ASYMPTOTIC BEHAVIOR OF (a, k)-REGULARIZED RESOLVENT FAMILIES AT ZERO

Sen-Yen Shaw and Jeng-Chung Chen

Abstract

This paper is primarily concerned with approximation at 0 of an (a, k)-regularized resolvent family $R(\cdot)$ for Volterra integral equation. We shall consider convergence rates of some kind of local means $Q_{m}(t), t \geq 0, m \geq 0$, of $R(t) / k(t)$. Some approximation theorems and local ergodic theorems with rates will be deduced from general approximation theorems for regularized approximation processes.

1. Introduction

Consider the following Volterra equation of convolution type

$$
u(t)=\int_{0}^{t} a(t-s) A u(s) d s+f(t), t \geq 0
$$

where A is a closed linear operator on a Banach space X. Let $B(X)$ denote the Banach algebra of all bounded linear operators on X. Let $k \in C[0, \infty), a \in L_{l o c}^{1}$ $([0, \infty))$ be nondecreasing positive functions. A strongly continuous function R : $[0, \infty) \rightarrow B(X)$ is called an (a, k)-regularized resolvent family with generator A if it satisfies the conditions:
(R1) $R(0)=k(0) I$;
(R2) $R(t) x \in D(A)$ and $A R(t) x=R(t) A x$ for all $x \in D(A)$ and $t>0$;
(R3) $a * R(t) x \in D(A)$ and $R(t) x=k(t) x+A a * R(t) x$ for all $x \in X$ and $t \geq 0$.

[^0]The notion of (a, k)-regularized resolvent family has been introduced and studied in [6, 7, 8]. It contains integrated solution families $\left(k(t)=t^{\alpha} / \Gamma(\alpha+1)\right)$ [10], resolvent families $(k(t) \equiv 1)$ [11], integrated semigroups $\left(a \equiv 1, k(t)=t^{\alpha} / \Gamma(\alpha+\right.$ 1)) [5], and integrated cosine functions $\left(a(t)=t, k(t)=t^{\alpha} / \Gamma(\alpha+1)\right)$ [12] as special cases.

In this paper, we study approximation properties at 0 of $R(\cdot)$. Denote by a_{0} the Dirac measure δ_{0} at 0 . For $m \geq 0$, let $a_{m+1}(t)=a * a_{m}(t), t \geq 0$, and let $l_{m}(0)=0$ and $l_{m}(t)=\frac{a_{m+1} * k(t)}{a_{m} * k(t)}$ for $t>0$. We define the operator function $Q_{m}:(0, \infty) \rightarrow B(X)$ by

$$
Q_{m}(t) x=\frac{a_{m} * R(t) x}{a_{m} * k(t)}
$$

for all $x \in X$ and $t>0$. Note that $Q_{0}(t)=R(t) / k(t)$ and $Q_{1}(t)=\int_{0}^{t} a(t-$ s) $R(s) d s / \int_{0}^{t} a(t-s) k(s) d s$. We shall assume that

$$
\begin{equation*}
\|R(t)\| \leq M k(t) \text { for all } t>0 \tag{1.1}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left\|Q_{m}(t) x\right\| & \leq \frac{1}{a_{m} * k(t)} \int_{0}^{t} a_{m}(t-s)\|R(s) x\| d s \\
& \leq \frac{M\|x\|}{a_{m} * k(t)} \int_{0}^{t} a_{m}(t-s) k(s) d s=M\|x\|
\end{aligned}
$$

for all $x \in X$ and so

$$
\begin{equation*}
\left\|Q_{m}(t)\right\| \leq M \text { for all } t>0 \tag{1.2}
\end{equation*}
$$

Therefore one can consider the asymptotic behavior of $Q_{m}(t)$ at zero. Since it can be seen that $\left\{Q_{m}(t) ; t \geq 0\right\}$ forms a regularized approximation process on $X_{1}:=\overline{D(A)}$, one can apply general approximation theorems for A-regularized approximation processes (cf. [13]) to deduce results on approximation of $Q_{m}(t)$. We will do this in Section 3. Before that we shall first recall in Section 2 some needed general results from [13] on approximation of A-regularized approximation processes.

2. Regularized Approximation Processes

In [13], we have obtained general results on the strong and uniform convergence of regularized approximation processes, with emphasis on their optimal and nonoptimal convergence rates. This section serves as a brief review of those general results needed in Section 3.

We start with the following definition of a regularized approximation process. In the sequel, we use the notations $D(T), R(T)$, and $N(T)$, for the domain, range, and null space, respectively, of a linear operator T.

Let $e(\alpha)$ be a positive function tending to 0 . A net $\left\{T_{\alpha}\right\}$ of bounded linear operators on X is called an A-regularized approximation process of order $O(e(\alpha))$ on X if it is uniformly bounded, i.e., $\left\|T_{\alpha}\right\| \leq M$ for some $M>0$ and all α, and satisfies
(A1) there are a (necessarily densely defined) closed linear operator A on X and a uniformly bounded approximation process $\left\{S_{\alpha}\right\}$ on X such that

$$
R\left(S_{\alpha}\right) \subset D(A) \text { and } S_{\alpha} A \subset A S_{\alpha}=(e(\alpha))^{-1}\left(T_{\alpha}-I\right) \text { for all } \alpha
$$

In this case, the process $\left\{S_{\alpha}\right\}$ is called a regularization process associated with $\left\{T_{\alpha}\right\}$.

