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SINGLE ELEMENTS IN SOME REFLEXIVE ALGEBRA MODULES

Z. Dong

Abstract. In this paper, we first introduce the concept of single elements in a
module. A systematic study of single elements in AlgL-module Uφ is initiated,
where L is a completely distributive subspace lattice on a Banach space X and
φ is an order homomorphism from L into L. For a reflexive Banach space X
and a positive integer n (or +∞), by virtue of the order homomorphism φ we
give necessary and sufficient conditions for the existence of single elements
of Uφ of rank n (or +∞).

1. INTRODUCTION AND PRELIMINARIESNTRODUCTION

An element S of an algebra A is called single if the condition ASB = 0 for
A, B in A implies AS = 0 or SB = 0. It is easy to show that a rank one operator
is a single element of any operator algebra containing it. It is primarily for this
reason that the notion of ‘single element’ plays a role in the representation theory
of C∗-algebras, or more generally, of semi-simple Banach algebras ([1], [2]). In
yet another aspect, namely in the study of algebraic isomorphisms between reflexive
operator algebras on a normed space, single elements have also proved a useful
tool. This is mainly because single elements are carried to single elements under
algebraic isomorphisms. So if, in a particular operator algebra, it is known that
each single element is of rank one (the converse is always true), then the study
of algebraic isomorphism is considerably simplified. Reflexive algebras that have
been looked at from this point of view include nest algebras on a Hilbert space [9],
algebras of operators leaving invariant the elements of a complete atomic Boolean
lattice of subspaces on normed space [5]. On each of the above two mentioned
operator algebras it is proved in [5] and [9] that single elements are of rank one.
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Using this, one shows that each algebraic isomorphism between a pair of such
algebras is automatically continuous and spatial in the sense that it is of the form
Φ(A) = T−1AT for a suitable T ([5], [9]).

A systematic study of single elements of a reflexive operator algebra AlgL, where
L is completely distributive, was initiated by Lambrou in [6]. Amongst many other
interesting results, he shows that single elements of any rank (including infinity) are
possible. In [8], Longstaff and Penaia obtained a lattice-theoretic conditions for the
existence of single element of rank n (or infinity). The present note owes much to
the ideas contained in [6] and [8].

Definition 1.1. Let R be a ring and M a R-bimodule. An element s ∈ M is
called single if, whenever asb = 0 with a, b ∈ R, then as = 0 or sb = 0.

Though this is a simple generalization of the notion of single elements in alge-
bras, we hope that as single elements in algebras, single elements in modules will
play a role in the representation theory of modules, and in the study of module
isomorphisms between modules, especially in the operator modules theory. In this
paper, we initiated the study of single elements in AlgL-modules Uφ, where L is
a completely distributive subspace lattice on a Banach space X and φ is an order
homomorphism from L into itself. For a reflexive Banach space X and a positive
integer n, we show that the existence of a single element of Uφ of rank one n
depends on φ and a lattice-theoretic condition on L. Similar conditions also are
obtained for the existence of a single element of infinite rank.

Let us introduce some notation and terminology. Throughout what follows X
will denote a real or complex Banach space with topological dual X∗. The terms
operator on X and subspace of X shall mean bounded linear mapping of X into
itself and closed linear manifold of X respectively. For non-zero vectors e∗ ∈ X ∗

and f ∈ X , the rank one operator defined by x → e∗(x)f is denoted by e∗ ⊗ f .
Clearly (e∗ ⊗ f)∗ = f̂ ⊗ e∗, where f̂ is the image of f under the canonical map of
X into X ∗∗. The linear span of a vector g is denoted by 〈g〉.

A collection L of subspaces of X is called a subspace lattice on X if it contains
(0) and X , and is closed under the formation of arbitrary closed linear spans (denoted
’
∨

’) and intersection (denoted ’
⋂

’). If in a subspace lattice L, the following infinite
distributive identity ⋂

a∈A

∨

b∈B

La,b =
∨

f∈BA

⋂

a∈A

La,f(a)

and its dual holds, L is called completely distributive. The formal definition of
complete distributivity just given is in practice, difficult to use. Alternative charac-
terizations of completely distributivity have been proven to be more useful.

