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OSCILLATION THEOREMS RELATED TO AVERAGING
TECHNIQUE FOR SECOND ORDER NONLINEAR

NEUTRAL DIFFERENTIAL EQUATIONS

Zhiting Xu

Abstract. Some oscillation theorems are established by the averaging tech-
nique for the second order nonlinear neutral delay differential equation

(r(t)|x′(t)|γ−1x′(t) )′ + q1(t)|y(t − σ1)|α−1y(t − σ1)

+q2(t)|y(t − σ2)|β−1y(t − σ2) = 0, t ≥ t0,

where x(t) = y(t) + p(t)y(t − τ ), τ , σ1 and σ2 are nonnegative constants,
α, β and γ are positive constants, and r, p, q1, q2 ∈ C([t0,∞), R). The
results obtained here essentially improve some known results in the literature.
In particular, two interesting examples that point out the applications of our
results are also included.

1. INTRODUCTION

In this paper, we study the problem of oscillation of the second order nonlinear
neutral delay differential equation

(1.1)
(r(t)|x′(t)|γ−1x′(t) )′ + q1(t)|y(t − σ1)|α−1y(t − σ1)

+q2(t)|y(t− σ2)|β−1y(t − σ2) = 0, t ≥ t0,

where x(t) = y(t) + p(t)y(t − τ).
In what follows we will assume that

(A1) τ , σ1 and σ2 are nonnegative constants, α, β and γ are positive constants
with 0 < α < γ < β;
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(A2) r, q1, q2 ∈ C([t0,∞), R
+ = (0,∞)), and

∞∫
r−1/γ(s)ds = ∞;

(A3) p ∈ C([t0,∞), R), and −1 < p0 ≤ p(t) ≤ 1, p0 constant.

Our attention is restricted to those solutions of (1.1) which exist on some half
line [tx,∞) with sup{|y(t)| : t ≥ T} > 0 for any T ≥ tx, and satisfy (1.1). We
make the standing hypothesis that (1.1) does possess such solution [11]. As usual,
a solution of (1.1) is said to be oscillatory if the set of its zeros is unbounded from
above, otherwise it is called nonoscillatory. (1.1) is called oscillatory if all of its
solutions are oscillatory.

We note that second order neutral delay differential equations are used in many
fields such as vibrating masses attached to an elastic bar and some variational
problems, etc., see, for example [11].

In the last decades, there has been an increasing interest in obtaining suffi-
cient conditions for the oscillation and /or nonoscillation of second order linear and
nonlinear neutral delay differential equations (see, for example, 1-3,5,7-10,14,15,17-
21,24 and the references therein). For the second order neutral delay differential
equation

(1.2) [y(t) + p(t)y(t − τ)]′ ′ + q(t)f(y(t − σ)) = 0.

To the best of our knowledge, almost all of the known results obtained for (1.2)
required the assumption that the function f(y) satisfies f ′(y) ≥ k > 0 or f(y)/y ≥
k > 0 for y �= 0, (see 2, 5, 7-10, 14, 15, 17, 18, 24), which is not applicable
for f(y) = |y|ν−1y, the classical Emden-Fowler case. Very recently, the results
of Atkinson [4] and Belohorec [6] for second order ordinary differential equation
have been extended to (1.2) by Wong [21] under the assumption that the nonlinear
function f satisfies the sublinear condition

0 <

ε∫
0+

du

f(u)
,

−ε∫
0−

du

f(u)
< ∞ for all ε > 0,

as well as the superlinear condition

0 <

∞∫
ε

du

f(u)
,

−∞∫
−ε

du

f(u)
< ∞ for all ε > 0.

