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COINCIDENCE THEOREMS ON ω-CONNECTED SPACES

Sehie Park

Abstract. We obtain general coincidence theorems and related results for
multimaps in very large classes defined on ω-connected spaces. Our typical
consequence is as follows: Let X be a compact ω-connected topological space,
and F : X � X a multimap with nonempty values and open fibers such that,
for each open subset O ⊂ X,

⋂
x∈O Fx is empty or ω-connected. Then F

has a fixed point.

1. INTRODUCTION

Let us consider the following well-known fixed point theorem due to Felix
Browder [4] in 1968: Let X be a compact convex subset of a topological vector
space, and F : X � X a multimap with nonempty convex values Fx for x ∈ X
and open fibers F −y := {x ∈ X : y ∈ Fx} for y ∈ X . Then F has a fixed point
x0 ∈ X , that is, x0 ∈ Fx0. This is usually called the Fan-Browder fixed point
theorem.

Our principal aim in this paper is to obtain far-reaching generalizations of the
theorem to ω-connected topological spaces; for example, we have the following: Let
X be a compact ω-connected topological space, and F : X � X a multimap with
nonempty values and open fibers such that, for each open subset O ⊂ X ,

⋂
x∈O Fx

is empty or ω-connected. Then F has a fixed point. Some related coincidence
theorems and other results are also obtained.

Recall that, in a sequence of papers [8-12], Charles Horvath initiated the study
of his C-spaces, which have a very useful abstract convexity. More precisely, re-
placing convexity by contractibility (or more generally, by ω-connectedness), he
obtained generalizations of many results in convex analysis including KKM theory
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and fixed point theory. Especially, Horvath obtained a selection theorem, coinci-
dence theorems, and fixed point theorems in contractible spaces. This line of study
is followed by Tarafdar and Yuan [35, 37], Park and Jeong [27], Ding [5-7], and
others.

In fact, Tarafdar and Yuan [35] obtained an interesting coincidence theorem
for compact upper semicontinuous multimaps with contractible values defined on
contractible spaces. This generalizes results on convex-valued multimaps defined on
convex spaces. Park and Jeong [27] showed that this result holds for non-compact
multimaps in very general classes, and their theorem includes a large number of
known results.

On the other hand, the present author generalized the concept of C-spaces to
that of generalized convex spaces (or simply, G-convex spaces) and established the
foundations of the KKM theory on such spaces; see the references in [22, 31].

Based on such new developments on the abstract convexity, in this paper, we
are mainly concerned with the coincidence theory for multimaps in very general
classes Aκ

c defined on ω-connected topological spaces. Consequently, we obtain
far-reaching generalizations of fixed point or coincidence theorems on convex sets
originated from Browder [4] to the new ones for ω-connected spaces, and we can
show that results on contractible spaces in [5-12, 27, 35-37] are consequences of
corresponding ones for G-convex spaces.

In Sections 2 and 3, preliminaries on the admissible classes Aκ
c of multimaps

and generalized convex spaces are given. Section 4 concerns with new coincidence
theorems for ω-connected spaces, which are deduced from corresponding ones for
generalized convex spaces due to the present author in [21, 26, 32]. In Section
5, we obtain fixed point or maximal element theorems as consequences of results
in Section 4. Finally, in Section 6, results in previous sections are applied to
hyperconvex metric spaces.

2. ADMISSIBLE CLASSES OF MULTIMAPS

For topological spaces X and Y , a multimap or a map T : X � Y is a
function from X into the set of nonempty subsets of Y . Recall that T−y = {x ∈
X : y ∈ Tx} for y ∈ Y , and hence x ∈ T−y if and only if y ∈ Tx. A
map T : X � Y is upper semicontinuous (u.s.c.) if for each open subset G

of Y , the set {x ∈ X : