TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 2, pp. 531-542, February 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ASYMPTOTIC BEHAVIOR OF (a, k)-REGULARIZED RESOLVENT FAMILIES AT ZERO

Sen-Yen Shaw and Jeng-Chung Chen

Abstract. This paper is primarily concerned with approximation at 0 of an (a, k)-regularized resolvent family $R(\cdot)$ for Volterra integral equation. We shall consider convergence rates of some kind of local means $Q_m(t), t \ge 0, m \ge 0$, of R(t)/k(t). Some approximation theorems and local ergodic theorems with rates will be deduced from general approximation theorems for regularized approximation processes.

1. INTRODUCTION

Consider the following Volterra equation of convolution type

$$u(t) = \int_0^t a(t-s)Au(s)ds + f(t), \ t \ge 0$$

where A is a closed linear operator on a Banach space X. Let B(X) denote the Banach algebra of all bounded linear operators on X. Let $k \in C[0, \infty)$, $a \in L^1_{loc}([0, \infty))$ be nondecreasing positive functions. A strongly continuous function $R: [0, \infty) \to B(X)$ is called an (a, k)-regularized resolvent family with generator A if it satisfies the conditions:

(R1) R(0) = k(0)I;

(R2)
$$R(t)x \in D(A)$$
 and $AR(t)x = R(t)Ax$ for all $x \in D(A)$ and $t > 0$;

(R3)
$$a * R(t)x \in D(A)$$
 and $R(t)x = k(t)x + Aa * R(t)x$ for all $x \in X$ and $t \ge 0$.

Research supported in part by the National Science Council of Taiwan.

Dedicated to Professor Hang-Chin Lai on His Seventieth Birthday.

Received November 26, 2004; Revised March 15, 2005; Accepted April 7, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 45D05, 47D06, 47D09, 47D62, 47A58, 41A25.

Key words and phrases: (a, k)-Regularized resolvent family, Regularized approximation process, Saturation property, Non-optimal convergence, K-functional.

The notion of (a, k)-regularized resolvent family has been introduced and studied in [6, 7, 8]. It contains integrated solution families $(k(t) = t^{\alpha}/\Gamma(\alpha + 1))$ [10], resolvent families $(k(t) \equiv 1)$ [11], integrated semigroups $(a \equiv 1, k(t) = t^{\alpha}/\Gamma(\alpha + 1))$ [5], and integrated cosine functions $(a(t) = t, k(t) = t^{\alpha}/\Gamma(\alpha + 1))$ [12] as special cases.

In this paper, we study approximation properties at 0 of $R(\cdot)$. Denote by a_0 the Dirac measure δ_0 at 0. For $m \ge 0$, let $a_{m+1}(t) = a * a_m(t), t \ge 0$, and let $l_m(0) = 0$ and $l_m(t) = \frac{a_{m+1}*k(t)}{a_m*k(t)}$ for t > 0. We define the operator function $Q_m: (0, \infty) \to B(X)$ by

$$Q_m(t)x = \frac{a_m * R(t)x}{a_m * k(t)}$$

for all $x \in X$ and t > 0. Note that $Q_0(t) = R(t)/k(t)$ and $Q_1(t) = \int_0^t a(t-s)R(s)ds / \int_0^t a(t-s)k(s)ds$. We shall assume that

(1.1)
$$||R(t)|| \le Mk(t) \text{ for all } t > 0.$$

Then

$$\begin{aligned} \|Q_m(t)x\| &\leq \frac{1}{a_m * k(t)} \int_0^t a_m(t-s) \|R(s)x\| ds \\ &\leq \frac{M\|x\|}{a_m * k(t)} \int_0^t a_m(t-s)k(s) ds = M\|x\| \end{aligned}$$

for all $x \in X$ and so

(1.2)
$$||Q_m(t)|| \le M \text{ for all } t > 0.$$

Therefore one can consider the asymptotic behavior of $Q_m(t)$ at zero. Since it can be seen that $\{Q_m(t); t \ge 0\}$ forms a regularized approximation process on $X_1 := \overline{D(A)}$, one can apply general approximation theorems for A-regularized approximation processes (cf. [13]) to deduce results on approximation of $Q_m(t)$. We will do this in Section 3. Before that we shall first recall in Section 2 some needed general results from [13] on approximation of A-regularized approximation processes.

2. REGULARIZED APPROXIMATION PROCESSES

In [13], we have obtained general results on the strong and uniform convergence of regularized approximation processes, with emphasis on their optimal and nonoptimal convergence rates. This section serves as a brief review of those general results needed in Section 3.