Also it will be of great interest to find some oscillation criteria for the special case
for (1.2), even for the Emden-Fowler equation

(1.3) (y(t) + p(t)y(t− τ))′ ′ + q(t)|y(t− σ)|ν−1y(t − σ) = 0, ν > 0.
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This problem was posed by Wong [21, Remark d]. As an affirmative answer to it,
Saker [19], Saker and Manojlović [20] have established some oscillation criteria for
(1.2) and (1.3). However, these results cannot be applied to (1.1). Therefore, in the
present paper, by using the averaging technique [13, 16, 22, 23], we shall establish
several Kamenev-type oscillation criteria for (1.1). Our theorems essentially improve
some known results in [19, 20]. In particular, two interesting examples that point
out the application of our results are also included.

2. MAIN RESULTS

In this section, we shall establish Kamemev-type oscillation theorems for (1.1)
under the cases when 0 ≤ p(t) ≤ 1 and −1 < p0 ≤ p(t) ≤ 0, which extend the
results in [13, 16, 22, 23] to (1.1). It will be convenient to make the following
notations in the remainder of this paper. Let φ ∈ C1([t0,∞), R

+). Define

µ = min
{

β−α

β−γ
,

β−α

γ−α

}
, g(s) = φ(s)r(s−σ1), θ =

1
(γ + 1)γ+1

,

Q1(t) = µφ(t)
[
qβ−γ
1 (t)qγ−α

2 (t)(1−p(t−σ1))α(β−γ)(1−p(t−σ2))β(γ−α)
]1/(β−α)

,

Q2(t) = µφ(t)[ qβ−γ
1 (t)qγ−α

2 (t)]1/(β−α).

In order to present our theorems, we first introduce, following Philos [16],
the function class � which will be extensively used in the sequel. Namely, let
D0 = {(t, s) ∈ R

2 : t > s ≥ t0} and D = {(t, s) ∈ R
2 : t ≥ s ≥ t0}. We will say

that the function H ∈ C(D, R) belongs to the class �, denoted by H ∈ �, if

(H1) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on (t, s) ∈ D0;
(H2) H has a continuous and nonpositive partial derivative on D0 with respect to

the second variable such that

∂

∂s
H(r, s) = −h(t, s)H(t, s) for (t, s) ∈ D0,

where h ∈ C(D, R).

For ϕ ∈ C([t0,∞), R), we take an operator A( · ; T, t), which is defined in [22],
in terms of H , as follows

(2.1) A( ϕ; T, t) =

t∫
T

H(r, s)ϕ(s)ds for t > T.

It is easy to verify that A(·; T, t) is an linear operator.
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For the sake of simplicity, throughout this paper, we always assume H ∈ �, φ ∈
C1([t0,∞), R

+), and the operator A defined by (2.1) without further mentioning.

Theorem 2.1. (1.1) is oscillatory provided that one of the following conditions
holds.

(1). 0 ≤ p(t) ≤ 1, and

(2.2) lim sup
t→∞

1
H(t, t0)

A(Q1 − θg|h − φ′φ−1|γ+1; t0, t) = ∞.

(2). −1 < p0 ≤ p(t) ≤ 0, and

(2.3) lim sup
t→∞

1
H(t, t0)

A(Q2 − θg|h − φ′φ−1|γ+1; t0, t) = ∞.

Proof. (1). Let y(t) be a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that y(t) �= 0 for t ≥ t0. Further, we suppose that there
exists a t1 > t0 such that

(2.4) y(t) > 0, y(t − τ) > 0, y(t − σ1) > 0, and y(t − σ2) > 0 for t ≥ t1,

since the substitution u = −y transforms (1.1) into an equation of the same form
subject to the assumptions of Theorem. As an analogous proof of Lemma 1 (1)
[24], see also [15], then, for some T0 ≥ t1, we have immediately that

(2.5) x(t) > 0, x′(t) > 0, and (r(t)(x′(t))γ)′ ≥ 0 for t ≥ T0.

Using (2.5), nothing that x(t) ≥ y(t), we have

y(t) = x(t)− p(t)y(t − τ) ≥ x(t) − p(t)x(t− σ) ≥ (1− p(t))x(t).