In the following, $\left\{T_{\alpha}\right\}$ denotes an A-regularized approximation process of order $O(e(\alpha))$ with regularization process $\left\{S_{\alpha}\right\}$.

Lemma 2.1. [13]
(i) $x \in D(A)$ and $y=A x$ if and only if $y=\lim _{\alpha}(e(\alpha))^{-1}\left(T_{\alpha}-I\right) x$.
(ii) $D(A)$ is dense in X, and $\left\|T_{\alpha} x-x\right\| \rightarrow 0$ for all $x \in X$.
(iii) If A is bounded, then $\left\|T_{\alpha}-I\right\|=O(e(\alpha)) \rightarrow 0$.
(iv) $\left\|T_{\alpha}-I\right\| \rightarrow 0$ implies $A \in B(X)$ if either $R\left(T_{\alpha}\right) \subset D(A)$ for all α, or S_{α} and T_{α} satisfy the following condition:
(A2) $\left\|T_{\alpha}-I\right\| \rightarrow 0$ implies $\left\|S_{\alpha}-I\right\| \rightarrow 0$.
A Banach space X is called a Grothendieck space if every weakly* convergent sequence in X^{*} is weakly convergent, and is said to have the Dunford-Pettis property if $\left\langle x_{n}, x_{n}^{*}\right\rangle \rightarrow 0$ whenever $x_{n} \rightarrow 0$ weakly in X and $x_{n}^{*} \rightarrow 0$ weakly in X^{*}. The spaces L^{∞}, H^{∞}, and $B(S, \Sigma)$ are particular examples of Grothendieck spaces with the Dunford-Pettis property (see [9]). A common phenomenon in such spaces is that strong operator convergence often implies uniform operator convergence. The following is a theorem of this type for regularized approximation processes.

Theorem 2.2. [13] Let $\left\{T_{\alpha}\right\}$ be an A-regularized approximation process of order $O(e(\alpha))$ on a Grothendieck space X with the Dunford-Pettis property. If $R\left(T_{\alpha}\right) \subset D(A)$ for all α, then $A \in B(X)$ and $\left\|T_{\alpha}-I\right\|=O(e(\alpha))$.

As usual the rates of convergence will be characterized by means of K-functional and relative completion, which we recall now.

Definition 2.3. Let X be a Banach space with norm $\|\cdot\|_{X}$, and Y a submanifold with seminorm $\|\cdot\|_{Y}$. The K-functional is defined by

$$
K(t, x):=K\left(t, x, X, Y,\|\cdot\|_{Y}\right)=\inf _{y \in Y}\left\{\|x-y\|_{X}+t\|y\|_{Y}\right\}
$$

If Y is also a Banach space with norm $\|\cdot\|_{Y}$, then the completion of Y relative to X is defined as
$\tilde{Y}^{X}:=\left\{x \in X: \exists\left\{x_{n}\right\} \subset Y\right.$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|_{X}=0$ and $\left.\sup _{n}\left\|x_{n}\right\|_{Y}<\infty\right\}$.
It is known [1] that $K(t, x)$ is a bounded, continuous, monotone increasing and subadditive function of t for each $x \in X$, and $K\left(t, x, X, Y,\|\cdot\|_{Y}\right)=O(t)$ if and only if $x \in \tilde{Y}^{X}$. With these terminologies we now state some theorems from [13] on convergence rates. The following is an optimal convergence (saturation) theorem.

Theorem 2.4. [13] Let $\left\{T_{\alpha}\right\}$ be an A-regularized approximation process of order $O(e(\alpha))$, and let $D(A)$ be equipped with the graph norm $\|\cdot\|_{D(A)}$. For $x \in X$, we have:
(i) $\left\|T_{\alpha} x-x\right\|=o(e(\alpha))$ if and only if $x \in N(A)$, if and only if $T_{\alpha} x=x$ for all α.
(ii) The following are equivalent:
(a) $\left\|T_{\alpha} x-x\right\|=O(e(\alpha))$;
(b) $x \in \widetilde{D(A)}^{X}$;
(c) $x \in D(A)$ in the case that X is reflexive.

The next theorem is about non-optimal convergence.
Theorem 2.5. [13] Let $0 \leq e(\alpha) \leq f(\alpha) \rightarrow 0$. If $K(e(\alpha), x, X, D(A), \|$. $\left.\|_{D(A)}\right)=O(f(\alpha))$, then $\left\|T_{\alpha} x-x\right\|=O(f(\alpha))$. The converse statement is also true under the following assumption:
(A3) $\quad\left\|S_{\alpha} x-x\right\|=O(f(\alpha))$ whenever $\left\|T_{\alpha} x-x\right\|=O(f(\alpha))$.
To consider the sharpness of approximation, we need the following theorem.
Theorem 2.6. [13] Suppose an A-regularized approximation process $\left\{T_{\alpha}\right\}$ and its regularization process $\left\{S_{\alpha}\right\}$ satisfy condition (A2). Then A is unbounded if and only if for each/some $f(\alpha)$ with $0 \leq e(\alpha)<f(\alpha) \rightarrow 0$ and $f(\alpha) / e(\alpha) \rightarrow \infty$ there exists $x_{f} \in X$ such that

$$
\left\|T_{\alpha} x_{f}-x_{f}\right\|\left\{\begin{array}{l}
=O(f(\alpha)) \\
\neq o(f(\alpha))
\end{array}\right.
$$