Lemma 1.1. ([7]) For a subspace lattice L, the followings are equivalent:
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(1) L is completely distributive;
(2) L =

⋂{K− : K ∈ L, K �⊆ L}, for every L ∈ L;
(3) L =

∨{K ∈ L : K− �⊇ L}, for every L ∈ L;
(4) L =

∨{K+ : K ∈ L, K �⊇ L}, for every L ∈ L. here K− =
∨{G ∈ L :

G �⊇ K} and K+ =
⋂{G ∈ L : G �⊆ K} .

If L is a subspace lattice, AlgL denote the set of operators on X leaving every
member of L invariant. Obviously, AlgL is a unital Banach algebra, operator
algebras of the type AlgL are called reflexive operator algebras. A nest L is a
totally ordered subspace lattice, and AlgL is called the nest algebra associated with
the nest L. Suppose that φ is an order homomorphism of L into itself (that is,
L ≤ L

′ implies φ(L) ≤ φ(L′)). Then the set

Uφ = {X ∈ B(X ) : XL ⊆ φ(L), ∀L ∈ L}

is clearly a weakly closed (two sided) AlgL-module. In [3], Erdos and Power show
that every weakly closed AlgL-module is of the above form.

If L is a subspace of X , its annihilator is denoted by L⊥. Thus L⊥ = {e∗ ∈ X ∗ :
e∗(f) = 0, for every f ∈ L}. Dually, if M is a subspace of X∗, its pre-annihilator
is denoted by ⊥M . Thus ⊥M = {f ∈ X : e∗(f) = 0, for every e∗ ∈ M}.
We have X⊥ = (0), (0)⊥ = X ∗ and ⊥(L⊥) = L. Also, if X is reflexive, we
have (⊥M)⊥ = M . If X is a reflexive Banach space, we can easily show that
L⊥ = {L⊥ : L ∈ L} is a subspace lattice on X ∗ and AlgL⊥ = {A∗ : A ∈ AlgL}.
If L is a completely distributive subspace lattice on X , it follows from Lemma 1.1
that L⊥ is also completely distributive on X ∗.

For a subspace lattice L we denote J the set of elements J = {L ∈ L :
L �= (0) and L− �= X}. It follows from Lemma 1.1 (3) that the linear manifold
X0 = span{K : K ∈ J } = span{K ∈ L : K �= (0) and K− �= X} is norm dense
in X . Similarly, Lemma 1.1 (2) shows that X1 = span{K⊥− : K ∈ J } is weak∗
dense in X ∗.

Lemma 1.2. ([7]) If L is a subspace lattice on a real or complex Banach
space, then the rank one operator e∗ ⊗ f belongs to AlgL if and only if there is an
element L ∈ J such that f ∈ L and e∗ ∈ L⊥−.

2. ELEMENTARY PROPERTIES OF SINGLE ELEMENTS

Lemma 2.1. Let L be a completely distributive subspace lattice on X , and let
A ∈ B(X ). (1) If RA = 0 for all rank one operators R ∈ AlgL, then A = 0; (2)
If AR = 0 for all rank one operators R ∈ AlgL, then A = 0.
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Proof. (1) If R ∈ AlgL is of rank one, then R = e∗ ⊗ f , where e∗ ∈ K⊥−
for some K ∈ L. The condition 0 = (e∗ ⊗ f)A = A∗e∗ ⊗ f for all rank ones of
AlgL implies kerA∗ ⊇ K⊥− , so taking the linear span over all such K, we have
kerA∗ ⊇ X1, where X1 is as defined just above the statement of Lemma 1.2. The
weak∗ continuity of A∗ and the weak∗ density of X1 implies that A∗, and hence A,
is zero.

(2) The condition 0 = A(e∗ ⊗ f) = e∗ ⊗ Af implies kerA ⊇ K for each K

with K− �= X . So kerA ⊇ X0, which is norm dense in X , and so A is zero.

Lemma 2.2. Let L be a complete distributive subspace lattice on X and φ an
order homomorphism from L into L. Then an element S of U φ is single if and only
if for each rank one operators R 1, R2 of AlgL the condition R1SR2 = 0 implies
R1S or SR2 is zero.