We start with the following definition of a regularized approximation process. In the sequel, we use the notations D(T), R(T), and N(T), for the domain, range, and null space, respectively, of a linear operator T.

Let $e(\alpha)$ be a positive function tending to 0. A net $\{T_{\alpha}\}$ of bounded linear operators on X is called an A-regularized approximation process of order $O(e(\alpha))$ on X if it is uniformly bounded, i.e., $||T_{\alpha}|| \leq M$ for some M > 0 and all α , and satisfies

(A1) there are a (necessarily densely defined) closed linear operator A on X and a uniformly bounded approximation process $\{S_{\alpha}\}$ on X such that

$$R(S_{\alpha}) \subset D(A)$$
 and $S_{\alpha}A \subset AS_{\alpha} = (e(\alpha))^{-1}(T_{\alpha} - I)$ for all α .

In this case, the process $\{S_{\alpha}\}$ is called a *regularization process* associated with $\{T_{\alpha}\}$.

In the following, $\{T_{\alpha}\}$ denotes an A-regularized approximation process of order $O(e(\alpha))$ with regularization process $\{S_{\alpha}\}$.

Lemma 2.1. [13]

- (i) $x \in D(A)$ and y = Ax if and only if $y = \lim_{\alpha} (e(\alpha))^{-1} (T_{\alpha} I)x$.
- (ii) D(A) is dense in X, and $||T_{\alpha}x x|| \to 0$ for all $x \in X$.
- (iii) If A is bounded, then $||T_{\alpha} I|| = O(e(\alpha)) \to 0$.
- (iv) $||T_{\alpha} I|| \to 0$ implies $A \in B(X)$ if either $R(T_{\alpha}) \subset D(A)$ for all α , or S_{α} and T_{α} satisfy the following condition:
- (A2) $||T_{\alpha} I|| \to 0$ implies $||S_{\alpha} I|| \to 0$.

A Banach space X is called a *Grothendieck space* if every weakly^{*} convergent sequence in X^* is weakly convergent, and is said to have the *Dunford-Pettis property* if $\langle x_n, x_n^* \rangle \to 0$ whenever $x_n \to 0$ weakly in X and $x_n^* \to 0$ weakly in X^* . The spaces L^{∞} , H^{∞} , and $B(S, \Sigma)$ are particular examples of Grothendieck spaces with the Dunford-Pettis property (see [9]). A common phenomenon in such spaces is that strong operator convergence often implies uniform operator convergence. The following is a theorem of this type for regularized approximation processes.

Theorem 2.2. [13] Let $\{T_{\alpha}\}$ be an A-regularized approximation process of order $O(e(\alpha))$ on a Grothendieck space X with the Dunford-Pettis property. If $R(T_{\alpha}) \subset D(A)$ for all α , then $A \in B(X)$ and $||T_{\alpha} - I|| = O(e(\alpha))$.

As usual the rates of convergence will be characterized by means of *K*-functional and relative completion, which we recall now.

Definition 2.3. Let X be a Banach space with norm $\|\cdot\|_X$, and Y a submanifold with seminorm $\|\cdot\|_Y$. The *K*-functional is defined by

$$K(t,x) := K(t,x,X,Y, \|\cdot\|_Y) = \inf_{y \in Y} \{ \|x-y\|_X + t \|y\|_Y \}.$$

If Y is also a Banach space with norm $\|\cdot\|_Y$, then the *completion of* Y *relative to* X is defined as

$$\tilde{Y}^X := \{x \in X : \exists \{x_n\} \subset Y \text{ such that } \lim_{n \to \infty} \|x_n - x\|_X = 0 \text{ and } \sup_n \|x_n\|_Y < \infty \}$$

It is known [1] that K(t, x) is a bounded, continuous, monotone increasing and subadditive function of t for each $x \in X$, and $K(t, x, X, Y, || \cdot ||_Y) = O(t)$ if and only if $x \in \tilde{Y}^X$. With these terminologies we now state some theorems from [13] on convergence rates. The following is an optimal convergence (saturation) theorem.

Theorem 2.4. [13] Let $\{T_{\alpha}\}$ be an A-regularized approximation process of order $O(e(\alpha))$, and let D(A) be equipped with the graph norm $\|\cdot\|_{D(A)}$. For $x \in X$, we have:

- (i) $||T_{\alpha}x x|| = o(e(\alpha))$ if and only if $x \in N(A)$, if and only if $T_{\alpha}x = x$ for all α .
- (*ii*) The following are equivalent:

(a)
$$||T_{\alpha}x - x|| = O(e(\alpha));$$

(b) $x \in \widetilde{D(A)}^{X};$
(c) $x \in D(A)$ in the case that X is reflexive.