3. Approximation Properties of Regularized Solution Families

In this section, we apply the general theorems in Section 2 to deduce approximation theorems for regularized solution families. Note that $a_{m}(t)$ and $a_{m} * k(t)$ are nondecreasing and positive functions of t. Therefore

$$
\begin{equation*}
l_{m}(t)=\frac{1}{a_{m} * k(t)} \int_{0}^{t} a(t-s)\left(a_{m} * k\right)(s) d s \leq \int_{0}^{t} a(s) d s \rightarrow 0 \tag{3.1}
\end{equation*}
$$

as $t \rightarrow 0$.
Lemma 3.1. Let $R(\cdot)$ be an (a, k)-regularized resolvent family generated by A such that $\|R(t)\| \leq M k(t)$ for all $t \geq 0$, and let A_{1} be the part of A in $X_{1}:=\overline{D(A)}$. Then

$$
\begin{equation*}
Q_{0}(t) D(A) \subset D(A) \text { and } Q_{0}(t) A x=A Q_{0}(t) x \text { for } x \in D(A) \tag{3.2}
\end{equation*}
$$

$$
\begin{align*}
& Q_{m+1}(t) X \subset D(A) \text { and } Q_{m+1}(t) A \subset A Q_{m+1}(t)=\frac{1}{l_{m}(t)}\left(Q_{m}(t)-I\right) ; \tag{3.3}\\
& Q_{0}(t) D\left(A_{1}\right) \subset D\left(A_{1}\right) \text { and } Q_{0}(t) A_{1} x=A_{1} Q_{0}(t) x \text { for } x \in D\left(A_{1}\right) ; \tag{3.4}\\
& \quad Q_{m+1}(t) X_{1} \subset D\left(A_{1}\right) \text { and }\left.Q_{m+1}(t) A_{1} \subset A_{1} Q_{m+1}(t)\right|_{X_{1}} \\
& \quad=\left.\frac{1}{l_{m}(t)}\left(Q_{m}(t)-I\right)\right|_{X_{1}} \text { for all } m \geq 0 \text { and } t>0 . \tag{3.5}
\end{align*}
$$

Proof. Since $Q_{0}(t)=\frac{1}{k(t)} R(t)$, (3.2) follows from ($R 2$). It implies $Q_{0}(t) X_{1} \subset$ X_{1}. To show (3.4), let $x \in D\left(A_{1}\right)$. Then $x \in D(A), A x \in X_{1}$, and $A_{1} x=A x$. By (3.2) we have $Q_{0}(t) x \in D(A)$ and $A Q_{0}(t) x=Q_{0}(t) A x=Q_{0}(t) A_{1} x \in$ $Q_{0}(t) X_{1} \subset X_{1}$, so that $Q_{0}(t) x \in D\left(A_{1}\right)$ and $A_{1} Q_{0}(t) x=A Q_{0}(t) x=Q_{0}(t) A_{1} x$. To show (3.3) for $m \geq 0$, write

$$
\begin{aligned}
Q_{m+1}(t) x & =\frac{1}{a_{m+1} * k(t)}\left[a_{m} *(a * R)\right](t) x \\
& =\frac{1}{a_{m+1} * k(t)} \int_{0}^{t} a_{m}(t-s)(a * R)(s) x d s
\end{aligned}
$$

for all $x \in X$. Since the integral

$$
\begin{aligned}
\int_{0}^{t} A a_{m}(t-s)(a * R)(s) x d s & =\int_{0}^{t} a_{m}(t-s) A(a * R)(s) x d s \\
& =\int_{0}^{t} a_{m}(t-s)[R(s)-k(s)] x d s
\end{aligned}
$$

exists, the closedness of A implies that $\left[a_{m} *(a * R)\right](t) x \in D(A)$ and

$$
\begin{aligned}
A\left[a_{m} *(a * R)\right](t) x & =\int_{0}^{t} A a_{m}(t-s)(a * R)(s) x d s \\
& =\left[a_{m} * A(a * R)\right](t) x=a_{m} * R(t) x-a_{m} * k(t) x
\end{aligned}
$$

Hence $Q_{m+1}(t) x \in D(A)$ and

$$
A Q_{m+1}(t) x=\frac{1}{a_{m+1} * k(t)}\left[a_{m} * R(t) x-a_{m} * k(t) x\right]=\frac{1}{l_{m}(t)}\left[Q_{m}(t) x-x\right]
$$

for all $x \in X$. Moreover, if $x \in D(A)$ then by (R2) and (R3) we have

$$
\begin{aligned}
A Q_{m+1}(t) x & =\frac{1}{a_{m+1} * k(t)}\left[a_{m} * A(a * R)\right](t) x \\
& =\frac{1}{a_{m+1} * k(t)}\left[a_{m} *(a * R)\right](t) A x=Q_{m+1}(t) A x
\end{aligned}
$$

