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GENERALIZED JORDAN TRIPLE (0, ¢)-DERIVATIONS
ON SEMIPRIME RINGS

Cheng-Kai Liu and Wen-Kwei Shiue

Abstract. Let R be a 2-torsion free semiprime ring. In this paper we will
show that every Jordan triple (8, ¢)-derivationon R is a (6, ¢)-derivation. Also
every Jordan triple left centralizer on R is a left centralizer. As a consequence,
every generalized Jordan triple (6, ¢)-derivation on R is a generalized (6, ¢)-
derivation. This result gives an affirmative answer to the question posed by
Wu and Lu in [14].

0. INTRODUCTION AND RESULTS

Throughout this paper R will denote an associative ring with center Z(R). For
any z,y € R, we denote the commutator [z,y] = zy — yx. A ring R is said to
be 2-torsion free whenever 22 = 0, with x € R, implies x = 0. Recall that R
is said to be semiprime if xRz = 0 implies z = 0 and R is said to be prime if
xRy = 0 implies that z = 0 or y = 0. A mapping § : R — R is called additive
if 0(x +y) = d(z) + o(y) for all z,y € R. Let 6,¢ be automorphisms of R
and let 1 denote the identity mapping of R. An additive mapping § : R — R is
called a (6, ¢)-derivation of R if §(zy) = 0(x)0(y) + ¢(x)d(y) for all z,y € R.
An additive mapping § : R — R is called a Jordan (8, ¢)-derivation of R if
§(x?) = 6(x)0(x) + ¢(x)d(x) for all x € R. An additive mapping § : R — R is
called a Jordan triple (6, ¢)-derivation of R if

() d(zyr) = 0(x)0(y)0(x) + ¢(x)d(y)0(x) + ()P (y)d(x)

for all z,y € R. Obviously, every (0, ¢)-derivation is a Jordan (8, ¢)-derivation. In
view of [7, Proposition 3] every Jordan (6, ¢)-derivation is a Jordan triple (6, ¢)-
derivation. For brevity, (1, 1)-derivations are simply called derivations. A famous
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result of Herstein [10] states that every Jordan derivation on a 2-torsion free prime
ring is a derivation. Later Bresar [4] showed that the same result is true in semiprime
rings. Since every Jordan derivation is also a Jordan triple derivation, furthermore
Bresar [5] proved that every Jordan triple derivation on a 2-torsion free semiprime
ring is a derivation. Recently, the above results have been extended to Jordan (6, ¢)-
derivations on prime rings by Bresar and Vukman [7]. In the present paper we will
generalize these results to semiprime rings and prove the following:

Theorem 1. Let R be a 2-torsion free semiprime ring and let 8, ¢ be auto-
morphisms of R. If § : R — R is a Jordan triple (0, ¢)-derivation, then ¢ is a
(0, ¢)-derivation.

Corollary 1. Let R be a 2-torsion free semiprime ring and let 6, ¢ be auto-
morphisms of R. Then every Jordan (6, ¢)-derivation of R is a (6, ¢)-derivation.

An additive mapping 7" : R — R is called a left (right) centralizer of R
if T(zy) = T(x)y (T(xy) = zT(y)) for all z,y € R. An additive mapping
T : R — R is called a Jordan left (right) centralizer of R if T(z?) = T(x)x
(T(2?) = 2T (z)) for all z € R. An additive mapping 7' : R — R is called a
Jordan triple left (right) centralizer of R if T'(zyzx) = T(x)yx (T'(zyzx) = zyT(x))
for all x,y € R. In [15], Zalar proved that every Jordan left (right) centralizer on a
2-torsion free semiprime ring is a left (right) centralizer. It is easy to see that every
Jordan left (right) centralizer is also a Jordan triple left (right) centralizer. We now
generalize Zalar’s result as follows.

Theorem 2. Let R be a 2-torsion free semiprime ring. If T : R — R is a
Jordan triple left (right) centralizer, then 7" is a left (right) centralizer.

