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ON CENTRALIZERS OF SEMISIMPLE H∗−ALGEBRAS

Joso Vukman and Irena Kosi-Ulbl

Abstract. In this paper we prove the following result. Let A be a semisimple
H∗−algebra and let T : A → A be an additive mapping satisfying the relation
2T (xm+n+1) = xmT (x)xn + xnT (x)xm, for all x ∈ A and some nonnegative
integers m, n such that m+n �= 0. In this case T is a left and a right centralizer.

1. INTRODUCTION

Throughout, R will represent an associative ring with center Z(R). Given an
integer n ≥ 2, a ring R is said to be n−torsion free, if for x ∈ R, nx = 0 implies
x = 0. As usual the commutator xy − yx will be denoted by [x, y] . Recall that a
ring R is prime if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0, and
is semiprime in case aRa = (0) implies a = 0. An additive mapping T : R → R
is called a left (right) centralizer in case T (xy) = T (x)y (T (xy) = xT (y)) holds
for all pairs x, y ∈ R. One of the initial papers using the concept of centraliz-
ers (also called multipliers) is due to Wendel [32] for group algebras. Helgason
[6] introduced centralizers for Banach algebras. Wang [31] studied centralizers of
commutative Banach algebras. Johnson [8] introduced the concept of centralizers
for rings. We refer to Busby [4] for a study of so-called double centralizers in the
extension of C∗−algebras. Akemann, Pedersen and Tomiyama [1] have studied cen-
tralizers of C∗−algebras. Several authors have also studied spectral properties of
centralizers on Banach algebras (see [13, 14]). Johnson [9] has studied centralizers
on some topological algebras. Johnson [10] has studied the continuity of centraliz-
ers on Banach algebras (see also [11]). Husain [7] has also investigated centraliz-
ers on topological algebras with particular reference to complete metrizable locally
convex algebras and topological algebras with orthogonal bases. Recently, Khan,
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Mohammad and Thaheem [12, 15] have studied centralizers and double centraliz-
ers on certain topological algebras. Centralizers have also appeared in a variety,
among which we mention representation theory of Banach algebras, the study of
Banach modules, Hopf algebras (see [17, 18]), the theory of singular integrals, in-
terpolation theory, stohastic processes, the theory of semigroups of operators, partial
differential equations and the study of approximation problems (see Larsen [13] for
more details). In case T : R → R is a left and a right centralizer, where R is
a semiprime ring with extended centroid C, then there exists an element λ ∈ C
such that T (x) = λx for all x ∈ R (see Theorem 2.3.2 in [3]). An additive map-
ping T : R → Ris called a left (right) Jordan centralizer in case T (x2) = T (x)x
(T (x2) = xT (x)) holds for all x ∈ R. Zalar [33] has proved that any left (right)
Jordan centralizer on a 2−torsion free semiprime ring is a left (right) centralizer.
Molnár [16] has proved that in case we have an additive mapping T : A → A,
where A is a semisimple H ∗−algebra, satisfying the relation T (x3) = T (x)x2

(T (x3) = x2T (x)) for all x ∈ A, then T is a left (right ) centralizer. Let us recall
that a semisimple H ∗−algebra is a semisimple Banach ∗−algebra whose norm is
a Hilbert space norm such that (x, yz∗) = (xz, y) = (z, x∗y) is fulfilled for all
x, y, z ∈ A (see [2]). Vukman [21] has proved that in case there exists an additive
mapping T : R → R, where R is a 2−torsion free semiprime ring, satisfying the
relation 2T (x2) = T (x)x + xT (x), for all x ∈ R then T is a left and a right
centralizer. For results concerning centralizers on semiprime rings operator algebras
and H∗−algebras we refer to [16, 19− 30, 33] . Let X be a real or complex Banach
space and let L(X) and F (X) denote the algebra of all bounded linear operators
on X and the ideal of all finite rank operators in L(X), respectively. An algebra
A(X) ⊂ L(X) is said to be standard in case F (X) ⊂ A(X). Let us point out that
any standard algebra is prime, which is a consequence of Hahn-Banach theorem.
We denote by X∗ the dual space of a Banach space X and by I the identity operator
on X.