The next theorem is about non-optimal convergence.

Theorem 2.5. [13] Let $0 \le e(\alpha) \le f(\alpha) \to 0$. If $K(e(\alpha), x, X, D(A), \| \cdot \|_{D(A)}) = O(f(\alpha))$, then $\|T_{\alpha}x - x\| = O(f(\alpha))$. The converse statement is also true under the following assumption:

(A3) $||S_{\alpha}x - x|| = O(f(\alpha))$ whenever $||T_{\alpha}x - x|| = O(f(\alpha))$.

To consider the sharpness of approximation, we need the following theorem.

Theorem 2.6. [13] Suppose an A-regularized approximation process $\{T_{\alpha}\}$ and its regularization process $\{S_{\alpha}\}$ satisfy condition (A2). Then A is unbounded if and only if for each/some $f(\alpha)$ with $0 \le e(\alpha) < f(\alpha) \to 0$ and $f(\alpha)/e(\alpha) \to \infty$ there exists $x_f \in X$ such that

$$||T_{\alpha}x_f - x_f|| \begin{cases} = O(f(\alpha)); \\ \neq o(f(\alpha)). \end{cases}$$

3. APPROXIMATION PROPERTIES OF REGULARIZED SOLUTION FAMILIES

In this section, we apply the general theorems in Section 2 to deduce approximation theorems for regularized solution families. Note that $a_m(t)$ and $a_m * k(t)$ are nondecreasing and positive functions of t. Therefore

(3.1)
$$l_m(t) = \frac{1}{a_m * k(t)} \int_0^t a(t-s)(a_m * k)(s) ds \le \int_0^t a(s) ds \to 0$$

as $t \to 0$.

Lemma 3.1. Let $R(\cdot)$ be an (a, k)-regularized resolvent family generated by A such that $||R(t)|| \le Mk(t)$ for all $t \ge 0$, and let A_1 be the part of A in $X_1 := \overline{D(A)}$. Then

(3.2)
$$Q_0(t)D(A) \subset D(A) \text{ and } Q_0(t)Ax = AQ_0(t)x \text{ for } x \in D(A);$$

(3.3)
$$Q_{m+1}(t)X \subset D(A)$$
 and $Q_{m+1}(t)A \subset AQ_{m+1}(t) = \frac{1}{l_m(t)}(Q_m(t) - I);$

$$(3.4) \quad Q_0(t)D(A_1) \subset D(A_1) \ and \ Q_0(t)A_1x = A_1Q_0(t)x \ for \ x \in D(A_1);$$

(3.5)
$$Q_{m+1}(t)X_1 \subset D(A_1) \text{ and } Q_{m+1}(t)A_1 \subset A_1Q_{m+1}(t) \mid_{X_1} \\ = \frac{1}{l_m(t)}(Q_m(t) - I) \mid_{X_1} \text{ for all } m \ge 0 \text{ and } t > 0.$$

Proof. Since $Q_0(t) = \frac{1}{k(t)}R(t)$, (3.2) follows from (R2). It implies $Q_0(t)X_1 \subset X_1$. To show (3.4), let $x \in D(A_1)$. Then $x \in D(A)$, $Ax \in X_1$, and $A_1x = Ax$. By (3.2) we have $Q_0(t)x \in D(A)$ and $AQ_0(t)x = Q_0(t)Ax = Q_0(t)A_1x \in Q_0(t)X_1 \subset X_1$, so that $Q_0(t)x \in D(A_1)$ and $A_1Q_0(t)x = AQ_0(t)x = Q_0(t)A_1x$. To show (3.3) for $m \ge 0$, write

$$Q_{m+1}(t)x = \frac{1}{a_{m+1} * k(t)} [a_m * (a * R)](t)x$$
$$= \frac{1}{a_{m+1} * k(t)} \int_0^t a_m (t - s)(a * R)(s)xds$$

for all $x \in X$. Since the integral

$$\int_{0}^{t} Aa_{m}(t-s)(a*R)(s)xds = \int_{0}^{t} a_{m}(t-s)A(a*R)(s)xds$$
$$= \int_{0}^{t} a_{m}(t-s)[R(s)-k(s)]xds$$