Thus, for all t > T0,

y(t−σ1) ≥ (1−p(t−σ1))x(t−σ1), and y(t−σ2) ≥ (1−p(t−σ2))x(t−σ2).

Then (1.1) implies that

(2.6)
(r(t)|x′(t)|γ−1x′(t))′ + q1(t)(1− p(t − σ1))αxα(t − σ1)

+q2(t)(1− p(t − σ2))βxβ(t − σ2) ≤ 0, t ≥ T0.

Define

(2.7) w(t) = φ(t)
r(t)|x′(t)|γ−1x′(t)

xγ(t − σ1)
,
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clearly, w(t) > 0. Differentiating (2.7) and using (2.6), we have

(2.8)

w′(t) ≤ φ′(t)
φ(t)

w(t)− φ(t)
[
q1(t)(1 − p(t − σ1))αxα−γ(t − σ1)

+q2(t)(1− p(t − σ2))β xβ(t − σ2)
xγ(t − σ1)

]

−γφ(t)r(t)|x′(t)|γ−1x′(t)x′(t − σ1)
xγ+1(t − σ1)

.

For simplicity, we consider the case σ1 ≥ σ2, (a similar argument holds for σ1 <
σ2), then x(t − σ1) ≤ x(t − σ2). Hence, (2.8) yields that

(2.9)
w′(t) ≤ φ′(t)

φ(t)
w(t) − φ(t)[q1(t)(1− p(t − σ1))αxα−γ(t − σ1)

+q2(t)(1 − p(t − σ2))βxβ−γ(t − σ1)]− γw(γ+1)/γ(t)
g1/γ(t)

,

since r(t)(x′(t))γ ≤ r(t − σ1)(x′(t − σ1))γ . The Young inequality [12, Theorem
61] implies that

β−γ

β−α
q1(t)(1−p(t−σ1))αxα−γ(t−σ1) +

γ−α

β−α
q2(t)(1−p(t−σ2))βxβ−γ(t−σ1)

≥
[
qβ−γ
1 (t)qγ−α

2 (t)(1−p(t−σ1))α(β−γ)(1−p(t−σ2))β(γ−α)
]1/(β−α)

.

Consequently,

(2.10)
q1(t)(1−p(t−σ1))αxα−γ(t−σ1)+q2(t)(1−p(t−σ2))βxβ−γ(t−σ2)

≥ µ
[
qβ−γ
1 (t)qγ−α

2 (t) (1−p(t−σ1))α(β−γ)(1−p(t−σ2))β(γ−α)
]1/(β−α)

.

Combining (2.9) and (2.10), we have

(2.11) w′(t) ≤ −Q1(t) +
φ′(t)
φ(t)

w(t)− γ

g1/γ(t)
w(γ+1)/γ(t), t ≥ T0.

Apply the operator A( ·; T, t), t > T ≥ T0, to (2.11), and use (H2) to find

(2.12)
A(Q1; T, t) ≤ H(t, T )w(T ) + A(|h − φ′φ−1|w; T, t)

−γA(g−1/γw(γ+1)/γ; T, t).

For given t and s, (t �= s), set

F (u) :=
∣∣h − φ′φ−1

∣∣ u − γ

g1/γ
u(γ+1)/γ, u > 0.
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F (u) attains its maximum at

u =
g

(γ + 1)γ

∣∣h − φ′φ−1
∣∣γ ,

and

(2.13) F (u) ≤ Fmax = θg
∣∣h − φ′φ−1

∣∣γ+1
.

Then by using (2.13) in (2.12), we get

(2.14) A(Q1; T, t) ≤ H(t, T )w(T ) + θA(g|h − φ′φ−1|γ+1; T, t).

Set T = T0 and in view of (H2), so

A(Q1 − θg|h − φ′φ−1|γ+1; T0, t) ≤ H(t, T0)w(T0) ≤ H(t, t0)w(T0).