This shows (3.3). To show (3.5), let $x \in X_{1}$ and let $\left\{x_{n}\right\} \subset D(A)$ converge to x. (3.3) implies $Q_{m+1}(t) x \in D(A)$. Since A is closed, $A Q_{m+1}(t)$ is bounded, so that $A Q_{m+1}(t) x=\lim _{n \rightarrow \infty} A Q_{m+1}(t) x_{n}=\lim _{n \rightarrow \infty} Q_{m+1}(t) A x_{n} \in \overline{D(A)}=X_{1}$. This and (3.3) show that $Q_{m+1}(t) x \in D\left(A_{1}\right)$ and $A_{1} Q_{m+1}(t) x=A Q_{m+1}(t) x$ $=\frac{1}{l_{m}(t)}\left(Q_{m}(t)-I\right) x$ for all $x \in X_{1}$. When $x \in D\left(A_{1}\right)$, we have $x \in D(A), A x \in$ X_{1}, and $A_{1} x=A x$ so that $Q_{m+1}(t) A_{1} x=Q_{m+1}(t) A x=A Q_{m+1}(t) x=$ $A_{1} Q_{m+1}(t) x$. This completes the Proof.

Lemma 3.2. Let $R(\cdot)$ be an (a,k)-regularized resolvent family with generator A such that $\|R(t)\| \leq M k(t)$ for all $t \geq 0$.
(i) For $m \geq 0,\left\|Q_{m}(t) x-x\right\| \rightarrow 0$ as $t \rightarrow 0^{+}$if and only if $Q_{m}(t) x \rightarrow x$ weakly as $t \rightarrow 0^{+}$, if and only if there is a sequence $\left\{t_{n}\right\}$ such that $Q_{m}\left(t_{n}\right) x \rightarrow x$ weakly for the case $m \geq 1$, if and only if $x \in X_{1}$.
(ii) If $k(t) \rightarrow k(0) \neq 0$ as $t \rightarrow 0^{+}$, then A is densely defined in X.

Proof.

(i) It follows from (3.1), (1.2), (3.3) that for all $m \geq 0$

$$
\left\|Q_{m}(t) x-x\right\| \leq l_{m}(t)\left\|Q_{m+1}(t)\right\|\|A x\| \leq l_{m}(t) M\|A x\| \rightarrow 0
$$

as $t \rightarrow 0^{+}$for all $x \in D(A)$, and hence $Q_{m}(t) x \rightarrow x$ for all $x \in X_{1}$, by
(1.2). Conversely, from the estimate,

$$
\begin{align*}
\mid & <Q_{m+1}(t) x-x, x^{*}>\mid \\
= & \left.\frac{1}{a_{m+1} * k(t)} \right\rvert\,\left\langle\int_{0}^{t} a(t-s)\left(a_{m} * R(s) x\right) d s\right. \\
& \left.-\int_{0}^{t} a(t-s)\left(a_{m} * k\right)(s) x d s, x^{*}\right\rangle \mid \tag{3.6}\\
\leq & \frac{1}{a_{m+1} * k(t)} \int_{0}^{t} a(t-s)\left(a_{m} * k\right)(s)\left|<Q_{m}(s) x-x, x^{*}>\right| d s \\
\leq & \sup \left\{\left|<Q_{m}(s) x-x, x^{*}>\right| ; 0 \leq s \leq t\right\}, x \in X, x^{*} \in X^{*},
\end{align*}
$$

one sees that if $Q_{m}(t) x \rightarrow x$ weakly, then $Q_{m+1}(t) x \rightarrow x$ weakly, which and the fact that $R\left(Q_{m+1}(t)\right) \subset D(A)$ show that $x \in X_{1}$. When $m \geq$ $1, R\left(Q_{m}\left(t_{n}\right)\right) \subset D(A)$, and so $x=w-\lim Q_{m}\left(t_{n}\right) x \in X_{1}$.
(ii) When $k(t) \rightarrow k(0) \neq 0$ as $t \rightarrow 0^{+}$, since $Q_{0}(t)=R(t) / k(t) \rightarrow I$ strongly as $t \rightarrow 0^{+}$, (3.6) implies that

$$
\left\|Q_{1}(t) x-x\right\| \leq \sup \left\{\left\|Q_{0}(s) x-x\right\| ; 0 \leq s \leq t\right\} \rightarrow 0
$$

for all $x \in X$. Then we have $X_{1}=X$, by the fact that $Q_{1}(t) X \subset D(A)$. That is, A is densely defined.

Thus, from (3.2), (3.5) and Lemma 3.2, we see that X_{1} is invariant under $Q_{m}(t)$ for each $m \geq 0$, and $\left\{T_{t}:=\left.Q_{m}(t)\right|_{X_{1}}\right\}$ is an A_{1}-regularized approximation process on X_{1} with the regularization process $\left\{S_{t}:=\left.Q_{m+1}(t)\right|_{X_{1}}\right\}$ and with the optimal order $O\left(l_{m}(t)\right)\left(t \rightarrow 0^{+}\right)$. In particular, $D\left(A_{1}\right)$ is dense in X_{1}. Moreover, by Lemma 3.1 we have $T_{t} D\left(A_{1}\right) \subset D\left(A_{1}\right)$ if $m=0$ and $R\left(T_{t}\right) \subset D\left(A_{1}\right)$ if $m \geq 1$.