2. THE MAIN RESULTS

Let us start with the following purely algebraic result proved by Vukman in
[21] .

Theorem A. ([21], Theorem 1). Let R be a 2−torsion free semiprime ring and
let T : R → R be an additive mapping satisfying the relation

2T (x2) = T (x)x + xT (x)

for all x ∈ R. In this case T is a left and a right centralizer.

Theorem A was the inspiration for the following result.
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Theorem 1. Let A be a semisimple H ∗−algebra and let T : A → A be an
additive mapping satisfying the relation

2T (xm+n+1) = xmT (x)xn + xnT (x)xm,

for all x ∈ A and some nonnegative integers m, n such that m + n �= 0. In this
case T is a left and a right centralizer.

For the proof of the theorem above we need the result below which is of inde-
pendent interest.

Theorem 2. Let X be a Banach space over F and let A(X) ⊂ L(X) be a
standard operator algebra. Suppose there exists an additive mapping T : A(X) →
L(X) satisfying the relation

2T (Am+n+1) = AmT (A)An + AnT (A)Am,

for all A ∈ A(X) and some nonnegative integers m, n such that m + n �= 0. In
this case T is of the form T (A) = λA, for all A ∈ A(X) and some λ ∈ F.

In the proof of Theorem 2 we shall use Theorem A.

Proof of Theorem 2. We have the relation

(1) 2T (Am+n+1) = AmT (A)An + AnT (A)Am.

Let us first consider the restriction of T on F (X). Let A be from F (X) and
let P ∈ F (X), be a projection with AP = PA = A. From the above relation one
obtains T (P ) = PT (P )P, which gives

(2) T (P )P = PT (P ) = PT (P )P.

Putting A + P for A in the relation (1), we obtain

(3)

2
m+n+1∑

i=0

(
m+n+1

i

)
T

(
Am+n+1−iP i

)

=
(

m∑
i=0

(
m
i

)
Am−iP i

)
(T (A) + B)

(
n∑

i=0

(
n
i

)
An−iP i

)

+
(

n∑
i=0

(
n
i

)
An−iP i

)
(T (A) + B)

(
m∑

i=0

(
m
i

)
Am−iP i

)
,

where B stands for T (P ) . Using (1) and rearranging the equation (3) in sense of
collecting together terms involving equal number of factors of P we obtain:

(4)
m+n∑
i=1

fi (A, P ) = 0,
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where fi (A, P ) stands for the expression of terms involving i factors of P. Replacing
A by A+2P, A+3P, ..., A+(m + n) P in turn in the equation (1), and expressing
the resulting system of m + n homogeneous equations of variables fi (A, P ), i =
1, 2, ...,m+ n, we see that the coefficient matrix of the system is a van der Monde
matrix 


1 1 · · · 1
2 22 · · · 2m+n

...
...

...
...

m + n (m + n)2 · · · (m + n)m+n


 .

Since the determinant of the matrix is different from zero, it follows that the
system has only a trivial solution.

In particular,

fm+n−1 (A, P ) = 2
(
m+n+1
m+n−1

)
T

(
A2

) − [(
m

m−2

)(
n
n

)
+

(
m
m

)(
n

n−2

)]
A2B

−
[(m

m

)( n
n−2

)
+

( m
m−2

)(n
n

)]
BA2 −

[( m
m−1

)(n
n

)
+

(m
m

)( n
n−1

)]
AT (A)P

−
[(

m
m

)(
n

n−1

)
+

(
m

m−1

)(
n
n

)]
PT (A)A − 2

(
m

m−1

)(
n

n−1

)
ABA = 0,

and

fm+n (A, P ) = 2
(
m+n+1

m+n

)
T (A) −

[(
m

m−1

)(
n
n

)
+

(
m
m

)(
n

n−1

)]
AB

−
[(m

m

)( n
n−1

)
+

( m
m−1

)(n
n

)]
BA − 2

(m
m

)(n
n

)
PT (A) P = 0.