Thus, by (H2), we obtain

(2.15)

A(Q1 − θg|h − φ′φ−1|γ+1; t0, t)

= A(Q1−θg|h−φ′φ−1|γ+1; t0, T0)

+A(Q1 − θg|h − φ′φ−1|γ+1; T0, t)

≤ H(t, t0)




T0∫
t0

Q1(s)ds + w(T0)


 .

Divide (2.15) through by H(t, t0) and take limsup in it as t → ∞. Condition (2.2)
gives a desired contradiction in (2.15). This proves Case (1).
(2). Let y(t) be a nonoscillatory solution of (1.1). Without loss of generality, we
may assume that y(t) �= 0 for t ≥ t0. Further, we suppose that there exists a t1 > t0
such that (2.4) holds. As an analogous proof of Lemma 1 (2) [24]. Then, for some
T0 ≥ t1, we still have that (2.5) holds for t ≥ T0. Noting that y(t) ≥ x(t), we get

y(t − σ1) ≥ x(t − σ1), y(t − σ2) ≥ x(t − σ2) for t ≥ T0.

Then, (1.1) changes into

(r(t)|x′(t)|γ−1x′(t))′ + q1(t)xα(t − σ1) + q2(t)xβ(t − σ2) ≤ 0, t ≥ T0.

Consider the function w(t) defined by (2.7), similar to the proof of (2.9), we can
obtain

(2.16)
w′(t) ≤ φ′(t)

φ(t)
w(t)− φ(t)

[
q1(t)xα−γ(t − σ1) + q2(t)xβ−γ(t − σ1)

]

− γ

g1/γ(t)
w(γ+1)/γ(t).
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The rest of the proof is similar to that of Case (1), hence, is omitted.

Theorem 2.2. (1.1) is oscillatory provided that one of the following conditions
holds.

(3). 0 ≤ p(t) ≤ 1, and there exist ϕ1, ϕ2 ∈ C([t0,∞), R) such that for all
T ≥ t0,

(2.17) lim sup
t→∞

1
H(t, T )

A(Q1; T, t) ≥ ϕ1(T ),

(2.18) lim sup
t→∞

1
H(t, T )

A(g|h− φ′φ−1|γ+1; T, t) ≤ ϕ2(T ),

where ϕ1 and ϕ2 satisfy

(2.19) lim inf
t→∞

1
H(t, T )

A(g−1/γ(ϕ1 − θϕ2)
(γ+1)/γ
+ ; T, t) = ∞.

(4). −1 < p0 ≤ p(t) ≤ 0, and there exist ϕ1, ϕ2 ∈ C([t0,∞), R) such that for
all T ≥ t0,

(2.20) lim sup
t→∞

1
H(t, T )

A(Q2; T, t) ≥ ϕ1(T ),

and (2.18) hold, where ϕ1 and ϕ2 satisfy (2.19), and ϕ+ = max{0, ϕ}.

Proof. We only show Case (3). The proof of Case (4) is similar to that of Case
(3). Proceeding as the proof of Case (1) of Theorem 2.1, we have (2.12) and (2.14)
hold, again divide (2.14) by H(t, T ), and obtain

(2.21)
1

H(t, T )
A(Q1; T, t)− θ

H(t, T )
A(g|h−φ′φ−1|γ+1; T, t) ≤ w(T ), t > T.

Take limsup in (2.21) as t → ∞, and note from (2.17) and (2.18) that

ϕ1(T ) − θϕ2(T ) ≤ w(T ),

from which it follows that

(2.22)

1
H(t, T )

A(g−1/γ(ϕ1 − θϕ2)
(γ+1)/γ
+ ; T, t)

≤ 1
H(t, T )

A(g−1/γw(γ+1)/γ ; T, t).
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On the other hand, by (2.12), we have

γ

H(t, T )
A(g−1/γw(γ+1)/γ ; T, t)− 1

H(t, T )
A(|h − φ′φ−1|w; T, t)

≤ w(T )− 1
H(t, T )

A(Q1; T, t).