exists, the closedness of A implies that $[a_m * (a * R)](t)x \in D(A)$ and

$$A[a_m * (a * R)](t)x = \int_0^t Aa_m(t - s)(a * R)(s)xds$$

= $[a_m * A(a * R)](t)x = a_m * R(t)x - a_m * k(t)x.$

Hence $Q_{m+1}(t)x \in D(A)$ and

$$AQ_{m+1}(t)x = \frac{1}{a_{m+1} * k(t)} [a_m * R(t)x - a_m * k(t)x] = \frac{1}{l_m(t)} [Q_m(t)x - x]$$

for all $x \in X$. Moreover, if $x \in D(A)$ then by (R2) and (R3) we have

$$AQ_{m+1}(t)x = \frac{1}{a_{m+1} * k(t)} [a_m * A(a * R)](t)x$$
$$= \frac{1}{a_{m+1} * k(t)} [a_m * (a * R)](t)Ax = Q_{m+1}(t)Ax$$

This shows (3.3). To show (3.5), let $x \in X_1$ and let $\{x_n\} \subset D(A)$ converge to x. (3.3) implies $Q_{m+1}(t)x \in D(A)$. Since A is closed, $AQ_{m+1}(t)$ is bounded, so that $AQ_{m+1}(t)x = \lim_{n\to\infty} AQ_{m+1}(t)x_n = \lim_{n\to\infty} Q_{m+1}(t)Ax_n \in \overline{D(A)} = X_1$. This and (3.3) show that $Q_{m+1}(t)x \in D(A_1)$ and $A_1Q_{m+1}(t)x = AQ_{m+1}(t)x$ $= \frac{1}{l_m(t)}(Q_m(t) - I)x$ for all $x \in X_1$. When $x \in D(A_1)$, we have $x \in D(A)$, $Ax \in X_1$, and $A_1x = Ax$ so that $Q_{m+1}(t)A_1x = Q_{m+1}(t)Ax = AQ_{m+1}(t)x = A_1Q_{m+1}(t)x$. This completes the Proof.

Lemma 3.2. Let $R(\cdot)$ be an (a, k)-regularized resolvent family with generator A such that $||R(t)|| \le Mk(t)$ for all $t \ge 0$.

(i) For $m \ge 0$, $||Q_m(t)x - x|| \to 0$ as $t \to 0^+$ if and only if $Q_m(t)x \to x$ weakly as $t \to 0^+$, if and only if there is a sequence $\{t_n\}$ such that $Q_m(t_n)x \to x$ weakly for the case $m \ge 1$, if and only if $x \in X_1$.

(ii) If $k(t) \rightarrow k(0) \neq 0$ as $t \rightarrow 0^+$, then A is densely defined in X.

Proof.

(i) It follows from (3.1), (1.2), (3.3) that for all $m \ge 0$

$$||Q_m(t)x - x|| \le l_m(t) ||Q_{m+1}(t)|| ||Ax|| \le l_m(t)M||Ax|| \to 0$$

as $t \to 0^+$ for all $x \in D(A)$, and hence $Q_m(t)x \to x$ for all $x \in X_1$, by

(1.2). Conversely, from the estimate,

$$| < Q_{m+1}(t)x - x, x^* > |$$

$$= \frac{1}{a_{m+1} * k(t)} \left| \left\langle \int_0^t a(t-s)(a_m * R(s)x) ds - \int_0^t a(t-s)(a_m * k)(s)x ds, x^* \right\rangle \right|$$

$$\leq \frac{1}{a_{m+1} * k(t)} \int_0^t a(t-s)(a_m * k)(s)| < Q_m(s)x - x, x^* > |ds|$$

$$\leq \sup\{| < Q_m(s)x - x, x^* > |; 0 \le s \le t\}, x \in X, x^* \in X^*,$$

one sees that if $Q_m(t)x \to x$ weakly, then $Q_{m+1}(t)x \to x$ weakly, which and the fact that $R(Q_{m+1}(t)) \subset D(A)$ show that $x \in X_1$. When $m \ge 1$, $R(Q_m(t_n)) \subset D(A)$, and so $x = w - \lim Q_m(t_n)x \in X_1$.

(ii) When $k(t) \to k(0) \neq 0$ as $t \to 0^+$, since $Q_0(t) = R(t)/k(t) \to I$ strongly as $t \to 0^+$, (3.6) implies that

$$||Q_1(t)x - x|| \le \sup\{||Q_0(s)x - x||; 0 \le s \le t\} \to 0$$

for all $x \in X$. Then we have $X_1 = X$, by the fact that $Q_1(t)X \subset D(A)$. That is, A is densely defined.

