotents

 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5 \in C$ and an invertible element $q \in Q$ such that $\varepsilon_i \varepsilon_j = 0$ for $i \neq j$, $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 + \varepsilon_5 = 1_Q$ and

$$\varepsilon_1 \phi(x) = \varepsilon_1 q x q^{-1}, \varepsilon_1 a = \varepsilon_1 c q, \varepsilon_1 b = \varepsilon_1 q^{-1} d$$

$$\varepsilon_2 b = \varepsilon_2 d = \varepsilon_3 b = \varepsilon_3 c = \varepsilon_4 a = \varepsilon_4 d = \varepsilon_5 a = \varepsilon_5 c = 0$$

for all $x \in R$.

Corollary 1.5. Let R be a 2-torsion free semiprime ring and ϕ an automorphism of R. If $a, b \in R$ and $axb + \phi(b)\phi(x)a = 0$ for all $x \in R$, then axb = 0 for all $x \in R$.

Proof. In view of Lemma 1.4, there exist central idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5 \in C$ and an invertible element $q \in Q$ such that $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 + \varepsilon_5 = 1_Q$ and $\varepsilon_1 \phi(x) = \varepsilon_1 q x q^{-1}, \varepsilon_1 a = \varepsilon_1 \phi(b) q, \varepsilon_1 b = -\varepsilon_1 q^{-1} a, \varepsilon_2 b = \varepsilon_3 b = \varepsilon_4 a = \varepsilon_5 a = 0$. So $\varepsilon_1 a = -q(-\varepsilon_1 q^{-1} a) = -q\varepsilon_1 b = -\varepsilon_1 q b$ and $\varepsilon_1 a = \varepsilon_1 \phi(b) q = \varepsilon_1 q b q^{-1} q = \varepsilon_1 q b$. Hence $2\varepsilon_1 a = 0$. Since R is 2-torsion free, $\varepsilon_1 a = 0$ and then $\varepsilon_1 a x b = 0$. So it is easy to see that $axb = (\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 + \varepsilon_5) axb = 0$, as desired.

Corollary 1.6. Let R be a semiprime ring and ϕ an automorphism of R. If $\alpha \in Z(R)$, $b \in R$ and $(\phi(\alpha x) - \alpha x)b = 0$ for all $x \in R$, then $(\phi(x) - x)\alpha b = 0$ for all $x \in R$.

Proof. By assumption, $-\alpha xb + \phi(\alpha)\phi(x)b = 0$. In view of Lemma 1.4, there exist central idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5 \in C$ and an invertible element $q \in Q$ such that $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 + \varepsilon_5 = 1_Q$ and $\varepsilon_1 \phi(x) = \varepsilon_1 q x q^{-1}, \varepsilon_2 b = \varepsilon_3 b = \varepsilon_4 b = \varepsilon_5 \alpha = 0$. In particular, $\varepsilon_1 \phi(\alpha) = \varepsilon_1 q \alpha q^{-1} = \varepsilon_1 \alpha$. Thus $0 = \varepsilon_1 (-\alpha xb + \phi(\alpha)\phi(x)b) = \varepsilon_1 (-x + \phi(x))\alpha b$. So $(\phi(x) - x)\alpha b = (\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 + \varepsilon_5)(\phi(x) - x)\alpha b = 0$, as desired.

2. Proof of Theorem 1

Proof. Since $\theta^{-1}\delta$ is a Jordan triple $(1,\theta^{-1}\phi)$ -derivation, replacing δ by $\theta^{-1}\delta$ we may assume that δ is a Jordan triple $(1,\phi)$ -derivation. Then we have $A(a,b,c)xB(a,b,c)+\phi(B(a,b,c))\phi(x)A(a,b,c)=0$ for all $a,b,c,x\in R$ by Lemma 1.1. It follows from Corollary 1.5 that A(a,b,c)xB(a,b,c)=0 for all $a,b,c,x\in R$. Thus by Lemma 1.2 A(a,b,c)xB(r,s,t)=0 for all $a,b,c,r,s,t,x\in R$. For $a,b,c,x,r,s\in R$, we have

$$\begin{split} &B(A(a,b,c),r,s)xB(A(a,b,c),r,s)\\ &= \big(A(a,b,c)rs - srA(a,b,c)\big)xB(A(a,b,c),r,s)\\ &= A(a,b,c)rsxB(A(a,b,c),r,s) - srA(a,b,c)xB(A(a,b,c),r,s) = 0 \end{split}$$