Thus, by (2.17),

(2.23)
lim inf
r→∞

{
γ

H(t, T0)
A(g−1/γw(γ+1)/γ; T0, t)

− 1
H(t, T0)

A(|h − φ′φ−1|w; T0, t)
}

≤ w(T0)− ϕ1(T0) ≤ C0,

where C0 is a constant. According to (2.23), there exists a sequence {tj}∞j=1 ∈
[t0,∞) with limj→∞ tj = ∞ such that

(2.24)

γ

H(tj, T0)
A

(
g−1/γw(γ+1)/γ; T0, tj

)

− 1
H(tj, T0)

A(|h − φ′φ−1|w; T0, tj) ≤ C0 + 1.

Now, we claim that

(2.25) lim inf
t→∞

1
H(t, T0)

A(g−1/γw(γ+1)/γ; T0, t) < ∞.

If (2.25) does not hold, and noting that (2.24), we get

(2.26) lim
j→∞

1
H(rj, T0)

A(g−1/γw(γ+1)/γ; T0, tj) = ∞.

So, (2.24) and (2.26) gives, for j large enough,

A(|h − φ′φ−1|w; T0, tj)
A(g−1/γw(γ+1)/γ; T0, tj)

− γ ≥ −γ

2
,

that is,

(2.27) A(|h − φ′φ−1|w; T0, tj) ≥ γ

2
A

(
g−1/γw(γ+1)/γ ; T0, tj

)
.

The Hölder inequality follows

(2.28)
A(|h − φ′φ−1|w; T0, tj) ≤ (A(g−1/γw(γ+1)/γ; T0, tj))γ/(γ+1)

(A(g|h− φ′φ−1|γ+1; T0, tj))1/(γ+1).
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From (2.27) and (2.28), we obtain

(2.29)

(γ

2

)γ+1 1
H(tj, T0)

A(g−1/γw(γ+1)/γ; T0, tj)

≤ 1
H(tj, T0)

A(g|h− φ′φ−1|(γ+1)/γ; T0, tj).

By (2.18), the right-hand side of (2.29) is bounded, which contradicts (2.26). Thus
(2.25) holds. Hence, by (2.22),

lim inf
r→∞

1
H(t, T )

A(g−1/γ(ϕ1 − θϕ2)
(γ+1)/γ
+ ; T, t)

≤ lim inf
r→∞

1
H(t, T )

A(g−1/γw(γ+1)/γ; T, t) < ∞.

which contradicts (2.19).

Remark 2.1. Let γ = 1. For the superlinear equation (1.2), Theorems 2.1-2.2
improve the main results in [20]. For the Emden-Fowler type equation (1.3), our
results extend and improve the main results in [19].

3. COROLLARIES AND EXAMPLES

As Theorems 2.1 and 2.2 are rather general, it is convenient for applications to
derive a number of oscillation criteria with the appropriate choice of the functions
H and φ. In this section, we will give some corollaries of Theorems 2.1 and 2.2,
and show the applications of our main results in two interesting examples. Further,
we will see that equations (3.10) and (3.11) are oscillatory based on Corollary 3.2
and Theorem 2.2, though the known results such as in [1-3,7-10,14,15,17-21,24]
fail to apply to these equations.

As an immediate consequence of Theorem 2.1, we have the following corollary.

Corollary 3.1. (1.1) is oscillatory provided that one of the following conditions
holds.

(5). 0 ≤ p(t) ≤ 1, and

(3.1) lim sup
t→∞

1
H(t, t0)

A(Q1; t0, t) = ∞,

and

(3.2) lim sup
t→∞

1
H(t, t0)

A(g|h− φ′φ−1|γ+1; t0, t) < ∞.
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(6). −1 < p0 ≤ p(t) ≤ 0, and

(3.3) lim sup
t→∞

1
H(t, t0)

A(Q2; t0, t) = ∞,

and

(3.4) lim sup
t→∞

1
H(t, t0)

A(g|h− φ′φ−1|γ+1; t0, t) < ∞.