Thus, from (3.2), (3.5) and Lemma 3.2, we see that X_1 is invariant under $Q_m(t)$ for each $m \ge 0$, and $\{T_t := Q_m(t) \mid X_1\}$ is an A_1 -regularized approximation process on X_1 with the regularization process $\{S_t := Q_{m+1}(t) \mid X_1\}$ and with the optimal order $O(l_m(t))(t \to 0^+)$. In particular, $D(A_1)$ is dense in X_1 . Moreover, by Lemma 3.1 we have $T_t D(A_1) \subset D(A_1)$ if m = 0 and $R(T_t) \subset D(A_1)$ if $m \ge 1$.

Lemma 3.3. The above pair $({T_t}, {S_t})$ satisfies (A2). If $l_m(t)$ is nondecreasing for t near 0, then (A3) with $f(t) = (l_m(t))^{\beta}(0 < \beta \le 1))$ also holds.

Proof. From (3.6) one can see that $||S_t - I||_{X_1} \le \sup\{||T_s - I||_{X_1}; 0 \le s \le t\}$, which shows (A2). Moreover, if $||T_tx - x|| \le M(k_m(t))^{\beta}$ for all $t \in [0, 1]$, then $||S_tx - x|| \le M \sup\{(l_m(s))^{\beta}; 0 \le s \le t\} \le M(l_m(t))^{\beta}$ for all $t \in [0, 1]$, showing (A3).

From Lemmas 2.1 and 3.3 and Theorem 2.2 we deduce the following uniform convergence theorem.

Theorem 3.4. Let $R(\cdot)$ be an (a, k)-regularized resolvent family with generator A such that $||R(t)|| \le Mk(t)$ for all $t \ge 0$.

Sen-Yen Shaw and Jeng-Chung Chen

- (i) For $m \ge 0$, $||Q_m(t) I|| \to 0$ as $t \to 0^+$ if and only if $A \in B(X)$. In this case, $||Q_m(t) I|| = O(l_m(t))(t \to 0^+)$.
- (*ii*) When X_1 is a Grothendieck space with the Dunford-Pettis property, A must be bounded on X, and consequently $||R(t) k(t)I|| = O(a * k(t))(t \to 0^+)$.

Proof.

- (i) This follows from Lemmas 2.1 and 3.3.
- (ii) Applying Theorem 2.2 to $\{T_t := Q_1(t) | X_1\}$ yields that A_1 is bounded on X_1 , so that $||Q_1(t)|_{X_1} I|_{X_1}|| \le l_1(t)||A_1|| ||Q_2(t)|| \le l_1(t)||A_1|| M \to 0$ as $t \to 0^+$. Hence $Q_1(t)|_{X_1}$ is invertible on X_1 for small t. Then by (3.3) we have $X_1 = R(Q_1(t)|_{X_1}) \subset R(Q_1(t)) \subset D(A)$, which shows that D(A) is closed and A is bounded. Due to Lemma 3.3, (ii) and (iv) of Lemma 2.1 together imply that $A \in B(X)$. By (i), $||Q_m(t) I|| = O(l_m(t))(t \to 0^+)$, and in particular, $||R(t) k(t)I|| = O(a * k(t))(t \to 0^+)$.

From Theorems 2.4, 2.5, 2.6 and Lemma 3.3 we can deduce the next theorem. **Theorem 3.5.** Let $R(\cdot)$ be as assumed in Theorem 3.4 and let $m \ge 0$, $0 < \beta \le 1$, and $x \in X_1 = \overline{D(A)}$.

- (i) $||Q_m(t)x x|| = o(l_m(t))(t \to 0^+)$ if and only if $x \in N(A_1) = N(A)$.
- (*ii*) $||Q_m(t)x x|| = O(l_m(t))(t \to 0^+)$ if and only if $x \in \widetilde{D(A_1)}^{X_1}(= D(A_1))$, if X is reflexive).
- (*iii*) If $K(l_m(t), x, X_1, D(A_1), \|.\|_{D(A_1)}) = O((l_m(t))^{\beta})(t \to 0^+)$, then $\|Q_m(t)x - x\| = O((l_m(t))^{\beta})(t \to 0^+)$. The converse is also true if $l_m(t)$ is nondecreasing for t near 0.
- (iv) A is unbounded if and only if for some/each $0 < \beta < 1$ and $m \ge 0$ there exist $x_{m,\beta}^* \in X_1 = \overline{D(A)}$ such that

$$\|Q_m(t)x_{m,\beta}^* - x_{m,\beta}^*\| \begin{cases} = O((l_m(t))^{\beta}) \\ \neq o((l_m(t))^{\beta}) \end{cases} \quad (t \to 0^+).$$

Next, we assume that the nondecreasing positive functions $a, k \in L^1_{loc}([0, \infty))$ are Laplace transformable, i.e., there is $\omega \ge 0$ such that $\hat{a}(\lambda) = \int_0^\infty e^{-\lambda t} a(t) dt < \infty$ and $\hat{k}(\lambda) < \infty$ for all $\lambda > \omega$. Then it is easy to see that $\hat{a}(\lambda) \to 0$ as $\lambda \to \infty$.