By semiprimeness of R, B(A(a,b,c),r,s)=A(a,b,c)rs-srA(a,b,c)=0 for all $a,b,c,r,s\in R$. In light of Lemma 1.3, we see that $A(a,b,c)\in S$ for all $a,b,c\in R$. Let $\alpha\in S$ and $b,c\in R$. Then $\alpha,\alpha b,\alpha c\in Z(R)$ and $cb\alpha=c(\alpha b)=\alpha bc$. Similarly, $\delta(c)b\alpha=\alpha b\delta(c)$ and $\alpha\delta(b)c=c\delta(b)\alpha$ (††). Consider $W=\delta(\alpha bcxcb\alpha)$. Use (3) to obtain

$$W = \delta(\alpha(b(cxc)b)\alpha) = \delta(\alpha)bcxcb\alpha + \phi(\alpha)\delta(b)cxcb\alpha + \phi(\alpha)\phi(b)\delta(c)xcb\alpha + \phi(\alpha)\phi(b)\phi(c)\delta(x)cb\alpha + \phi(\alpha)\phi(b)\phi(c)\phi(x)\delta(c)b\alpha + \phi(\alpha)\phi(b)\phi(cxc)\delta(b)\alpha + \phi(\alpha)\phi(bcxcb)\delta(\alpha).$$

On the other hand, using (1) we have

$$W = \delta((\alpha bc)x(\alpha bc)) = \delta(\alpha bc)x\alpha bc + \phi(\alpha bc)\delta(x)\alpha bc + \phi(\alpha bc)\phi(x)\delta(\alpha bc).$$

Comparing the above two equations and noticing that $cb\alpha = \alpha bc$, we see that

$$\phi(\alpha bc)\phi(x)A(c,b,\alpha) + A(\alpha,b,c)x\alpha bc = 0.$$

Recall that $A(c, b, \alpha) = -A(\alpha, b, c)$ and $\alpha bc \in Z(R)$. So

$$\phi(\alpha bc)\phi(x)A(\alpha,b,c) - A(\alpha,b,c)x\alpha bc = 0,$$

for all $\alpha \in S$ and $b, c, x \in R$. In view of Corollary 1.6, $(\phi(x)-x)\alpha bcA(\alpha,b,c)=0$. Multiplying y form the right hand side, we have $(\phi(x)-x)\alpha bcyA(\alpha,b,c)=0$ since $A(\alpha,b,c)\in Z(R)$. Thus it follows from Lemma 1.2 that $(\phi(x)-x)\beta styA(\alpha,b,c)=0$ for all $\alpha,\beta\in S$ and $b,c,s,t,y\in R$. Replace β by $A(\alpha,b,c)$ to yield that $(\phi(x)-x)A(\alpha,b,c)^2=0$ for all $x\in R$. Note that $A(\alpha,b,c)[x,y]=[A(\alpha,b,c)x,y]=0$. This implies that $A(\alpha,b,c)[R,R]=0$. Thus

$$\begin{split} &2A(\alpha,b,c)^3\\ &=A(\alpha,b,c)^2\big(A(\alpha,b,c)-A(c,b,\alpha)\big)\\ &=A(\alpha,b,c)^2\big(\delta(\alpha b c)-\delta(\alpha)bc-\phi(\alpha)\delta(b)c-\phi(\alpha)\phi(b)\delta(c)\\ &-\delta(cb\alpha)+\delta(c)b\alpha+\phi(c)\delta(b)\alpha+\phi(c)\phi(b)\delta(\alpha)\big)\\ &=A(\alpha,b,c)^2\big(-\delta(\alpha)bc-\phi(\alpha)\delta(b)c-\phi(\alpha)\phi(b)\delta(c)\\ &+\delta(c)b\alpha+\phi(c)\delta(b)\alpha+\phi(c)\phi(b)\delta(\alpha)\big)\\ &=A(\alpha,b,c)^2\Big(\delta(\alpha)(\phi(bc)-bc)-\delta(\alpha)(\phi(b)\phi(c)-\phi(c)\phi(b))\\ &+(\phi(cb)\delta(\alpha)-\delta(\alpha)\phi(cb))-(\phi(\alpha)-\alpha)\delta(b)c\\ &+(\phi(c)-c)\delta(b)\alpha+(\alpha b-\phi(\alpha b))\delta(c)\Big) \ \ (\text{by } (\dagger\dagger))\\ &=A(\alpha,b,c)^2\Big(\delta(\alpha)(\phi(bc)-bc)-\delta(\alpha)[\phi(b),\phi(c)]+[\phi(cb),\delta(\alpha)]\\ &-(\phi(\alpha)-\alpha)\delta(b)c+(\phi(c)-c)\delta(b)\alpha+(\alpha b-\phi(\alpha b))\delta(c)\Big)=0. \end{split}$$

