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LOGARITHMIC CONVEXITY OF THE
ONE-PARAMETER MEAN VALUES

Wing-Sum Cheung* and Feng Qi**

Abstract. In this article, the logarithmic convexity of the one-parameter mean
values J(r) and the monotonicity of the product J(r)J(−r) with r ∈ R are
presented. Some more general results are established.

1. INTRODUCTION

The one-parameter mean values J(r; x, y) for two positive numbers x and y
with x �= y are defined by

(1) J(r) � J(r; x, y) =




r(xr+1 − yr+1)/(r + 1)(xr − yr), r �= 0,−1;

(x − y)/(lnx − ln y), r = 0;

xy(lnx − ln y)/(x− y), r = −1.

There has been some literature on the one-parameter mean values J(r; x, y), see
[1-4, 7].

The main purpose of this paper is to prove the logarithmic convexity of the one-
parameter mean values J(r; x, y) and the monotonicity of J(−r)J(r) for r ∈ R.

Our main results are as follows.

Theorem 1. Let x and y be positive numbers with x �= y. Then

(i) The one-parameter mean values J(r) are strictly increasing in r ∈ R;

Received January 24, 2005, accepted January 23, 2006.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: Primary 26A48, 26A51; Secondary 26B25, 26D07.
Key words and phrases: Logarithmic convexity, Monotonicity, One-parameter mean values.
*Supported by a seed grant for basic research of the University of Hong Kong, Hong Kong SAR,
People’s Republic of China.
**Supported by the Science Foundation of Project for Fostering Innovation Talents at Universities of
Henan Province of the People’s Republic of China

231



232 Wing-Sum Cheung and Feng Qi

(ii) The one-parameter mean values J(r) are strictly logarithmically convex in
(−∞,−1/2) and strictly logarithmically concave in (−1/2,∞).

Theorem 2. Let J (r) = J(r)J(−r) with r ∈ R for fixed positive numbers x
and y with x �= y. Then the function J (r) is strictly increasing in (−∞, 0) and
strictly decreasing in (0,∞).

2. PROOFS OF THEOREMS

2.1. Proof of Theorem 1.

Let

(2) g(t) � g(t; x, y) =

{
(yt − xt)/t, t �= 0

ln y − lnx, t = 0

for positive numbers x and y with x �= y.
In [5], Corollary 3 states that, for y > x > 0, if t > 0, then

(3) g2(t)g′′′(t) − 3g(t)g′(t)g′′(t) + 2[g′(t)]3 < 0;

if t < 0, inequality (3) reverses.

2.1.1. Formula (3) implies that, for y > x > 0,

(4) [g′(t)/g(t)]′′ = sgn(−t).

From this, we obtain that the function [g ′(t)/g(t)]′ is strictly increasing in (−∞, 0)
and strictly decreasing in (0,∞).

By using Cauchy-Schwartz integral inequality or Tchebycheff integral inequality,
it is obtained [6-8] that [g ′(t)/g(t)]′ > 0 for t ∈ R. Then the function g′(t)/g(t) is
strictly increasing in (−∞,∞).

The one-parameter mean values J(r) can be rewritten in terms of g as J(r) =
g(r + 1)/g(r) with r ∈ R for y > x > 0. Taking the logarithm of J(r) yields

(5) ln J(r) = ln g(r + 1)− ln g(r) =
∫ r+1

r

g′(u)
g(u)

du =
∫ 1

0

g′(u + r)
g(u + r)

du

and [lnJ(r)]′ = g′(r + 1)/g(r + 1)− g′(r)/g(r) > 0. Hence the functions ln J(r)
and J(r) are strictly increasing in r ∈ (−∞,∞). This proves (i).
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2.1.2. If r < −1, then r < r + 1 < 0 and [lnJ(r)]′′ = [g′(r + 1)/g(r + 1)]′ −
[g′(r)/g(r)]′ > 0 which follows from the strictly increasing property of [g′(r)/g(r)]′

in (−∞, 0).
If r > 0, then from the strictly decreasing property of [g′(r)/g(r)]′ in (0,∞),

we have [lnJ(r)]′′ < 0.
If −1 < r < 0, then r < 0 < r + 1, and we have

(6)

[
ln J(r)

]′′ =
(

g′(r + 1)
g(r + 1)

)′
−

(
g′(r)
g(r)

)′

=
g′′(r + 1)g(r + 1)− [g′(r + 1)]2

g2(r + 1)
− g′′(r)g(r)− [g′(r)]2

g2(r)

=
g′′(u)g(u)− [g′(u)]2

g2(u)
− g′′(−r)g(−r)− [g′(−r)]2

g2(−r)

=
g′′(u)g(u)− [g′(u)]2

g2(u)
− g′′(v)g(v)− [g′(v)]2

g2(v)

=
(

g′(u)
g(u)

)′
−

(
g′(v)
g(v)

)′
,

where u = r + 1 > 0 and v = −r > 0. Thus, [lnJ(r)]′′ < 0 for −1 < r < 0 and
r + 1 > −r. This means that [lnJ(r)]′′ < 0 for r ∈ (−1/2, 0

)
.