Proof. If S is single, then the above condition is only a special case of the
definition. Suppose that ASB = 0 for A, B ∈ AlgL. If SB �= 0, then by
Lemma 2.1 there exists a rank one operator R2 of AlgL such that SBR2 �= 0. For
any rank one R1 of AlgL we have R1ASBR2 = 0, and clearly R1A and BR2 are
are of rank one or zero. In either case the condition in the lemma implies R1AS or
SBR2 is zero. But as SBR2 �= 0, we have for all rank one operators R1 of AlgL
that R1AS is zero. Applying Lemma 2.1 once again, it follows that AS = 0, and
this shows that S is a single element of Uφ.

Lemma 2.3. Let L be a completely distributive subspace lattice on the Banach
space X , φ an order homomorphism from L into itself and S a nonzero single
element of Uφ. Then there exists an M in L with M− �= X such that S |M is
nonzero. Moreover, for any L ∈ L with L− �= X and S |L nonzero, the operator
S |L is of rank one.

Proof. By Lemma 2.1 there is a rank one operator R ∈ AlgL such that SR �= 0.
By Lemma 1.2, R is of the form e∗ ⊗ f where f ∈ M, e∗ ∈ M⊥− for some M ∈ L
and M− �= X . But then 0 �= S(e∗ ⊗ f) = e∗ ⊗ Sf shows that Sf �= 0, and the
first part of the lemma is proved.

By Lemma 2.1 there is a rank one T ∈ AlgL such that TS �= 0. Let now L ∈ L
satisfy the condition in the statement of the lemma. We are to prove that if x, y ∈ L
then Sx and Sy are linearly dependent, so there is no loss in assuming that Sx, Sy

are nonzero.
The operator TS is of rank one, so there exist scalars λ, µ not both zero, such

that TS(λx + µy) = λ(TSx) + µ(TSy) = 0. For any nonzero x∗ ∈ L⊥−, we have
x∗ ⊗ (λx + µy) ∈ AlgL and

TS[x∗ ⊗ (λx + µy)] = x∗ ⊗ TS(λx + µy) = 0.
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However, S is single and TS �= 0, so

x∗ ⊗ S(λx + µy) = S[x∗ ⊗ (λx + µy)] = 0,

which in turn implies λ(Sx) + µ(Sy) = 0, and so Sx, Sy are linearly dependent.
Thus the operator S |L is of rank one.

Lemma 2.4. Let L be a completely distributive subspace lattice, φ an order
homomorphism from L into itself and S a nonzero single element of U φ. Then there
exists an M in L with M− �= X such that S∗ |M⊥

−
is nonzero. Moreover, for any

L ∈ L with L �= (0), L− �= X and S∗ |L⊥
−

nonzero, the operator S ∗ |L⊥
−

is of rank
one.

Proof. The proof is similar to Lemma 3.3 in [6] and is omitted.

Proposition 2.1. Let L be a completely distributive subspace lattice, φ an
order homomorphism from L into itself and S a nonzero single element of U φ. If
S |M is nonzero for some M ∈ L with M− �= H, then S(X ) ⊆ φ(M).

Proof. Let L ∈ L with L �⊆ φ(M). We shall first show that S(X ) ⊆ L−. If
L− = X we have nothing to prove, so assume L− �= X . The condition L �⊆ φ(M)
implies φ(M) ⊆ L−, so if m ∈ M , it follows from S ∈ Uφ that

Sm ∈ S(M) ⊆ φ(M) ⊆ L−.

Let now l∗ ∈ L⊥− be arbitrary. Choose nonzero l ∈ L and m ∈ M with Sm �= 0
and nonzero m∗ ∈ M⊥− . Then by Lemma 1.2 the rank ones l∗ ⊗ l and m∗ ⊗ m
belong to AlgL, and S(m∗ ⊗ m) �= 0. However, Sm ∈ L− and l∗ ∈ L⊥−, so

(l∗ ⊗ l)S(m∗ ⊗ m) = (l∗ ⊗ l)(m∗ ⊗ Sm) = l∗(Sm)m∗ ⊗ l = 0.