An additive mapping F': R — R is called a generalized (0, ¢)-derivation of R
if there exists a (6, ¢)-derivation ¢ of R such that F(xy) = F(2)0(y) + ¢(x)d(y)
for all z,y € R (see [11,13]). As usual, generalized (1, 1)-derivations are called
generalized derivations. Motivated by the concept of generalized derivations, Wu
and Lu [14] initiated the study of generalized Jordan derivations and generalized
Jordan triple derivations. An additive mapping F' : R — R is called a generalized
Jordan (0, ¢)-derivation of R if there exists a Jordan (6, ¢)-derivation § of R such
that F'(22) = 6(z)0(z) + ¢(x)d(x) for all z € R. An additive mapping F : R — R
is called a generalized Jordan triple (6, ¢)-derivation of R if there exists a Jordan
triple (0, ¢)-derivation § of R such that

(1) Feyz) = F(2)0(y)0(x) + ¢(x)0(y)0(x) + d(x)p(y)d(x)

for all x, y € R. Moreover, ¢ is called the relating Jordan triple (8, ¢)-derivation of
F. In [14], Wu and Lu proved that every generalized Jordan derivation on a prime
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ring is a generalized derivation. Recently Ashraf et al. [1,2] extended this result to
generalized Jordan (6, ¢)-derivations on Lie ideals of prime rings. Now applying
Theorem 1 and 2, we can solve the conjecture raised by Wu and Lu in [14, page
608 and 611].

Theorem 3. Let R be a 2-torsion free semiprime ring and let 8, ¢ be auto-
morphisms of R. If F: R — R is a generalized Jordan triple (6, ¢)-derivation,
then F' is a generalized (6, ¢)-derivation.

Proof. Let § be the relating Jordan triple (6, ¢)-derivation of F satisfying (7).
By Theorem 1, § must be a (6, ¢)-derivation. Set G = F — 6. Then in view
of (1) and (11), we have G(zyz) = G(z)0(y)0(x). So 6~1G becomes a Jordan
triple left centralizer. Applying Theorem 2 yields that =G (xy) = 6~'G(z)y for
all z,y € R. That is, G(xy) = G(2)6(y). Then F(xy) = 6(zy) + F(x)0(y) —
§(z)0(y) = F(x)0(y)+¢(x)d(y), implying that F' is a generalized (6, ¢)-derivation.

Since every generalized Jordan (6, ¢)-derivation is also a generalized Jordan
triple (60, ¢)-derivation [1, Lemma 2.1], we immediately obtain

Corollary 2. Let R be a 2-torsion free semiprime ring and let 8, ¢ be automor-
phisms of R. Then every generalized Jordan (6, ¢)-derivation of R is a generalized
(0, ¢)-derivation.

By using the fact that every linear (6, ¢)-derivation on a semisimple Banach
algebra is continuous, now we can extend [4, Theorem 6] to generalized (6, ¢)-
derivations.

Theorem 4. Let A be a complex semisimple Banach algebra and let 8, ¢ be
linear automorphisms of A. If F': A — A is a linear generalized Jordan triple
(0, ¢)-derivation and § is the relating linear Jordan triple (6, ¢)-derivation of F
then F' is continuous.

Proof. By Theorem 3, F' is a generalized (6, ¢)-derivation. Since ¢ and ¢
are continuous [12], it follows from [8, Corollary 4.3] that § is continuous. Set
G = F —§. Then #~'G becomes a left centralizer. Hence #~'G is continuous
by [15, Corollary 1.5] and so G is continuous as well. This implies that F' is
continuous, as desired.

Corollary 3. Let A be a complex semisimple Banach algebra and let 6, ¢ be
linear automorphisms of A. Then every linear generalized Jordan (6, ¢)-derivation
is continuous.

1. PRELIMINARIES

Throughout this section we shall denote by ¢ a Jordan triple (1, ¢)-derivation
of aring R. Then
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(1) d(aba) = d(a)ba + ¢p(a)d(b)a + ¢(a)p(b)d(a)
for all a,b € R. Replacing a with a + ¢ in (1), we obtain that
d(abc + cba) = d(a)bc+ ¢(a)d(b)c+ ¢(a)p(b)d(c)
+6(c)ba + ¢(c)d(b)a + ¢(c)p(b)é(a),
for all a,b,c € R. A direct expansion by using (1) yields that
d(abcxcba) = §(a(b(cxc)b)a)
= 0(a)becxcba + ¢(a)d(b(czc)b)a+ qb(a)qb(bca:cb) (a)
= b(a)bcazcba+ ¢(a) (8(b)cxeb+ ¢(b)d(cac
3) +6(6)0(cae)o(b))a + 6(a) <bcmcb>5<a>
) )
+¢(a)