Corollary 3.1. (1.1) is oscillatory provided that one of the following conditions
holds.

(7). 0 ≤ p(t) ≤ 1, and for some λ > γ ,

(3.5) lim sup
t→∞

1
Gλ(t)

t∫
t0

[G(t)− G(s)]λQ3(s)ds = ∞.

(8). −1 < p0 ≤ p(t) ≤ 0, and for some λ > γ ,

(3.6) lim sup
t→∞

1
Gλ(t)

t∫
t0

[G(t)− G(s)]λQ4(s)ds = ∞.

Where

G(t) =

t∫
t0

ds

r1/γ(s − σ1)
,

Q3(t) = µ
[
qβ−γ
1 (t)qγ−α

2 (t)(1−p(t−σ1))α(β−γ)(1−p(t−σ2))β(γ−α)
]1/(β−α)

,

Q4(t) = µ
[
qβ−γ
1 (t)qγ−α

2 (t)
]1/(β−α)

.

Proof. Let

H(t, s) = [G(t)− G(s)]λ and φ(t) = 1,

then
h(t, s) =

λ

r1/γ(s − σ1)[G(t)− G(s)]
.

Note that
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A(g|h− φ′φ−1|γ+1; T, t) =
λγ+1

λ − γ
[Gλ−γ(t) − Gλ−γ(T )],

it is easy to show that Corollary 3.2 holds from Corollary 3.1.

By Theorem 2.2, we have

Corollary 3.3. Let limt→∞ G(t) = ∞. Then (1.1) is oscillatory provided that
one of the following conditions holds.

(9). 0 ≤ p(t) ≤ 1, and there exists ϕ ∈ C([t0,∞), R) such that for some λ > γ

and all T ≥ t0,

(3.7) lim sup
t→∞

1
Gλ(t)

t∫
T

[G(t)− G(s)]λQ3(s)ds ≥ ϕ(T ),

where ϕ satisfies

(3.8) lim inf
t→∞

1
Gλ(t)

t∫
T

[G(t)− G(s)]λg−1/γ(s)ϕ(γ+1)/γ(s)ds = ∞.

(10). −1 < p0 ≤ p(t) ≤ 0, and there exists ϕ ∈ C([t0,∞), R) such that (3.8)
holds and for some λ > γ and all T ≥ t0,

(3.9) lim sup
t→∞

1
Gλ(t)

t∫
T

[G(t)− G(s)]λQ4(s)ds ≥ ϕ(T ),

where Q3(t), Q4(t) and G(t) are defined in Corollary 3.2.

Remark 3.1. Following the classical ideas of Kamenev [13], we define H(t, s)
as

H(t, s) = (t − s)λ, (t, s) ∈ D,

where λ > γ . Therefore, as a consequence of Theorems 2.1 and 2.2, we can obtain
two oscillation criteria. Here, we omit the details.

The following two examples illustrate our main results

Example 3.1. Consider the following neutral differential equation

(3.10)
(|x′(t)|x′(t))′ + q1(t)|y(t − 3)|1/(2n+1)y(t − 3)

+q2(t)|y(t − 2)|(4n+1)/(2n+1)y(t − 2) = 0, t ≥ 3,
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where r(t) = 1, x(t) = y(t) + p(t)x(t − 1), p(t) = p/
√

t + 3, p = ±1, γ = 2,
α = (2n + 2)/(2n+ 1), β = (6n+ 2)/(2n+ 1), n is positive integer, and q1, q2 ∈
C([3,∞), R

+) with q1(t)q2(t) ≥ λ2
1/t2, (λ1 > 0).

Now, we consider the following two cases.

Case 1. p = 1. Noting that p(t − 3) > p(t − 2), we have

µ = 2, G(t) = t − 3, and Q3(t) ≥ 2λ1

t
(1 − 1√

t
)2.