The assumption that S is single implies (l ∗ ⊗ l)S = 0. Thus for any x ∈ X , we
have

l∗(Sx)l = (l∗ ⊗ l)Sx = 0

and so Sx ∈⊥ (L⊥−) = L− and S(X ) ⊆ L−, as required.
Since L is a completely distributive, it follows from Lemma 1.1 (2) that φ(M) =

∧{L− : L ∈ L, L �⊆ φ(M)}. Hence S(X )⊆∧{L− :L∈L, L �⊆φ(M)}=φ(M).
Let φ be an order homomorphism from L into L, we define

Uφ = {T ∈ B(X ) : Tφ(L) ⊆ L, ∀L ∈ L}.

Theorem 2.1. Let L be a completely distributive subspace lattice and φ an
order homomorphism from L into L. If S is a single element of U φ with SUφS �= 0,
then S is of rank one.
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Proof. Let A ∈ Uφ be such that SAS �= 0, and let l2 be such that SASl2 �= 0.
Put l1 = ASl2 and l = Sl1. We will show that S(X ) ⊆ Cl. First we show that if
K ∈ L with K− �= X , then S(K) ⊆ Cl. Indeed, if S(K) = (0) we have nothing
to prove. If instead S(K) �= (0), Proposition 2.1 implies that S(X ) ⊆ φ(K), and
so Sl2 ∈ φ(K). But then l1 = ASl2 ∈ A(φ(K)) ⊆ K, since A ∈ Uφ. Note that
S |K is nonzero, since l1 ∈ K and Sl1 = SASl2 �= 0. Thus Lemma 2.3 implies
S |K is of rank one. Hence S(K) ⊆ CSl1 = Cl, as claimed. Denoting now by X0

the linear span of {K ∈ L : K �= X}, the above shows that also S(X0) ⊆ Cl. But
it follows from Lemma 1.1 that X0 is dense in X , so

S(X ) = S(X0) ⊆ S(X0) ⊆ Cl = Cl,

this completes the proof.

3. SINGLE ELEMENTS OF RANK n AND ∞

Throughout this section L will denote a completely distributive subspace lattice
on a reflexive Banach space X , and φ an order homomorphism from L into L.
Recall that J denote the set of elements J = {L ∈ L : L �= (0) and L− �= X}.

Lemma 3.1. Operators of the type φ(L)TL⊥− belong to Uφ, where L ∈ L and
T ∈ B(X ).

Proof. For any M ∈ L, we deal with two cases separately. Case 1. L ⊆ M .
We have φ(L)TL⊥−M ⊆ φ(L) ⊆ φ(M); Case 2. L �⊆ M . From the definition of
L−, L− ⊇ M . So φ(L)TL⊥−M = (0) ⊆ φ(M).

It follows from Case 1 and Case 2 that for any M ∈ L, we have φ(L)TL⊥−M ⊆
φ(M) and so φ(L)TL⊥− ∈ Uφ.

Proposition 3.1. If n is a positive integer and there exist sets {M i ∈ J : 1 ≤
i ≤ n} and {Kj ∈ J : 1 ≤ j ≤ n} satisfying (1) Mi

⋂
Mj = (0), if i �= j; (2)

Ki−
∨

Kj− = X , if i �= j; (3)
n∨

i=1
Mi ⊆

n⋂
j=1

φ(Kj),

then, for any choice of non-zero vectors f i ∈ Mi and e∗j ∈ K⊥
j−, 1 ≤ i, j ≤ n, the

operator S =
n∑

j=1
e∗j ⊗ gj is a single element of Uφ of rank n, where g1 =

n∑
k=1

fk

and gj = (
∑
k �=j

fk)− fj for 2 ≤ j ≤ n.

Proof. Note that gj ∈ φ(Kj), for every 1 ≤ j ≤ n, so e∗j ⊗ gj = φ(Kj)(e∗j ⊗
gj)K⊥

j− ∈ Uφ by Lemma 3.1. It follows that S ∈ Uφ. Since Mi
⋂

(
∨
j �=i

Mj) =
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∨
j �=i

(Mi
⋂

Mj) = (0), for every 1 ≤ i ≤ n, the set of vectors {fi : 1 ≤ i ≤ n} is

linearly independent. It readily follows that {gj : 1 ≤ j ≤ n} is linearly indepen-
dent. Similarly {e∗j : 1 ≤ j ≤ n} is linearly independent since K⊥

j−
⋂

(
∨
i�=j

K⊥
i−) =

∨
i�=j

(K⊥
i−

⋂
K⊥

j−) = (0), for every 1 ≤ j ≤ n. Thus S has rank n.