(2)

= 0(a)bcxcba + ¢(a)d(b)crcba+ ¢(a ¢(b)(5(c)mcba

P(b)o(c)d(x)cba + ¢(a)p(b)d(c)p(x)d(c)b
+¢(a)@(b)d(czc)d(b)a+ ¢(a)¢(beacb)d(a
)0

)-
Following Bresar [5], we write A(a, b, ¢) =6(abc)—0(a)be—p(a)d(b)c—p(a) ( )o(c)
and B(a, b, ¢) = abc — cba. In view of (2) we have A(a,b,c)+ A(c,b,a) =0. We
begin with some lemmas which will be used in the sequel.

Lemma 1.1. Let R be a ring and ¢ a Jordan triple (1, ¢)-derivation of R.
Then
A(a, b, ¢)zB(a, b, ¢) + ¢(B(a, b, ¢))p(x) A(a, b, c) = 0

forall a,b,c,x € R.
Proof. Consider W = é(abczcba + cbazabe). Use (2) to obtain that
W = 06((abc)z(cba) + (cba)x(abc))
= d(abc)xzcba + ¢p(abe)d(z)cba+ ¢(abe)p(x)d(cba)
+d(cba)zabe + ¢(cba)d(x)abe+ ¢(cba)d(x)d(abe).
On the other hand, in view of (3)
W = é((a(b(czc)b)a) + (c(b(axza)b)c))
= 0(a)bexcba + ¢(a)d(b)crcba+ ¢p(a)d(b)d(c)xcba
+¢(a)d(b)¢(c)d(x)cba+ ¢(a)p(b)d(c)¢(x)d(c)ba
¢(a)¢(b)d(cxc)d(b)a+ ¢(a)p(bercb)d(a)
+d(c)baxabe + ¢(c)d(b)axabe + ¢(c)p(b)d(a)xabe
+¢(c)p(b)p(a)d(x)abe + p(c)(b)p(a)p(z)d(a)be
+¢(c)p(b)p(axa)d(b)c+ ¢(c)p(baxab)d(c).

_l’_

(c (
( (

c
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Comparing the above two equations, we see that
A(a, b, c)xcba+ ¢p(abe)p(x)A(e, b, a)+ A(c, b, a)rabe+ ¢(cba)p(x)A(a,b,c) =0

forall a, b, c € R. Recall that A(c, b, a) = —A(a,b,c). Thus A(a, b, c)xB(a,b,c)+
¢(B(a, b, c))p(x)A(a,b,c) =0, as asserted.

Lemma 1.2. Let R be a semiprime ring and let R; be additive subgroups of R
fori =1,---,n,where nis apositive integer. If H, K : R = Rx---xR — R are
n-additive mappings such that H(a1,---,a,)xK (a1, ,a,) =0 forall a; € R;
and z € R, then H(ay,- -, an)zK(by, -+ ,b,) =0foralla;,b; € R; and z € R.

Proof. Replacing a; with a; + b; and using the additivity of H and K, we
have

H(a’17 ag, - 7a,n)fI,'K(b17 ag, - 7a’n)+H(b17 ag, - 7a’n)xK(a’17 ag, - 7a’7’b) = 07

for all z € R. Next replacing = with K (b1, ag, -, an)yH (a1, a9, -, ap)z, it
follows H (ai, as, - - ,an)xK (b1, a9, - ,an)yH (a1, a9, -, an) vK (b1, az, - -,
ap)=0forall z,y € R. By semiprimeness of R, H(ay, az, - - ,an)zK (b1, a9, -,

ap) = 0 for all x € R. Replacing a; with a; 4+ b; for ¢ > 2 and continuing the same
process as above, we will obtain the assertion of this lemma.

For an arbitrary ring R, we set S = {a € Z(R) | aR C Z(R)}. Obviously, S
is an ideal of R and abc = cba for all « € S and b, ¢ € R.

Lemma 1.3. Let R be a semiprime ring and a € R. If axy = yza for all
z,y € R, thena € S.