Lemma 3.6. Suppose $\hat{a}(\lambda) < \infty$ for all $\lambda > \omega$, and let $R(\cdot)$ be an (a, k)-regularized resolvent family with generator A such that $||R(t)|| \leq Mk(t)$ for all $t \geq 0$. Then $(\hat{a}(\lambda))^{-1} \in \rho(A), ((\hat{a}(\lambda))^{-1} - A)^{-1} = \hat{k}(\lambda)^{-1}\hat{a}(\lambda)\hat{R}(\lambda)$, and $||(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1} - A)^{-1}|| \leq M$ for all $\lambda > \omega$.

Proof. Under the assumption (1.1) we can take Laplace transform of the equation in (R3) to obtain

$$\hat{R}(\lambda)x = \begin{cases} \hat{k}(\lambda)x + \hat{a}(\lambda)\hat{R}(\lambda)Ax, & x \in D(A) \\ \hat{k}(\lambda)x + A\hat{a}(\lambda)\hat{R}(\lambda)x, & x \in X, \end{cases}$$

for all $\lambda > \omega$. Thus

$$\hat{k}(\lambda)^{-1}\hat{a}(\lambda)\hat{R}(\lambda)((\hat{a}(\lambda))^{-1}-A) \subset ((\hat{a}(\lambda))^{-1}-A)\hat{k}(\lambda)^{-1}\hat{a}(\lambda)\hat{R}(\lambda) = I,$$

that is, $(\hat{a}(\lambda))^{-1} \in \rho(A)$ and $((\hat{a}(\lambda))^{-1} - A)^{-1} = \hat{k}(\lambda)^{-1}\hat{a}(\lambda)\hat{R}(\lambda)$ for $\lambda > \omega$. Moreover, (1.1) implies

$$\|(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1}-A)^{-1}\| = \|\hat{k}(\lambda)^{-1}\hat{R}(\lambda)\| = \|\hat{k}(\lambda)^{-1}\int_0^\infty e^{-\lambda t}R(t)dt\| \le M$$

Thus A is a generalized Hille-Yosida operator. Since

$$((\hat{a}(\lambda))^{-1} - A_1)^{-1}A_1 \subset A_1((\hat{a}(\lambda))^{-1} - A_1)^{-1} = (\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1} - A_1)^{-1} - I,$$

 $\{(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1}-A_1)^{-1}\}\$ is an A_1 -regularized approximation process of order $O(\hat{a}(\lambda))(\lambda \to \infty)$ on X_1 , having itself as a regularization process. Then we can deduce the following local Abelian ergodic theorem, which follows from the general results in Section 2.

Theorem 3.7. Let $a \in L^1_{loc}([0,\infty))$ be nondecreasing, positive, and Laplace transformable, and let $R(\cdot)$ be an (a, k)-regularized resolvent family with generator A such that $||R(t)|| \le Mk(t)$ for all $t \ge 0$.

- (i) $\|(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1}-A)^{-1}x-x\| \to 0 \text{ as } \lambda \to \infty \text{ if and only if } x \in X_1.$
- $\begin{array}{ll} (ii) & \|(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1}-A)^{-1}-I\| \to 0 \text{ as } \lambda \to \infty \text{ if and only if } A \in B(X). \\ & \text{ In this case, } \|(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1}-A)^{-1}-I\| = O(\hat{a}(\lambda))(\lambda \to \infty). \end{array}$
- (*iii*) For $x \in X_1$, $\|(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1} A)^{-1}x x\| = o(\hat{a}(\lambda))(\lambda \to \infty)$ if and only if $x \in N(A)$.
- (iv) For $0 < \beta \leq 1$ and $x \in X_1$, $\|(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1}-A)^{-1}x-x\| = O((\hat{a}(\lambda)^{\beta}))$ $(\lambda \to \infty)$ if and only if $K(t, x, X, D(A), \|.\|_{D(A)}) = O(t^{\beta})(t \to 0^+)$, if and only if $x \in \widetilde{D(A_1)}^{X_1}$ in the case that $\beta = 1$, if and only if $x \in D(A_1)$ in the case that $\beta = 1$ and X is reflexive.
- (v) A is unbounded if and only if for each $0 < \beta < 1$ there exists $x_{\beta}^* \in X_1$ such that