Similar as above, [lnJ(r)]′′ > 0 for −1 < r < 0 and −r > r + 1. This means
that [lnJ(r)]′′ > 0 for r ∈ (−1,−1/2). This proves (ii).

Remark. From (4), (5) and by direct calculation, we have

(7) [lnJ(r)]′′ =
∫ 1

0

d2

dr2

(
g′(u + r)
g(u + r)

)
du < 0

for r ∈ (0,∞). This means that J(r; x, y) is strictly logarithmically concave in
r ∈ (0,∞), whether x > y or x < y, since J(r; x, y) = J(r; y, x) holds.

By straightforward computation, we have

(8) J(r) =
xy

J(−r − 1)

for r ∈ R. Hence, if r ∈ (−∞,−1), from (3), (4) and (7), it follows that
[lnJ(r)]′′ = −[lnJ(−r−1)]′′ = − ∫ 1

0 { d2[g′(u − r − 1)/g(u− r − 1)]/ dr2} du >
0. This tells us that the one-parameter mean values J(r; x, y) are strictly logarith-
mically convex in r ∈ (−∞,−1), whether x > y or x < y, since J(r; x, y) =
J(r; y, x).
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2.2. Proof of Theorem 2.

It is easy to obtain that J (r) = xyJ(r)/J(r − 1) for r ∈ R. Then lnJ (r) =
ln(xy) + lnJ(r) − lnJ(r − 1) and

(9) [lnJ (r)]′ =
J ′(r)
J(r)

− J ′(r − 1)
J(r − 1)

.

Theorem 1 states that the function J(r) is strictly logarithmically convex in
(−∞,−1/2). Thus, being the derivative of lnJ(r), J′(r)/J(r) is strictly increas-
ing in (−∞,−1/2), that is, J ′(r)/J(r) > J ′(r − 1)/J(r − 1), or, equivalently,
[lnJ (r)]′ > 0 for r ∈ (−∞,−1/2), thus lnJ (r) and J (r) are strictly increasing
in (−∞,−1/2).

From (8), it follows that ln J(r) = ln(xy) − lnJ(−r − 1) and J ′(r)/J(r) =
J ′(−r − 1)/J(−r − 1). Then (9) results in [lnJ (r)]′ = J ′(−r − 1)/J(−r − 1)−
J ′(r − 1)/J(r − 1).

For r ∈ (−1/2, 0), we have −3/2 < r − 1 < −1 and −1 < −r − 1 < −1/2.
Since J ′(r)/J(r) is strictly increasing in (−∞,−1/2), [lnJ (r)]′ > 0 for r ∈
(−1/2, 0), therefore lnJ (r) and J (r) are also strictly increasing in (−1/2, 0).

It is clear that the function J (r) is even in (−∞,∞). So, it is easy to see that
J (r) is strictly decreasing in (0,∞). The proof of Theorem 2 is completed.

3. SOME RELATED RESULTS

For x �= y and α > 0, define for r ∈ R

(10) Jα(r)� Jα(r; x, y)=




[r(xr+α−yr+α)/(r+α)(xr−yr)]1/α, r �= 0,−α;

[(xα−yα)/α(lnx−ln y)]1/α, r=0;

[αxαyα(lnx − ln y)/(xα−yα)]1/α, r=−α.

We call Jα(r; x, y) the generalized one-parameter mean values for two positive
numbers x and y in the interval (−∞,∞).

It is clear that J1(r; x, y) = J(r; x, y) and Jα(r; x, y) = [g(r + α)/g(r)]1/α.
By the same arguments as in the proofs of Theorem 1 and Theorem 2, we can obtain
the following

Theorem 3. Let x and y be positive numbers with x �= y. Then

(1) The generalized one-parameter mean values Jα(r) are strictly increasing in
r ∈ R;

(2) The mean values Jα(r) are strictly logarithmically convex in (−∞,−α/2)
and strictly logarithmically concave in (−α/2,∞);
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(3) Let Jα(r) = Jα(r)Jα(−r) with r ∈ R for positive numbers x and y with
x �= y. Then the function Jα(r) is strictly increasing in (−∞, 0) and strictly
decreasing in (0,∞).