Proof. Let z,y,z,w € R. Then a(wz)yzx = yz(wz)a = ya(wz)r =
y(zwa)r = (yzwa)xr = awyzz. By semiprimeness of R, awzy = awyz. Thus
aw[z,y] = 0 for all w, z,y € R. Hence ayw|a,y] = yaw|a,y] = 0. In particular,
[a, y]w[a,y] = 0 for all y,w € R. Since R is semiprime, [a,y] = 0 for all y € R.
This implies that « € Z(R). So now axy = yxa = yax for all x,y € R. Thus
ax € Z(R) for all z € R, as asserted.

We let Q = Qs (R) be the symmetric Martindale ring of quotients of a semiprime
ring R. The center of @ denoted by C' is called the extended centroid of R (see
[3, chapter 2]). An element ¢ € C is called a central idempotent if 2 = . The
following lemma is a special case of [9, Theorem 3.1] and we state its form needed
here.

Lemma 1.4. Let R be a semiprime ring and let ¢ be an automorphism of R. If
a,b,c,d € R and axb = co(x)d for all x € R, then there exist central idempotents
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€1,€2,€3,€4,65 € C and an invertible element ¢ € @ such that € ;e; = 0 for i # j,
€1 t+éEx+tezt+eg+tes = 1Q and

1

e10(x) = e1qrq ', e10 = e1cq, e1b = e1¢71d

€9b =¢e9d = e3b = e3¢ = c4a = e4d = e5a = e5¢ =0

for all z € R.

Corollary 1.5. Let R be a 2-torsion free semiprime ring and ¢ an automor-
phism of R. If a,b € R and axb+ ¢(b)p(z)a = 0 for all = € R, then axb = 0 for
all z € R.

Proof. In view of Lemma 1.4, there exist central idempotents e, eo, €3, €4, €5 €
C and an invertible element ¢ € @ such that e; +¢e2 +¢e3 +¢e4 +¢e5 = 1¢g and
e10(z) = e1qrq b, e1a = e10(b)q, e1b = —e1q¢ La, e9b = e3b = 40 = e5a = 0.
S0 e1a = —q(—e1q7'a) = —qe1b = —e1gb and e1a = e16(b)q = c1qbq " 'q =
€1gb. Hence 2e1a = 0. Since R is 2-torsion free, e1a = 0 and then e1axb = 0. So
it is easy to see that axb = (g1 + €2 + €3 + €4 + €5)axb = 0, as desired.

Corollary 1.6. Let R be a semiprime ring and ¢ an automorphism of R. If
a€ Z(R),be Rand (¢p(ax) —ax)b =0 for all x € R, then (¢(z) — z)ab =0
for all x € R.

Proof. By assumption, —axb + ¢(a)¢(x)b = 0. In view of Lemma 1.4, there
exist central idempotents 1, €9, €3, €4, €5 € C and an invertible element ¢ € @ such
that &1 +e2+e3+ca+e5 = 1g and e1p(x) = e1qrq !, e9b = e3b = e4b = g5 = 0.
In particular, e1¢(a) = e1gaq™! = e1a. Thus 0 = e1(—axb + ¢(a)p(z)b) =
e1(—z+ ¢(x))ab. So (p(x) —x)ab = (e1 +e2 +e3+ea+¢5)(P(x) —x)ab = 0,
as desired.

2. PrRoOOF oF THEOREM 1

Proof.  Since #~'§ is a Jordan triple (1,6~ '¢)-derivation, replacing J by
6=15 we may assume that & is a Jordan triple (1, ¢)-derivation. Then we have
A(a,b,c)xB(a,b,c) + ¢(B(a,b,c))p(x)A(a,b,c) = 0 for all a,b,c,x € R by
Lemma 1.1. It follows from Corollary 1.5 that A(a,b,c)zB(a,b,c) = 0 for all
a,b,c,x € R. Thusby Lemma 1.2 A(a,b,c)xB(r,s,t)=0forall a,b,c,r, s, t,x €
R. Fora,b,c,z,r,s € R, we have