Let A, B ∈ AlgL satisfy ASB =
n∑

k=1

B∗e∗k ⊗Agk = 0, and suppose that AS =

n∑
k=1

e∗k ⊗Agk �= 0. Then Agj �= 0, for some 1 ≤ j ≤ n. In fact, Agk �= 0, for every

1 ≤ k ≤ n. For, if Agk = 0, then for every 1 ≤ i ≤ n, Afi ∈ Mi

⋂
(
∨
l �=i

Ml) = (0),

so Afi = 0 and contradicts Agj �= 0 for some 1 ≤ j ≤ n. Now, for every
1 ≤ j ≤ n, there exists h∗

j ∈ X ∗ such that h∗
j (Agj) �= 0. So

0 = (ASB)∗(h∗
j) =

n∑

k=1

h∗
j (Agk)B∗e∗k

gives

B∗e∗j = −
∑

k �=j

h∗
j (Agk)

h∗
j (Agj)

B∗e∗k.

Thus B∗e∗j ∈ K⊥
j−

⋂
(
∨

k �=j

K⊥
k−) = (0), so B∗e∗j = 0, for every 1 ≤ j ≤ n. Hence

SB =
n∑

k=1

B∗e∗k ⊗ gk = 0. This shows that S is a single element of Uφ and the

proof is completed.

Theorem 3.1. Let L be a completely distributive subspace lattice on a reflexive
Banach space X and φ an order homomorphism from L into L. If n is a positive
integer, then Uφ contains a single element of rank n if and only if there exist sets
{Mi ∈ J : 1 ≤ i ≤ n} and {Kj ∈ J : 1 ≤ j ≤ n} satisfying (1) Mi

⋂
Mj =

(0), if i �= j; (2) Ki−
∨

Kj− = X , if i �= j; (3)
n∨

i=1
Mi ⊆

n⋂
j=1

φ(Kj).

Proof. The sufficiency of the condition follows from Proposition 3.1. We only
need to prove the necessity.

Suppose that Uφ contains a single element S of rank n. Since J �= ∅, we
may suppose that n > 1. By complete distributivity X =

∨{L : L ∈ J }, thus
R(S) = S(X ) =

∨{S(L) : L ∈ J }. It follows from Lemma 2.3 that S(L) is at
most one dimensional and so there is a basis {gj : 1 ≤ j ≤ n} of R(S) satisfying
S(Kj) = 〈gj〉, 1 ≤ j ≤ n, for some set {Kj ∈ J : 1 ≤ j ≤ n}. Again by
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complete distributivity, (0) =
⋂{L− : L ∈ J }. Thus X ∗ =

∨{L⊥− : L ∈ J },
and R(X ∗) = S∗(X ∗) =

∨{S∗(L⊥−) : L ∈ J }. It follows from Lemma 2.4
that S∗(L⊥−) is at most one dimensional for every L ∈ J , so there is a basis
{e∗i : 1 ≤ i ≤ n} for R(S∗) satisfying S∗(M⊥

i−) = 〈e∗i 〉, for 1 ≤ i ≤ n, for some
set {Mi ∈ J : 1 ≤ i ≤ n}.

Let 1 ≤ i �= j ≤ n. Since
⋂{L− : L ∈ J } = (0), to show Mi

⋂
Mj = (0),

it is enough to show that Mi
⋂

Mj ⊆ L− for every L ∈ J . If this were not the
case it would follow that for some L ∈ J , L ⊆ Mi

⋂
Mj , so L− ⊆ Mi−

⋂
Mj−.

Then L⊥− would contain both M⊥
i− and M⊥

j−, and it follows from Lemma 2.4 that
S∗(M⊥

i−) = S∗(M⊥
j−) = S∗(L⊥−). This would contradicts the linear independence

of {e∗i , e∗j}. Thus Mi
⋂

Mj = (0). Since
∨{K : K ∈ J } = X , to show that

Ki−
∨

Kj− = X , it is enough to show that K ⊆ Ki−
∨

Kj−, for every K ∈ J .
Now K cannot contain both Ki and Kj since otherwise it follows from Lemma 2.3
that S(Ki) = S(Kj) = S(K) and this would contradicts the linear independence
of {gi, gj}. Thus K ⊆ Ki−

∨
Kj− since either Ki �⊆ K (so K ⊆ Ki−) or Kj �⊆ K

(so K ⊆ Kj−). Thus Ki−
∨

Kj− = X .