The above equations reduce to

(5)

2 (m + n + 1) (m + n) T
(
A2

)
= [m (m − 1) + n (n − 1)]A2B + [m (m − 1) + n (n − 1)] BA2

+4mnABA + 2 (m + n) AT (A)P + 2 (m + n)PT (A)A,

and

(6) 2 (m + n + 1)T (A) = (m + n)AB + (m + n) BA + 2PT (A) P.

Right multiplication of the relation (6) by P gives

(7) 2 (m + n + 1)T (A)P = (m + n) AB + (m + n)BA + 2PT (A)P.
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Similarly one obtains

(8) 2 (m + n + 1)PT (A) = (m + n)AB + (m + n) BA + 2PT (A) P.

Combining (7) with (8) we arrive at

T (A)P = PT (A),

which reduces the relations (5) to

(9)

2 (m + n + 1) (m + n) T
(
A2

)
= [m (m − 1) + n (n − 1)]A2B + [m (m − 1) + n (n − 1)]BA2

+4mnABA + 2 (m + n)AT (A) + 2 (m + n) T (A)A,

and the relation (7) to

(10) 2T (A)P = AB + BA.

Combining (10) with (6) we arrive at

(11) T (A) = T (A)P.

From the above relation one can conclude that T maps F (X) into itself. According
to the above relation the relation (10) reduces to

(12) 2T (A) = AB + BA.

From the above relation we can conclude that T is linear on F (X). Now applying
the relation above we obtain

2mnABA = mn(AB)A + mnA(BA) = mn(2T (A)− BA)A

+mnA(2T (A)− AB) = 2mn(T (A)A + AT (A))− mn
(
A2B + BA2

)
.

We have therefore

2ABA = 2(T (A)A + AT (A))− A2B − BA2.

Applying the relation (12) and the relation above in the relation (9) we obtain

(13) 2T (A2) = T (A)A + AT (A).

Therefore we have a linear mapping T : F (X) → F (X) satisfying the relation (13)
for all A ∈ F (X). Since F (X) is prime one can conclude according to Theorem A
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that T is a left and also a right centralizer on F (X). We intend to prove that there
exists an operator C ∈ L(X), such that

(14) T (A) = CA, A ∈ F (X)

For any fixed x ∈ X and f ∈ X∗ we denote by x⊗f an operator from F (X) defined
by (x⊗f)y = f(y)x, y ∈ X. For any A ∈ L(X) we have A(x⊗f) = ((Ax)⊗f).
Let us choose f and y such that f(y) = 1 and define Cx = T (x⊗f)y. Obviously,
C is linear. Using the fact that T is a left centralizer on F (X) we obtain

(CA)x=C(Ax)=T ((Ax)⊗f)y=T (A(x⊗f))y=T (A)(x⊗f)y=T (A)x, x∈X.

We have therefore T (A) = CA for any A ∈ F (X). Since T is a right centralizer
on F (X) we obtain C(AB) = T (AB) = AT (B) = ACB. We have therefore
[A, C]B = 0 for any A, B ∈ F (X) whence it follows that [A, C] = 0 for any
A ∈ F (X). Using closed graph theorem one can easily prove that C is continuous.
Since C commutes with all operators from F (X) one can conclude that Cx = λx
holds for any x ∈ X and some λ ∈ F, which gives together with the relation (14)
that T is of the form