It is easy to see that Z(R) does not contain nonzero nilpotent elements. So it follows that $A(\alpha, b, c) = 0$ for all $\alpha \in S$ and $b, c \in R$. That is,

(4)
$$\delta(\alpha bc) - \delta(\alpha)bc - \phi(\alpha)\delta(b)c - \phi(\alpha)\phi(b)\delta(c) = 0.$$

Note that if $\alpha \in S$, then $\alpha R \subseteq S$ and $\phi(\alpha), \phi^{-1}(\alpha) \in S$. Let $\alpha \in S$ and $x, b, c \in R$. Applying (4) we obtain that

$$\delta(\alpha xabc) = \delta(\alpha)xabc + \phi(\alpha)\delta(x)abc + \phi(\alpha)\phi(x)\delta(abc)$$

and

$$\delta((\alpha xa)bc)$$

$$= \delta(\alpha xa)bc + \phi(\alpha xa)\delta(b)c + \phi(\alpha xa)\phi(b)\delta(c)$$

$$= (\delta(\alpha)xa + \phi(\alpha)\delta(x)a + \phi(\alpha)\phi(x)\delta(a))bc + \phi(\alpha xa)\delta(b)c + \phi(\alpha xa)\phi(b)\delta(c).$$

Comparing the above two equations, $\phi(\alpha)\phi(x)A(a,b,c)=0$ for all $\alpha\in S$ and $a,b,c\in R$. Replacing α by $\phi^{-1}(A(a,b,c))$, we see that $A(a,b,c)\phi(x)A(a,b,c)=0$. By semiprimeness of R, A(a,b,c)=0 for all $a,b,c\in R$. That is $\delta(abc)=\delta(a)bc+\phi(a)\delta(b)c+\phi(a)\phi(b)\delta(c)$ for all $a,b,c\in R$. Consider $W=\delta(abxab)$. Then

$$W = \delta(a(bxa)b)$$

$$= \delta(a)bxab + \phi(a)\delta(bxa)b + \phi(a)\phi(bxa)\delta(b)$$

$$= \delta(a)bxab + \phi(a)(\delta(b)xa + \phi(b)\delta(x)a + \phi(b)\phi(x)\delta(a))b + \phi(a)\phi(bxa)\delta(b).$$

On the other hand,

$$W = \delta((ab)x(ab)) = \delta(ab)xab + \phi(ab)\delta(x)ab + \phi(ab)\phi(x)\delta(ab).$$

Comparing the above two equations, we have

$$(\delta(ab) - \phi(a)\delta(b) - \delta(a)b)xab + \phi(ab)\phi(x)(\delta(ab) - \phi(a)\delta(b) - \delta(a)b) = 0.$$

By Corollary 1.5, $(\delta(ab) - \phi(a)\delta(b) - \delta(a)b)xab = 0$. Thus it follows from Lemma 1.2 that $(\delta(ab) - \phi(a)\delta(b) - \delta(a)b)xcd = 0$ for all $a, b, c, d, x \in R$. By semiprimeness of R, $\delta(ab) - \phi(a)\delta(b) - \delta(a)b = 0$, as desired.

3. Proof of Theorem 2

Proof. Proof. Suppose T is a Jordan triple left centralizer. We write A(a,b,c)=T(abc)-T(a)bc and B(a,b,c)=abc-bca. By assumption, T(aba)=T(a)ba for

all $a, b \in R$. Replacing a by a + c, we see that T(abc + cba) = T(a)bc + T(c)ba. Consider W = T(abcxcba + cbaxabc). Then

$$W = T((abc)x(cba) + (cba)x(abc)) = T(abc)xcba + T(cba)xabc.$$

On the other hand,

$$W = T((a(b(cxc)b)a) + (c(b(axa)b)c)) = T(a)bcxcba + T(c)baxabc.$$

So A(a,b,c)xcba+A(c,b,a)xabc=0 for all $a,b,c,x\in R$. Recall that A(c,b,a)=-A(a,b,c). Thus A(a,b,c)xB(a,b,c)=0. By Lemma 1.2, A(a,b,c)xB(r,s,t)=0 for all $a,b,c,r,s,t,x\in R$. For $a,b,c,x,r,s\in R$, we have

$$\begin{split} &B(A(a,b,c),r,s)xB(A(a,b,c),r,s)\\ &= \big(A(a,b,c)rs - srA(a,b,c)\big)xB(A(a,b,c),r,s)\\ &= A(a,b,c)rsxB(A(a,b,c),r,s) - srA(a,b,c)xB(A(a,b,c),r,s) = 0 \end{split}$$