Finally, we show that
n∨

i=1
Mi ⊆

n⋂
j=1

φ(Kj). Let 1 ≤ i, j ≤ n and suppose that

Mi �⊆ φ(Kj). Choose 0 �= f ∈ Kj such that Sf �= 0 and choose 0 �= e∗ ∈ K⊥
j−.

Further, choose 0 �= g∗ ∈ M⊥
i− such that S∗g∗ �= 0 and choose 0 �= h ∈ Mi.

Then by Lemma 1.2, e∗ ⊗ f and g∗ ⊗ h are rank one operators of AlgL. Now
(g∗ ⊗ h)S = S∗g∗ ⊗ h �= 0 and S(e∗ ⊗ f) = e∗ ⊗ Sf �= 0. However, since
φ(Kj) ⊆ Mi− and S ∈ Uφ, Sf ∈ φ(Kj) ⊆ Mi−. Hence

(g∗ ⊗ h)S(e∗ ⊗ f) = g∗(Sf)(e∗ ⊗ f) = 0,

and this contradicts the fact that S is a single element of Uφ. This completes the
proof.

Next we present the ‘infinite’ version of Theorem 3.1. A part from modifications
necessitated by the requirements of convergence, the proof is similar. For this reason
we omit the proof (see Theorem 2 in [8]).

Theorem 3.2. Uφ contains a single element of infinite rank if and only if there
exist sets {Mi ∈ J : i ≥ 1} and {Kj ∈ J : j ≥ 1} satisfying (1) Mi

⋂
Mj =

(0), if i �= j; (2) Ki−
∨

Kj− = X , if i �= j; (3)
+∞∨
i=1

Mi ⊆
+∞⋂
j=1

φ(Kj).

Combining Theorem 3.1 and Theorem 3.2 leads immediately to the following
corollaries.

Corollary 3.1. If m ∈ Z+ and Uφ contain a single element of rank m, then it
contains a single element of rank n, for every 1 ≤ n < m.
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Corollary 3.2. The followings are equivalent.
(1) Every non-zero single element in Uφ has rank one;
(2) Uφ does not contain a single element of rank two;
(3) There are not M1, M2, K1, K2 ∈ J satisfying

(a) M1
⋂

M2 = (0);
(b) K1−

∨
K2− = X ;

(c) M1
∨

M2 ⊆ φ(K1)
⋂

φ(K2).

Corollary 3.3. If L is a nest, then every non-zero single element of any weakly
closed AlgL-module has rank one.

Proof. It follows from [3] Theorem 1.5 and Corollary 3.2.

REFERENCES

1. J. A. Erdos, On certain elements of C∗-algebras, Illinois J. Math., 15 (1971), 682-
693.

2. J. A. Erdos, S. Giotopoulos and M. S. Lambrou, Rank one elements, Mathematika,
24 (1977), 178-181.

3. J. A. Erdos and S. C. Power, Weakly closed ideals of nest algebras, J. Operator
Theory, 7 (1982), 219-235.

4. Han Deguang, On A-submodules for reflexive operator algebras, Proc. Amer. Math.
Soc., 104 (1988), 1067-1070.

5. M. S. Lambrou, Automatic continuity and implementation of homomorphisms, (manuscript).

6. M. S. Lambrou, On the rank one operators in reflexive algebras, Linear Alg. Applic.,
142 (1990), 211-235.

7. W. E. Longstaff, Strongly reflexive lattices, J. London Math. Soc., 11 (1975), 491-
512.

8. W. E. Longstaff and Oreste Panaia, On the ranks of single elements of reflexive
operator algebras, Proc. Amer. Math. Soc., 125 (1997), 2875-2882.

9. J. R. Ringrose, On some algebras of operators II, Proc. London Math. Soc., 16 (3)
(1966), 385-402.

Z. Dong
Department of Mathematics,
Zhejiang University,
Hangzhou 310027,
P. R. China
E-mail: dongzhe@zju.edu.cn