Lemma 3.3. The above pair $\left(\left\{T_{t}\right\},\left\{S_{t}\right\}\right)$ satisfies (A2). If $l_{m}(t)$ is nondecreasing for t near 0 , then (A3) with $\left.f(t)=\left(l_{m}(t)\right)^{\beta}(0<\beta \leq 1)\right)$ also holds.

Proof. From (3.6) one can see that $\left\|S_{t}-I\right\|_{X_{1}} \leq \sup \left\{\left\|T_{s}-I\right\|_{X_{1}} ; 0 \leq s \leq t\right\}$, which shows (A2). Moreover, if $\left\|T_{t} x-x\right\| \leq M\left(k_{m}(t)\right)^{\beta}$ for all $t \in[0,1]$, then $\left\|S_{t} x-x\right\| \leq M \sup \left\{\left(l_{m}(s)\right)^{\beta} ; 0 \leq s \leq t\right\} \leq M\left(l_{m}(t)\right)^{\beta}$ for all $t \in[0,1]$, showing (A3).

From Lemmas 2.1 and 3.3 and Theorem 2.2 we deduce the following uniform convergence theorem.

Theorem 3.4. Let $R(\cdot)$ be an (a, k)-regularized resolvent family with generator A such that $\|R(t)\| \leq M k(t)$ for all $t \geq 0$.
(i) For $m \geq 0, \quad\left\|Q_{m}(t)-I\right\| \rightarrow 0$ as $t \rightarrow 0^{+}$if and only if $A \in B(X)$. In this case, $\left\|Q_{m}(t)-I\right\|=O\left(l_{m}(t)\right)\left(t \rightarrow 0^{+}\right)$.
(ii) When X_{1} is a Grothendieck space with the Dunford-Pettis property, A must be bounded on X, and consequently $\|R(t)-k(t) I\|=O(a * k(t))\left(t \rightarrow 0^{+}\right)$.

Proof.

(i) This follows from Lemmas 2.1 and 3.3.
(ii) Applying Theorem 2.2 to $\left\{T_{t}:=\left.Q_{1}(t)\right|_{X_{1}}\right\}$ yields that A_{1} is bounded on X_{1}, so that $\left\|\left.Q_{1}(t)\right|_{X_{1}}-\left.I\right|_{X_{1}}\right\| \leq l_{1}(t)\left\|A_{1}\right\|\left\|Q_{2}(t)\right\| \leq l_{1}(t)\left\|A_{1}\right\| M \rightarrow 0$ as $t \rightarrow 0^{+}$. Hence $\left.Q_{1}(t)\right|_{X_{1}}$ is invertible on X_{1} for small t. Then by (3.3) we have $X_{1}=R\left(\left.Q_{1}(t)\right|_{X_{1}}\right) \subset R\left(Q_{1}(t)\right) \subset D(A)$, which shows that $D(A)$ is closed and A is bounded. Due to Lemma 3.3, (iii) and (iv) of Lemma 2.1 together imply that $A \in B(X)$. By (i), $\left\|Q_{m}(t)-I\right\|=O\left(l_{m}(t)\right)\left(t \rightarrow 0^{+}\right)$, and in particular, $\|R(t)-k(t) I\|=O(a * k(t))\left(t \rightarrow 0^{+}\right)$.

From Theorems 2.4, 2.5, 2.6 and Lemma 3.3 we can deduce the next theorem.
Theorem 3.5. Let $R(\cdot)$ be as assumed in Theorem 3.4 and let $m \geq 0$, $0<\beta \leq 1$, and $x \in X_{1}=\overline{D(A)}$.
(i) $\left\|Q_{m}(t) x-x\right\|=o\left(l_{m}(t)\right)\left(t \rightarrow 0^{+}\right)$if and only if $x \in N\left(A_{1}\right)=N(A)$.
(ii) $\left\|Q_{m}(t) x-x\right\|=O\left(l_{m}(t)\right)\left(t \rightarrow 0^{+}\right)$if and only if $x \in{\widetilde{D\left(A_{1}\right)}}^{X_{1}}\left(=D\left(A_{1}\right)\right.$, if X is reflexive).
(iii) If $K\left(l_{m}(t), x, X_{1}, D\left(A_{1}\right),\|\cdot\|_{D\left(A_{1}\right)}\right)=O\left(\left(l_{m}(t)\right)^{\beta}\right)\left(t \rightarrow 0^{+}\right)$, then $\left\|Q_{m}(t) x-x\right\|=O\left(\left(l_{m}(t)\right)^{\beta}\right)\left(t \rightarrow 0^{+}\right)$. The converse is also true if $l_{m}(t)$ is nondecreasing for t near 0 .
(iv) A is unbounded if and only if for someleach $0<\beta<1$ and $m \geq 0$ there exist $x_{m, \beta}^{*} \in X_{1}=\overline{D(A)}$ such that

$$
\left\|Q_{m}(t) x_{m, \beta}^{*}-x_{m, \beta}^{*}\right\|\left\{\begin{array}{l}
=O\left(\left(l_{m}(t)\right)^{\beta}\right) \\
\neq o\left(\left(l_{m}(t)\right)^{\beta}\right)
\end{array} \quad\left(t \rightarrow 0^{+}\right)\right.
$$

Next, we assume that the nondecreasing positive functions $a, k \in L_{l o c}^{1}([0, \infty))$ are Laplace transformable, i.e., there is $\omega \geq 0$ such that $\hat{a}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} a(t) d t<\infty$ and $\hat{k}(\lambda)<\infty$ for all $\lambda>\omega$. Then it is easy to see that $\hat{a}(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$.