(15) T (A) = λA

any A ∈ F (X) and some λ ∈ F. It remains to prove that the above relation holds
on A(X) as well. Let us introduce T1 : A(X) → L(X) by T1(A) = λAand
consider T0 = T − T1. The mapping T0 is, obviously, additive and satisfies the
relation (1). Besides T0 vanishes on F (X). Let A ∈ A(X), let P ∈ F (X), be a
projection and S = A + PAP − (AP + PA). Note that S can be written in the
form S = (I − P )A(I − P ), where I denotes the identity operator on X. Since,
obviously, S − A ∈ F (X), we have T0(S) = T0(A). Besides SP = PS = 0. We
have therefore the relation

(16) 2T0(Sm+n+1) = SmT0(S)Sn + SnT0(S)Sm,

Applying the above relation and the fact that T0(P ) = 0, SP = PS = 0, we obtain

SmT0(S)Sn + SnT0(S)Sm = 2T0(Sm+n+1) = 2T0(Sm+n+1 + P )

= 2T0((S + P )m+n+1) = (S + P )mT0(S + P )(S + P )n

+(S + P )nT0(S)(S + P )m = (Sm + P )T0(S)(Sn + P )

+(Sn + P )T0(S)(Sm + P ) = SmT0(S)Sn + PT0(S)Sn + SmT0(S)P

+PT0(S)P + SnT0(S)Sm + PT0(S)Sm + SnT0(S)P + PT0(S)P.

We have therefore

(17) PT0(A)(Sm + Sn) + (Sm + Sn)T0(A)P + 2PT0(A)P = 0.
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Multiplying the above relation from both sides by P we arrive at

(18) PT0(A)P = 0,

which reduces the relation (17) to

PT0(A)(Sm + Sn) + (Sm + Sn)T0(A)P = 0.

Right multiplication of the above relation by P gives

(19) (Sm + Sn)T0(A)P = 0.

We intend to prove that

(20) SmT0(A)P = 0.

In case m = n there is nothing to prove according to (19). Let us therefore assume
that m �= n. Putting in the relation (19) 2A for A we obtain

(2m+1Sm + 2n+1Sn)T0(A)P = 0.

Multiplying the relation (19) by 2n+1 and subtracting the relation so obtained from
the above relation we obtain (2m+1 − 2n+1)SmT0(A)P = 0 whence it follows the
relation (20). Let us prove that

(21) Sm−1T0(A)P = 0.

Putting A + B for A,where B ∈ F (X), in (20) and using the fact that T0 vanishes
on F (X), we obtain

(S1S
m−1 + SS1S

m−2 + ... + Sm−1S1)T0(A)P = 0,

where S1 stands for (I − P )B(I − P ) (see [5]). The substitution T0(A)PB for B
in the above relation gives because of (18)

(T0(A)PBSm−1 + ST0(A)PBSm−2 + ... + Sm−1T0(A)PB)T0(A)P = 0.

Left multiplication of the above relation by Sm−1 and applying the relation (20) we
obtain

(Sm−1T0(A)P )B(Sm−1T0(A)P ) = 0,

for all B ∈ F (X). Now it follows Sm−1T0(A)P = 0 by primeness of F (X),
which proves (21). Now, since (20) implies (21), one can conclude by induction
that ST0(A)P = 0, which gives

AT0(A)P − PAT0(A)P = 0,
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because of (18). Putting A + B for A, where B ∈ F (X), we obtain 0 = (A +
B)T0(A)P − P (A + B)T0(A)P = BT0(A)P − PBT0(A)P. We have therefore
proved that BT0(A)P − PBT0(A)P = 0 holds for all A ∈ A(X) and all B ∈
F (X). The substitution T0(A)PB for B in the above relation gives, because of
(18), (T0(A)P )B(T0(A)P ) = 0, for all B ∈ F (X). Thus it follows T0(A)P = 0
by primeness of F (X). Since P is an arbitrary one-dimensional projection, one can
conclude that T0(A) = 0, for any A ∈ A(X). In other words, we have proved that
T is of the form T (A) = λA, for all A ∈ A(X) and some λ ∈ F. Obviously, T is
linear and bounded. The proof of the theorem is complete.