Then, by Theorem 41 in [12],

(t − s)λ ≥ tλ − λstλ−1 for λ > 1, t ≥ s ≥ 1,

we have, for λ > γ ,

lim sup
t→∞

1
Gλ(t)

t∫
t0

[G(t)− G(s)]λQ3(s)ds

≥ lim sup
t→∞

2λ1

tλ

t∫
3

(t − s)λ

s

(
1 − 1√

s

)2

ds

≥ 2λ1

(
1 − 1√

3

)2

lim sup
t→∞

1
tλ

t∫
3

tλ − λtλ−1s

s
ds = ∞.

Hence, by Corollary 3.2 (7), (3.10) is oscillatory.

Case 2. p = −1. We have

µ = 2, G(t) = t − 3, and Q4(t) ≥ 2λ1

t
.

The rest of proof is similar to that of Case 1. Hence (3.10) is oscillatory by Corollary
3.2 (8).

Example 3.2. Consider the following neutral differential equation

(3.11)
(|x′(t)|γ−1x′(t))′ + q1(t)|y(t − 3)|α−1y(t − 3)

+q2(t)|y(t − 2)|β−1y(t − 2) = 0, t ≥ 3,

where x(t) = y(t) + py(t − 1), −1 < p < 1, r(t) = 1, 0 < α < γ < β with
γ = (α+β)/2, and q1, q2 ∈ C([3,∞), R

+) with q1(t)q2(t) ≥ (λ2t
γ−1)2, (λ2 > 0).
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For Theorem 2.2, let φ(t) = t−(γ+1). Now, we consider the following two
cases.

Case 1. 0 ≤ p < 1. A direct computation yields

µ = 2, g(t) = t−(γ+1), and Q1(t) ≥ 2λ2(1− p)γ

t2
.

Let H(t, s) = (t− s)γ+1, then h(t, s) = (γ + 1)/(t− s). Thus, for all t > T ≥ 3,

lim sup
t→∞

1
H(t, T )

A(Q1; T, t) = lim sup
t→∞

1
(t − T )γ+1

t∫
T

(t − s)γ+1Q1(s)ds

≥ 2λ2(1− p)γ lim sup
t→∞

1
(t − T )γ+1

t∫
T

(t − s)γ+1

s2
ds

= 2λ2(1− p)γ lim sup
t→∞

1
(t − T )γ+1

t∫
T

tγ+1 − (λ + 1)tγs

s2
ds

=
2λ2(1− p)γ

T
,

and
lim sup

t→∞
1

H(t, T )
A(g|h− φ′φ−1|γ+1; T, t)

= lim sup
t→∞

(γ + 1)γ+1

(t − T )γ+1

t∫
T

tγ+1

s2(γ+1)
ds =

(γ + 1)γ+1

(2γ + 1)T 2γ+1
.

Set,

ϕ1(T ) =
2λ2(1− p)γ

T
and ϕ2(T ) =

(γ + 1)γ+1

2γ + 1
1

T 2γ+1
.

Thus, for λ2 > (9(1− p))−γ/(4γ + 2),

lim sup
t→∞

1
H(t, T )

A(g−1/γ(ϕ1 − θϕ2)
γ+1
+ ; T, t)

= lim inf
t→∞

1
(t − T )γ+1

t∫
T

(t − s)γ+1

(
2λ2(1 − p)γ − 1

(2γ + 1)s2γ

)(γ+1)/γ

ds

≥
(

2λ2(1− p)γ− 1
9γ(2γ+1)

)(γ+1)/γ

lim inf
t→∞

1
(t − T )γ+1

t∫
T

(t−s)γ+1ds=∞.

It follows from Theorem 2.2 (3) that (2.11) is oscillatory for λ2 > (9(1−p))−γ/(4γ+
2).
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Case 2. −1 ≤ p ≤ 0. Then

µ = 2, g(t) = t−(γ+1), Q2(t) ≥ 2λ2

t2
.

The rest of proof is similar to that of Case 1. Hence, by Theorem 2.2 (4), (3.11) is
oscillatory for λ2 > 9−γ/(4γ + 2).
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