By semiprimeness of R, B(A(a,b,c),r,s)=A(a,b,c)rs-srA(a,b,c)=0 for all $a,b,c,r,s\in R$. In light of Lemma 1.3, we see that $A(a,b,c)\in S$ for all $a,b,c\in R$. Let $\alpha\in S$ and $b,c\in R$. Consider $W=T(\alpha bcxcb\alpha)$. Then $T(\alpha)bcxcb\alpha=T(\alpha(b(cxc)b)\alpha)=W=T((\alpha bc)x(\alpha bc))=T(\alpha bc)x\alpha bc$. Thus $A(\alpha,b,c)x\alpha bc=0$. By Lemma 1.2, $A(\alpha,b,c)x\beta st=0$ for all $\alpha,\beta\in S$ and $b,c,s,t,x\in R$. Since $A(\alpha,b,c)\in S$, we have $A(\alpha,b,c)^2xst=0$. By semiprimeness of R, $A(\alpha,b,c)^2=0$. Recall that Z(R) contains no nonzero nilpotent elements. Hence $A(\alpha,b,c)=0$. In particular, $A(c,b,\alpha)=0$. That is, $T(cb\alpha)=T(c)b\alpha$ for all $b,c\in R$ and $\alpha\in S$. Let $a,b,c\in R$ and $\alpha=A(a,b,c)$. Then

$$T(abc)\alpha^2 = T((abc)\alpha\alpha) = T(a(bc)(\alpha^2)) = T(a)bc\alpha^2.$$

Hence $\alpha^3 = (T(abc) - T(a)bc)\alpha^2 = 0$. Thus $\alpha = 0$. This means that T(abc) = T(a)bc for all $a, b, c \in R$. Now we have T(a)bxab = T(abxab) = T(ab)xab. Then (T(ab) - T(a)b)xab = 0. By Lemma 1.2, (T(ab) - T(a)b)xst = 0 for all $a, b, x, s, t \in R$. By semiprimeness of R, T(ab) - T(a)b = 0, as desired.

ACKNOWLEDGMENT

The authors are thankful to the referee for her/his useful suggestions and comments.

REFERENCES

1. M. Ashraf and Wafa S.M. Al-Shammakh, On generalized (θ, ϕ) -derivations in rings, *Int. J. Math. Game Theory and Algebra*, **12** (2002), 295-300.

- 2. M. Ashraf, A. Ali and S. Ali, On Lie ideals and generalized (θ, ϕ) -Jordan derivations on prime rings, *Comm. Algebra*, **32** (2004), 2977-2985.
- 3. K. I. Beidar, W. S. Martindale 3rd and A.V. Mikhalev, "Rings with Generalized Identities", Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
- 4. M. Brešar, Jordan derivations on semiprime rings, *Proc. Amer. Math. Soc.*, **104** (1988), 1003-1006.
- 5. M. Brešar, Jordan mappings of semiprime rings, J. Algebra, 127 (1989), 218-228.
- 6. M. Brešar and J. Vukman, Jordan derivations on prime rings, *Bull. Austral. Math. Soc.*, **37** (1988), 321-322.
- 7. M. Brešar and J. Vukman, Jordan (θ, ϕ) -derivations, *Glasnik Math.*, **46** (1991), 13-17.
- 8. M. Brešar and A. R. Villena, The noncommutative Singer-Wermer conjecture and ϕ -derivations, *J. London Math. Soc.*, **66** (2002), 710-720.
- 9. D. Eremita, A functional identity with an automorphism in semiprime rings, *Algebra Colloq.*, **8** (2001), 301-306.
- 10. I. N. Herstein, Jordan derivations of prime rings, *Proc. Amer. Math. Soc.*, **8** (1957), 1104-1110.
- 11. B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (1998), 1147-1166.
- 12. B.E. Johnson, The uniqueness of the (complete) norm topology, *Bull. Amer. Math. Soc.*, **73** (1967), 537-539.
- 13. T.-K. Lee, Generalized derivations of left faithful rings, *Comm. Algebra*, **27** (1999), 4057-4073.
- 14. Jing Wu and Shijie Lu, Generalized Jordan derivations of prime rings and standard operator algebras, *Taiwanese J. Math.*, **7** (2003), 605-613.
- 15. B. Zalar, On centralizers of semiprime rings, *Comment. Math. Univ. Carolinae*, **32** (1991), 609-614.

Cheng-Kai Liu
Department of Mathematics,
National Changhua University of Education,
Changhua 500,
Taiwan
E-mail: ckliu@cc.ncue.edu.tw

Wen-Kwei Shiue Department of Computer Science, Dahan Institute of Technology, Hualien 971, Taiwan E-mail: wkxue@yahoo.com.tw