Let us point out that in Theorem 2 we obtain continuity of T under purely
algebraic conditions concerning the mapping T.

It should be mentioned that in the proof of Theorem 2 we used some methods
similar to those used by Molnár in [16].

Proof of Theorem 1. The proof goes through using the same arguments as in
the proof of Theorem in [16] with the exception that one has to use Theorem 2
instead of Lemma in [16].

Since in the formulation of the results presented in this paper we have used only
algebraic concepts, it would be interesting to study the problem in a purely ring
theoretical context. We conclude with the following conjecture.

Conjecture. Let T : R → R be an additive mapping, where R is a semiprime
ring, and let T : R → R be an additive mapping satisfying the relation

2T (xm+n+1) = xmT (x)xn + xnT (x)xm

for all x ∈ Rand some nonnegative integers m, n such that m+n �= 0. In this case
T is a left and a right centralizer.

In case m = 0, n = 1 the conjecture above has been proved by Vukman
(Theorem A). Since semisimple H∗−algebras are semiprime Theorem 1 proves the
conjecture above in a special case. We are going to prove the conjecture above in
case a semiprime ring R has the identity element.

Theorem 3. Let m, n be nonnegative integers such that m + n �= 0 and let
R be a 2, m + n and m + n + 2mn -torsion free semiprime ring with the identity
element. Suppose that there exists an additive mapping T : R → R satisfying the
relation

2T (xm+n+1) = xmT (x)xn + xnT (x)xm
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for all x ∈ R. In this case T is of the form T (x) = ax for all x ∈ R where a is a
fixed element from Z(R).

Proof. We have the relation

(22) 2T (xm+n+1) = xmT (x)xn + xnT (x)xm, x ∈ R.

With the same approach as in the proof of Theorem 2 we obtain from the above
relation

(23)

2 (m + n + 1) (m + n)T
(
x2

)
= (m (m − 1) + n (n − 1)x2a

+m (m − 1) + n (n − 1))ax2 + 4mnxax

+2 (m + n)xT (x) + 2 (m + n)T (x) x, x ∈ R

and

(24) 2T (x) = xa + ax, x ∈ R,

where a stands for T (e). In the procedure mentioned above we used the fact that
R is m + n -torsion free.

According to (24) one obtains the relation

(25) 2T
(
x2

)
= x2a + ax2, x ∈ R.

Multiplying the relation (24) by x from both sides we obtain

(26) 2T (x)x = xax + ax2, x ∈ R

and

(27) 2xT (x) = x2a + xax, x ∈ R.

Using (25), (26) and (27) in the relation (22) we obtainafter some calculation

x2a + ax2 − 2xax = 0, x ∈ R,

since R is m + n + 2mn -torsion free. The above relation can be written in the
form

(28) [[a, x] , x] = 0, x ∈ R.

Putting x + y for x in the above relation we obtain

(29) [[a, x] , y] + [[a, y] , x] = 0, x, y ∈ R.
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Putting xy for y in relation (29) we obtain because of (28) and (29):

0 = [[a, x] , xy] + [[a, xy] , x]

= [[a, x] , x] y + x [[a, x] , y] + [[a, x]y + x [a, y] , x]

= x [[a, x] , y] + [[a, x] , x]y + [a, x] [y, x] + x [[a, y] , x]

= [a, x] [y, x] , x, y ∈ R.

Thus we have
[a, x] [y, x] = 0, x, y ∈ R.

The substitution ya for y in the above relation gives [a, x]y [a, x] = 0, for all pairs
x, y ∈ R. Let us point out that so far we have not used the assumption that R is
semiprime. Since R is semiprime, it follows from the last relation that [a, x] = 0,

for all x ∈ R. In other words, a ∈ Z (R) , which reduces the relation (24) to
T (x) = ax, x ∈ R, since R is 2 -torsion free. The proof of the theorem is
complete.
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