Lemma 3.6. Suppose $\hat{a}(\lambda)<\infty$ for all $\lambda>\omega$, and let $R(\cdot)$ be an (a, k) regularized resolvent family with generator A such that $\|R(t)\| \leq M k(t)$ for all $t \geq 0$. Then $(\hat{a}(\lambda))^{-1} \in \rho(A),\left((\hat{a}(\lambda))^{-1}-A\right)^{-1}=\hat{k}(\lambda)^{-1} \hat{a}(\lambda) \hat{R}(\lambda)$, and $\left\|(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A\right)^{-1}\right\| \leq M$ for all $\lambda>\omega$.

Proof. Under the assumption (1.1) we can take Laplace transform of the equation in (R3) to obtain

$$
\hat{R}(\lambda) x= \begin{cases}\hat{k}(\lambda) x+\hat{a}(\lambda) \hat{R}(\lambda) A x, & x \in D(A) \\ \hat{k}(\lambda) x+A \hat{a}(\lambda) \hat{R}(\lambda) x, & x \in X\end{cases}
$$

for all $\lambda>\omega$. Thus

$$
\hat{k}(\lambda)^{-1} \hat{a}(\lambda) \hat{R}(\lambda)\left((\hat{a}(\lambda))^{-1}-A\right) \subset\left((\hat{a}(\lambda))^{-1}-A\right) \hat{k}(\lambda)^{-1} \hat{a}(\lambda) \hat{R}(\lambda)=I
$$

that is, $(\hat{a}(\lambda))^{-1} \in \rho(A)$ and $\left((\hat{a}(\lambda))^{-1}-A\right)^{-1}=\hat{k}(\lambda)^{-1} \hat{a}(\lambda) \hat{R}(\lambda)$ for $\lambda>\omega$. Moreover, (1.1) implies

$$
\left\|(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A\right)^{-1}\right\|=\left\|\hat{k}(\lambda)^{-1} \hat{R}(\lambda)\right\|=\left\|\hat{k}(\lambda)^{-1} \int_{0}^{\infty} e^{-\lambda t} R(t) d t\right\| \leq M
$$

Thus A is a generalized Hille-Yosida operator. Since

$$
\left((\hat{a}(\lambda))^{-1}-A_{1}\right)^{-1} A_{1} \subset A_{1}\left((\hat{a}(\lambda))^{-1}-A_{1}\right)^{-1}=(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A_{1}\right)^{-1}-I
$$

$\left\{(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A_{1}\right)^{-1}\right\}$ is an A_{1}-regularized approximation process of order $O(\hat{a}(\lambda))(\lambda \rightarrow \infty)$ on X_{1}, having itself as a regularization process. Then we can deduce the following local Abelian ergodic theorem, which follows from the general results in Section 2.

Theorem 3.7. Let $a \in L_{\text {loc }}^{1}([0, \infty))$ be nondecreasing, positive, and Laplace transformable, and let $R(\cdot)$ be an (a, k)-regularized resolvent family with generator A such that $\|R(t)\| \leq M k(t)$ for all $t \geq 0$.
(i) $\left\|(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A\right)^{-1} x-x\right\| \rightarrow 0$ as $\lambda \rightarrow \infty$ if and only if $x \in X_{1}$.
(ii) $\left\|(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A\right)^{-1}-I\right\| \rightarrow 0$ as $\lambda \rightarrow \infty$ if and only if $A \in B(X)$. In this case, $\left\|(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A\right)^{-1}-I\right\|=O(\hat{a}(\lambda))(\lambda \rightarrow \infty)$.
(iii) For $x \in X_{1},\left\|(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A\right)^{-1} x-x\right\|=o(\hat{a}(\lambda))(\lambda \rightarrow \infty)$ if and only if $x \in N(A)$.
(iv) For $0<\beta \leq 1$ and $x \in X_{1},\left\|(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A\right)^{-1} x-x\right\|=O\left(\left(\hat{a}(\lambda)^{\beta}\right)\right.$ $(\lambda \rightarrow \infty)$ if and only if $K\left(t, x, X, D(A),\|\cdot\|_{D(A)}\right)=O\left(t^{\beta}\right)\left(t \rightarrow 0^{+}\right)$, if and only if $x \in \widetilde{D\left(A_{1}\right)}{ }^{X_{1}}$ in the case that $\beta=1$, if and only if $x \in D\left(A_{1}\right)$ in the case that $\beta=1$ and X is reflexive.
(v) A is unbounded if and only if for each $0<\beta<1$ there exists $x_{\beta}^{*} \in X_{1}$ such that

$$
\left\|(\hat{a}(\lambda))^{-1}\left((\hat{a}(\lambda))^{-1}-A\right)^{-1} x_{\beta}^{*}-x_{\beta}^{*}\right\|\left\{\begin{array}{l}
=O\left(\left(\hat{a}(\lambda)^{\beta}\right)\right. \\
\neq o\left(\left(\hat{a}(\lambda)^{\beta}\right)\right.
\end{array} \quad(\lambda \rightarrow \infty) .\right.
$$