Sen-Yen Shaw and Jeng-Chung Chen

$$\|(\hat{a}(\lambda))^{-1}((\hat{a}(\lambda))^{-1} - A)^{-1}x_{\beta}^{*} - x_{\beta}^{*}\| \begin{cases} = O((\hat{a}(\lambda)^{\beta}) \\ \neq o((\hat{a}(\lambda)^{\beta}) \end{cases} \quad (\lambda \to \infty). \end{cases}$$

If one takes $k(t) = j_r(t) := \frac{t^r}{\Gamma(r+1)}$, $r \ge 0$, then $l_0(t) = \frac{a*j_r(t)}{j_r(t)}$, $l_1(t) = \frac{a*a*j_r(t)}{a*j_r(t)}$, $Q_0 = \frac{R(t)}{j_r(t)}$, and $Q_1 = \frac{a*R(t)}{a*j_r(t)}$. In this case, R(t) become an *r*-times integrated resolvent family with generator A. Then a combination of applications of Theorems 3.4 and 3.5 to $Q_0(t)$ and $Q_1(t)$ and of Theorem 3.7 leads to the following approximation and local ergodic theorem.

Lemma 3.8. Let $T(\cdot)$ be an r-times integrated resolvent family with generator A and satisfying $||T(t)|| \le M \frac{t^r}{\Gamma(r+1)}$, r > 0, for all $t \ge 0$.

- (i) $\|(\Gamma(r+1)/t^r)T(t)x-x\| \to 0 \text{ as } t \to 0^+ \text{ if and only if } \|\frac{a*T(t)}{(a*t^r/\Gamma(r+1))}x-x\| \to 0 \text{ as } t \to 0^+, \text{ if and only if } \|\lambda(\lambda-A)^{-1}x-x\| \to 0 \text{ as } \lambda \to \infty, \text{ if and only if } x \in X_1.$
- $\begin{array}{ll} (ii) & \|(\Gamma(r+1)/t^r)T(t)-I\| \to 0 \text{ as } t \to 0^+, \text{ if and only if } \|\frac{a*T(t)}{(a*t^r/\Gamma(r+1))}-I\| \to 0 \\ as \ t \to 0^+, \text{ if and only if } \|\lambda(\lambda-A)^{-1}-I\| \to 0 \text{ as } \lambda \to \infty, \text{ if and only if } \\ A \in B(X). \text{ In this case, } \|\frac{\Gamma(r+1)}{t^r}T(t)-I\| = O(\frac{a*(t^r/\Gamma(r+1))}{t^r/\Gamma(r+1)})(t \to 0^+), \text{ if } \\ and \text{ only if } \|\frac{a*T(t)}{(a*t^r/\Gamma(r+1))}-I\| = O(\frac{a*a*(t^r/\Gamma(r+1))}{a*(t^r/\Gamma(r+1))})(t \to 0^+), \text{ if and only if } \\ \|\lambda(\lambda-A)^{-1}-I\| = O(\lambda^{-1})(\lambda \to \infty). \end{array}$
- (iii) For $x \in X_1$, $\|(\Gamma(r+1)/t^r)T(t)x x\| = o(\frac{a*(t^r/\Gamma(r+1))}{t^r/\Gamma(r+1)})(t \to 0^+)$, if and only if $\|\frac{a*T(t)}{(a*t^r/\Gamma(r+1))}x - x\| = o(\frac{a*a*(t^r/\Gamma(r+1))}{a*(t^r/\Gamma(r+1))})(t \to 0^+)$, if and only if $\|\lambda(\lambda - A)^{-1}x - x\| = o(\lambda^{-1})(\lambda \to \infty)$, if and only if $x \in N(A_1) = N(A)$.
- (iv) For $0 < \beta \leq 1$ and $x \in X_1$, the following are equivalent:

(a)
$$\|\frac{\Gamma(r+1)}{t^r}T(t)x - x\| = O((\frac{a*(t^r/\Gamma(r+1))}{t^r/\Gamma(r+1)})^\beta)(t \to 0^+);$$