B(A(a,b,c),r,s)xB(A(a,b,c),r, s)
= (A(a,, b, c)rs — srA(a, b, c))xB(A(a, b,c),r,Ss)
= A(a, b, c)rszB(A(a,b,c),r,s) — srA(a,b,c)xB(A(a,b,c),r,s) =0
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By semiprimeness of R, B(A(a,b,c),r,s) = A(a,b,c)rs —srA(a,b,c) =0 for all
a,b,c,r,s € R. Inlight of Lemma 1.3, we see that A(a,b,c) € S forall a, b, c € R.
Letaw € Sand b, c € R. Thena, ab, ac € Z(R) and cba = ¢(ab) = abe. Similarly,
d(c)ba = abd(c) and ad(b)c = cd(b)a (T T T). Consider W = d(abczcba). Use
(3) to obtain

W = 6(a(b(czc)b)a) = §(a)bexcba+ ¢(a)d(b)cxcba+ ¢(a)d(b)d(c)xcbo
+¢(a)p(b)d(c)d(x)cba+ ¢(a)d(b)d(c)p(x)d(c)bar
+(a)d(b)p(cze)d(b)a + ¢p(a)p(bexeb)d(w).

On the other hand, using (1) we have
W = 6((abc)x(abe)) = 6(abe)xabe + ¢(abe)d(z)abe+ ¢(abe)d(x)d(abe).
Comparing the above two equations and noticing that cba = abe, we see that
d(abe)p(x)A(e, b, a) + A(a, b, ¢
Recall that A(c,b, o) = —A(a, b, ¢) and abec € Z(R
d(abe)p(x)A(a, b, c) — A(a, b, c)zabe = 0,

foralla € Sand b, ¢, x € R. Inview of Corollary 1.6, (¢(z)—x)abcA(a, b, c) = 0.
Multiplying y form the right hand side, we have (¢(x) —z)abcyA(a, b, ¢) = 0 since
A(a, b, c) € Z(R). Thusit follows from Lemma 1.2 that (¢(x)—z)BstyA(a, b, ¢) =
0foralla, 3 € Sandb,c,s,t,y € R. Replace 8 by A(a, b, c) to yield that (¢(x) —
1)A(a,b,c)? = 0 for all x € R. Note that A(a, b,c)[z,y] = [A(a, b, ¢)xz, y] = 0.
This implies that A(a, b, ¢)[R, R] = 0. Thus

2A(a, b, c)?
= A(a,b,¢)*(A(a, b, c) — A(c, b, )
= A(a, b, c)*(d(abe) — d(a)be — dp(a)d(b)c — d(a)p(b)d(c)
—d(cba) + 8(c)ba+ ¢(c)d(b)a + d(c)p(b)d(a))
= A(a, b, ¢)*( = d(a)be — p(a)d(b)e — p(a)¢(b)(c)
+d(c)ber + ¢(c)d(b)a+ ¢(c)p(b)d(ar))
= A(a,b, ¢)2(8(@)(9(be) — be) — () (&(b)9
p(cb)d(a) — 6(a)op(ch)) — (¢(a) — a)
(c) —c)d(b)ar+ (ab — ¢(ab))d(c) ) (by (T11))
a,b, c)? ( () (¢(bc) — be) — 6(a)[@(b), d(c)] + [p(ch), 6(ar)]
¢(a) — )d(b)c+ (¢(c) — c)d(b)a+ (ab — ¢(ab))5(c)) =0.

zabe = 0.

)
). So

(¢) = o(c)¢(D))
5(b)c

+
=A

\_/Q

—~

+(
(¢
(
—(
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It is easy to see that Z(R) does not contain nonzero nilpotent elements. So it follows
that A(a, b,¢) =0 for all « € S and b,c € R. That is,

(4) 5(abe) — d(a)be — g(a)d(b)e — p(a)$(b)5(c) = 0.

Note that if o € S, thenaR C S and ¢(a), ¢ *(a) € S. Leta € Sand x,b,c € R.
Applying (4) we obtain that

d(azxabe) = d(a)xabe + ¢(a)d(x)abe + ¢(a)p(x)d(abe)

and
d((azxa)be)
= d(aza)be + ¢(aza)d(b )C+¢( a)p(b)d(c)
= (§(a)za+o(a)d(z)a+¢( )8(a))be+o(aza)d(b)e+d(aza)d(b)d(c).