If one takes $k(t)=j_{r}(t):=\frac{t^{r}}{\Gamma(r+1)}, r \geq 0$, then $l_{0}(t)=\frac{a * j_{r}(t)}{j_{r}(t)}, l_{1}(t)=$ $\frac{a * a * j_{r}(t)}{a * j_{r}(t)}, Q_{0}=\frac{R(t)}{j_{r}(t)}$, and $Q_{1}=\frac{a * R(t)}{a * j_{r}(t)}$. In this case, $R(t)$ become an r-times integrated resolvent family with generator A. Then a combination of applications of Theorems 3.4 and 3.5 to $Q_{0}(t)$ and $Q_{1}(t)$ and of Theorem 3.7 leads to the following approximation and local ergodic theorem.

Lemma 3.8. Let $T(\cdot)$ be an r-times integrated resolvent family with generator A and satisfying $\|T(t)\| \leq M \frac{t^{r}}{\Gamma(r+1)}, r>0$, for all $t \geq 0$.
(i) $\left\|\left(\Gamma(r+1) / t^{r}\right) T(t) x-x\right\| \rightarrow 0$ as $t \rightarrow 0^{+}$if and only if $\left\|\frac{a * T(t)}{\left(a * t^{r} / \Gamma(r+1)\right)} x-x\right\| \rightarrow$ 0 as $t \rightarrow 0^{+}$, if and only if $\left\|\lambda(\lambda-A)^{-1} x-x\right\| \rightarrow 0$ as $\lambda \rightarrow \infty$, if and only if $x \in X_{1}$.
(ii) $\left\|\left(\Gamma(r+1) / t^{r}\right) T(t)-I\right\| \rightarrow 0$ as $t \rightarrow 0^{+}$, if and only if $\left\|\frac{a * T(t)}{\left(a * t^{r} / \Gamma(r+1)\right)}-I\right\| \rightarrow 0$ as $t \rightarrow 0^{+}$, if and only if $\left\|\lambda(\lambda-A)^{-1}-I\right\| \rightarrow 0$ as $\lambda \rightarrow \infty$, if and only if $A \in B(X)$. In this case, $\left\|\frac{\Gamma(r+1)}{t^{r}} T(t)-I\right\|=O\left(\frac{a *\left(t^{r} / \Gamma(r+1)\right)}{t^{r} / \Gamma(r+1)}\right)\left(t \rightarrow 0^{+}\right)$, if and only if $\left\|\frac{a * T(t)}{\left(a * t^{r} / \Gamma(r+1)\right)}-I\right\|=O\left(\frac{a * a *\left(t^{r} / \Gamma(r+1)\right)}{a *\left(t^{r} / \Gamma(r+1)\right)}\right)\left(t \rightarrow 0^{+}\right)$, if and only if $\left\|\lambda(\lambda-A)^{-1}-I\right\|=O\left(\lambda^{-1}\right)(\lambda \rightarrow \infty)$.
(iii) For $x \in X_{1},\left\|\left(\Gamma(r+1) / t^{r}\right) T(t) x-x\right\|=o\left(\frac{a *\left(t^{r} / \Gamma(r+1)\right)}{t^{r} / \Gamma(r+1)}\right)\left(t \rightarrow 0^{+}\right)$, if and only if $\left\|\frac{a * T(t)}{\left(a * t^{r} / \Gamma(r+1)\right)} x-x\right\|=o\left(\frac{a * a *\left(t^{r} / \Gamma(r+1)\right)}{a *\left(t^{r} / \Gamma(r+1)\right)}\right)\left(t \rightarrow 0^{+}\right)$, if and only if $\left\|\lambda(\lambda-A)^{-1} x-x\right\|=o\left(\lambda^{-1}\right)(\lambda \rightarrow \infty)$, if and only if $x \in N\left(A_{1}\right)=N(A)$.
(iv) For $0<\beta \leq 1$ and $x \in X_{1}$, the following are equivalent:
(a) $\left\|\frac{\Gamma(r+1)}{t^{r}} T(t) x-x\right\|=O\left(\left(\frac{a *\left(t^{r} / \Gamma(r+1)\right)}{t^{r} / \Gamma(r+1)}\right)^{\beta}\right)\left(t \rightarrow 0^{+}\right)$;
(b) $\left\|\frac{a * T(t)}{\left(a * t^{r} / \Gamma(r+1)\right)} x-x\right\|=O\left(\left(\frac{a * a *\left(t^{r} / \Gamma(r+1)\right)}{a *\left(t^{r} / \Gamma(r+1)\right)}\right)^{\beta}\right)\left(t \rightarrow 0^{+}\right)$;
(c) $\left\|\lambda(\lambda-A)^{-1} x-x\right\|=O\left(\lambda^{-\beta}\right)(\lambda \rightarrow \infty)$;
(d) $K\left(\frac{a *\left(t^{r} / \Gamma(r+1)\right)}{t^{r} / \Gamma(r+1)}, x, X, D(A),\|\cdot\|_{D}(A)\right)=O\left(\left(\frac{a *\left(t^{r} / \Gamma(r+1)\right)}{t^{r} / \Gamma(r+1)}\right)^{\beta}\right)\left(t \rightarrow 0^{+}\right)$;
(e) $x \in{\widetilde{D\left(A_{1}\right)}}^{X_{1}}$ in the case that $\beta=1$;
(f) $x \in D\left(A_{1}\right)$ in the case that $\beta=1$ and X is reflexive.
(v) A is unbounded if and only if for some(each) $0<\beta<1$ there exist $x_{1, \beta}^{*}$, $x_{2, \beta}^{*}, x_{3, \beta}^{*} \in X_{1}=\overline{D(A)}$ such that