Proof. These follow from combining the identities [Jα(r; x, y)]α = J(r/α; xα,
yα) and [Jα(r)]α = J (r/α) with Theorem 1 and Theorem 2.

Theorem 4. The function (r + α)[Jα(r)]α is strictly increasing and strictly
convex in (−∞,∞), and is strictly logarithmically concave for r > −α/2.

Proof. Direct computation gives

(11) (r + α)[Jα(r; x, y)]α = α
( r

α
+ 1

)
J
( r

α
; xα, yα

)
,

(12)
d2 ln

{
(r + α)[Jα(r)]α

}
dr2

= − 1
(r + α)2

+ α[lnJα(r)]′′.

From the result by Alzer in [3] that the function (r + 1)J(r; x, y) is strictly
convex in (−∞,∞), it is not difficult to obtain that the function (r+α)[Jα(r; x, y)]α

is also strictly convex in (−∞,∞) by using (11).
By standard argument, we have

limr→−∞{[Jα(r)]α}′ = lim
r→−∞[α(zr+α − 1)/(r + α)(zr − 1)]

− lim
r→−∞[rzr(zα − 1) lnz/(zr − 1)2] = 0

and limr→−∞[Jα(r)]α = min{xα, yα}, where z = y/x �= 1. This leads to

(13)
limr→−∞{(r+α)[Jα(r)]α}′ = lim

r→−∞[Jα(r)]α+ lim
r→−∞(r+α){[Jα(r)]α}′

= min{xα, yα} > 0.

The convexity of (r+α)[Jα(r)]α means that {(r+α)[Jα(r)]α}′ is strictly increasing,
in view of (13), {(r+α)[Jα(r)]α}′ > 0, and so (r+α)[Jα(r)]α is strictly increasing
in (−∞,∞).

Since Jα(r) is strictly logarithmically concave in (−α/2,∞), [lnJα(r)]′′ <

0, then d2 ln{(r + α)[Jα(r)]α}/ dr2 < 0 by (12). This means that the function
(r + α)[Jα(r)]α is strictly logarithmically concave in (−α/2,∞).

Corollary 1. If r < −α, then

(14) 0 <
{[Jα(r)]α}′
[Jα(r)]α

=
{[Jα(−r − α)]α}′
[Jα(−r − α)]α

< − 1
r + α

,
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(15) 0 <
{[Jα(r)]α}′′
{[Jα(r)]α}′ < − 2

r + α
.

Proof. From the monotonicity and convexity of (r + α)Jα(r), we have

(16) {(r + α)[Jα(r)]α}′ = [Jα(r)]α + (r + α){[Jα(r)]α}′ > 0,

(17) {(r + α)[Jα(r)]α}′′ = 2{[Jα(r)]α}′ + (r + α){[Jα(r)]α}′′ > 0.

Inequality (14) follows from combining (16) with [Jα(r)]α = xy/[Jα(−r − α)]α.
Inequality (15) is a direct consequence of (17).

Theorem 5. The function r ln Jα(r) is strictly convex in (−α/2, 0).

Proof. Direct calculation yields [r ln Jα(r)]′′ = 2[lnJα(r)]′ + r[lnJα(r)]′′.
Since Jα(r) is strictly increasing in (−∞,∞) and strictly logarithmically concave
in (−α/2,∞), it follows that [ln Jα(r)]′ > 0 and [lnJα(r)]′′ < 0 in (−α/2,∞).
Therefore, [r lnJα(r)]′′ > 0 and r lnJα(r) is strictly convex in (−α/2, 0

)
.

Remark. If α = 1, then r lnJ(r) is strictly convex in (−1/2, 0). This partially
answers the question raised by Alzer in [3].

4. OPEN PROBLEMS

Finally, we pose the following

Open Problem 1. The generalized one-parameter mean values Jα(r) defined
by (10) are strictly concave in (−α/2,∞).

Open Problem 2. The function Jα(t) = Jα(t)Jα(−t) is strictly logarithmically
convex for t �∈ [−α

2 , α
2 ] and strictly concave and strictly logarithmically concave for

t ∈ (−α/2, α/2).

Open Problem 3. Discuss the monotonic and (logarithmically) convex prop-
erties of the function Jα(r) + Jα(−r).
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