(b)
$$\|\frac{a*T(t)}{(a*t^r/\Gamma(r+1))}x - x\| = O((\frac{a*a*(t^r/\Gamma(r+1))}{a*(t^r/\Gamma(r+1))})^\beta)(t \to 0^+);$$

(c)
$$\|\lambda(\lambda - A)^{-1}x - x\| = O(\lambda^{-\beta})(\lambda \to \infty);$$

(d)
$$K(\frac{a*(t^r/\Gamma(r+1))}{t^r/\Gamma(r+1)}, x, X, D(A), \|.\|_D(A)) = O((\frac{a*(t^r/\Gamma(r+1))}{t^r/\Gamma(r+1)})^\beta)(t \to 0^+);$$

(e)
$$x \in \widetilde{D(A_1)}^{X_1} \text{ in the case that } \beta = 1;$$

(f)
$$x \in D(A_1) \text{ in the case that } \beta = 1 \text{ and } X \text{ is reflexive.}$$

(v) A is unbounded if and only if for some(each) $0 < \beta < 1$ there exist $x_{1,\beta}^*$, $x_{2,\beta}^*$, $x_{3,\beta}^* \in X_1 = \overline{D(A)}$ such that

(a, k)-Regularized Resolvent Families

$$\begin{split} \|(\Gamma(r+1)/t^{r})T(t)x_{1,\beta}^{*} - x_{1,\beta}^{*}\| \begin{cases} = O((\frac{a * t^{r}}{t^{r}})^{\beta}) \\ \neq o((\frac{a * t^{r}}{t^{r}})^{\beta}) \end{cases} & (t \to 0^{+}), \\ \\ \|\frac{a * T(t)}{(a * t^{r}/\Gamma(r+1))}x_{2,\beta}^{*} - x_{2,\beta}^{*}\| \begin{cases} = O((\frac{a * t^{r}}{t^{r}})^{\beta}) \\ \neq o((\frac{a * t^{r}}{t^{r}})^{\beta}) \end{cases} & (t \to 0^{+}), \end{split}$$

and

$$\|\lambda(\lambda-A)^{-1}x_{3,\beta}^* - x_{3,\beta}^*\| \begin{cases} = O(\lambda^{-\beta}) \\ & (\lambda \to \infty). \end{cases}$$

ACKNOWLEDGMENT

The authors would like to thank the referee for his careful reading and valuable suggestions.

REFERENCES

- 1. H. Berens, Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachraumen, Lect. Notes Math. 64, Springer-Verlag, Berlin-Heidelberg-New York, 1968.
- P. L. Butzer and R. J. Nessel, *Fourier Analysis and Approximation*, Vol. 1, Birkhäuser, Basel/Academic Press, New York, 1971.
- P. L. Butzer and A. Gessinger, Ergodic theorems for semigroups and cosine operator functions at zero and infinity with rates; applications to partial differential equation: A survey, *Contemp. Math.*, **190** (1995), 67-94.
- 4. J.-C. Chang and S.-Y. Shaw, Rates of approximation and ergodic limits of resolvent families, *Arch. Math.*, **66** (1996), 320-330.
- 5. C.-C. Kuo and S.-Y. Shaw, On α-times integrated C-semigroups and the abstract Cauchy problem, *Studia Math.*, **142** (2000), 201-217.
- 6. C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl., 243 (2000), 278-292.
- 7. C. Lizama, On approximation and representation of *k*-regularized resolvent families, *Int. Eq. Operator Theory*, **41** (2001), 223-229.
- C. Lizama, On perturbation of *K*-regularized resolvent families, *Taiwanese J. Math.*, 7 (2003), 217-227.

- 9. H. P. Lotz, Uniform convergence of operators on L^{∞} and similar spaces, *Math*, *Z*., **190** (1985), 207-220.
- H. Oka, Linear Volterra equations and integrated solution families, *Semigroup Forum*, 53 (1996), 278-297.
- 11. J. Prüss, Evolutionary Integral Equations and Applications, Birkh äuser, Basel, 1993.
- 12. S.-Y. Shaw and Y.-C. Li, *On n-times integrated C-cosine functions*, Evolution Equations, Marcel Dekker, New York, 1994, pp. 393-406.
- 13. S.-Y. Shaw and H. Liu, Convergence rates of regularized approximation processes, *J. Approximation Theory*, **115** (2002), 21-43.

Sen-Yen Shaw Graduate School of Engineering, Lunghwa University of Science and Technology, Taoyuan 333, Taiwan. E-mail: shaw@math.ncu.edu.tw

Jeng-Chung Chen Department of Mathematics, National Central University, Chung-Li 320, Taiwan.