$$
\begin{aligned}
& \left\|\left(\Gamma(r+1) / t^{r}\right) T(t) x_{1, \beta}^{*}-x_{1, \beta}^{*}\right\| \begin{cases}=O\left(\left(\frac{a * t^{r}}{t^{r}}\right)^{\beta}\right) \\
\neq o\left(\left(\frac{a * t^{r}}{t^{r}}\right)^{\beta}\right) & \left(t \rightarrow 0^{+}\right),\end{cases} \\
& \left\|\frac{a * T(t)}{\left(a * t^{r} / \Gamma(r+1)\right)} x_{2, \beta}^{*}-x_{2, \beta}^{*}\right\| \begin{cases}=O\left(\left(\frac{a * t^{r}}{t^{r}}\right)^{\beta}\right) \\
\neq o\left(\left(\frac{a * t^{r}}{t^{r}}\right)^{\beta}\right) & \left(t \rightarrow 0^{+}\right),\end{cases}
\end{aligned}
$$

and

$$
\left\|\lambda(\lambda-A)^{-1} x_{3, \beta}^{*}-x_{3, \beta}^{*}\right\|\left\{\begin{array}{l}
=O\left(\lambda^{-\beta}\right) \\
\neq o\left(\lambda^{-\beta}\right)
\end{array} \quad(\lambda \rightarrow \infty) .\right.
$$

Acknowledgment

The authors would like to thank the referee for his careful reading and valuable suggestions.

References

1. H. Berens, Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachraumen, Lect. Notes Math. 64, Springer-Verlag, Berlin-Heidelberg-New York, 1968.
2. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Vol. 1, Birkhăuser, Basel/Academic Press, New York, 1971.
3. P. L. Butzer and A. Gessinger, Ergodic theorems for semigroups and cosine operator functions at zero and infinity with rates; applications to partial differential equation: A survey, Contemp. Math., 190 (1995), 67-94.
4. J.-C. Chang and S.-Y. Shaw, Rates of approximation and ergodic limits of resolvent families, Arch. Math., 66 (1996), 320-330.
5. C.-C. Kuo and S.-Y. Shaw, On α-times integrated C-semigroups and the abstract Cauchy problem, Studia Math., 142 (2000), 201-217.
6. C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl., 243 (2000), 278-292.
7. C. Lizama, On approximation and representation of k-regularized resolvent families, Int. Eq. Operator Theory, 41 (2001), 223-229.
8. C. Lizama, On perturbation of K-regularized resolvent families, Taiwanese J. Math., 7 (2003), 217-227.
9. H. P. Lotz, Uniform convergence of operators on L^{∞} and similar spaces, Math, Z., 190 (1985), 207-220.
10. H. Oka, Linear Volterra equations and integrated solution families, Semigroup Forum, 53 (1996), 278-297.
11. J. Pruss, Evolutionary Integral Equations and Applications, Birkh auser, Basel, 1993.
12. S.-Y. Shaw and Y.-C. Li, On n-times integrated C-cosine functions, Evolution Equations, Marcel Dekker, New York, 1994, pp. 393-406.
13. S.-Y. Shaw and H. Liu, Convergence rates of regularized approximation processes, J. Approximation Theory, 115 (2002), 21-43.

Sen-Yen Shaw
Graduate School of Engineering,
Lunghwa University of Science and Technology,
Taoyuan 333, Taiwan.
E-mail: shaw@math.ncu.edu.tw
Jeng-Chung Chen
Department of Mathematics,
National Central University,
Chung-Li 320, Taiwan.

[^0]: Received November 26, 2004; Revised March 15, 2005; Accepted April 7, 2005.
 2000 Mathematics Subject Classification: 45D05, 47D06, 47D09, 47D62, 47A58, 41A25.
 Key words and phrases: (a, k)-Regularized resolvent family, Regularized approximation process,Saturation property, Non-optimal convergence, K-functional.
 Research supported in part by the National Science Council of Taiwan.
 Dedicated to Professor Hang-Chin Lai on His Seventieth Birthday.