Comparing the above two equations, ¢(a)¢(z)A(a,b,c) = 0 for all & € S and
a,b,c € R. Replacing o by ¢~!(A(a, b, c)), we see that A(a, b, c)p(z)A(a, b, c) =
0. By semiprimeness of R, A(a,b,c) = 0 for all a,b,c € R. That is §(abc) =
d(a)be + ¢(a)d(b)c + ¢(a)p(b)o(c) for all a,b,c € R. Consider W = §(abzab).
Then

w

d(a(bza)d)

d(a)bxab+ ¢(a)d(bxra)b+ ¢(a)p(bxra)d(b)

d(a)bzab+¢(a) ((5(b)ma+¢(b)(5(m)a+¢(b)¢(m)(5(a))b—|—¢(a)¢(ba:a)(5(b).
On the other hand,

W = 6((ab)z(ab)) = d(ab)zab+ ¢(ab)d(z)ab+ ¢(ab)p(x)o(ab).
Comparing the above two equations, we have
(6(ab) — ¢(a)d(b) — 6(a)b)zab+ ¢(ab)¢(x)(6(ab) — ¢(a)é(b) — (a)b) = 0.

By Corollary 1.5, (6(ab) — ¢

1.2 that (6(ab) — ¢(a)d(b) —
ness of R, §(ab) — ¢(a)d(b) —

(a)d(b) —0(a)b)xab= 0. Thus it follows from Lemma
d(a)b)xcd =0 for all a,b,c,d,x € R. By semiprime-
d(a)b =0, as desired.

3. ProoOF OF THEOREM 2

Proof. Proof. Suppose T is a Jordan triple left centralizer. We write A(a, b, ¢) =
T(abc) —T(a)bcand B(a, b, c) = abc— bea. By assumption, T'(aba) = T'(a)ba for
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all a,b € R. Replacing a by a + ¢, we see that T'(abc + cba) = T'(a)bc + T'(c)ba.
Consider W = T'(abczcba + cbaxabe). Then

W = T((abc)z(cba) + (cba)x(abe)) = T'(abe)xcba + T (cba)xabe.
On the other hand,
W = T((a(b(czc)b)a) + (c(b(axa)b)c)) = T(a)bexcba + T(c)bazxabe.

So A(a, b, c)xcba+A(c,b,a)rabe = 0 forall a,b, ¢,z € R. Recall that A(c, b, a) =
—A(a, b, c). Thus A(a,b,c)xB(a,b,c) =0. By Lemma 1.2, A(a,b,c)zB(r,s,t) =
0 forall a,b,c,r,s,t,x € R. Fora,b,c,z,7,s € R, we have

B(A(a,b,c),r,s)xB(A(a,b,c),r,s)
= (A(a, b, c)rs— srA(a,b, c))mB(A(a, b,c),r,s)
= A(a,b,c)rsxB(A(a,b,c),r,s)— srA(a,b,c)xB(A(a,b,c),r,s) =0

By semiprimeness of R, B(A(a,b,c),r,s) = A(a,b,c)rs —srA(a,b,c) =0 for all
a,b,c,r,s € R. Inlight of Lemma 1.3, we see that A(a,b,c) € S forall a, b, c € R.
Let « € S and b,c € R. Consider W = T(abcxcba). Then T'(a)bcxcba =
T(a(b(cxe)b)a) =W = T((abc)z(abe)) = T(abc)zabe. Thus A(a, b, c)xabe =
0. By Lemma 1.2, A(«,b,c)zfst =0 forall o, 5 € S and b, ¢, s,t,x € R. Since
A(a, b,c) € S, we have A(a, b, c)?xst = 0. By semiprimeness of R, A(a, b,c)? =
0. Recall that Z(R) contains no nonzero nilpotent elements. Hence A(a, b, ¢) = 0.
In particular, A(c,b, ) = 0. That is, T'(cba) = T'(c)ba for all b,c € Rand o € S.
Leta,b,ce R and a = A(a,b,c). Then

T(abc)a? = T((abc)aa) = T(a(be)(a?)) = T(a)bea’.

Hence o® = (T(abe) — T(a)be)a? = 0. Thus o = 0. This means that T'(abc) =
T(a)bc for all a,b,c € R. Now we have T'(a)bzab = T(abxab) = T(ab)xab.
Then (T'(ab) — T'(a)b)zab = 0. By Lemma 1.2, (T'(ab) — T'(a)b)xzst = 0 for all
a,b,x,s,t € R. By semiprimeness of R, T'(ab) — T'(a)b = 0, as desired.
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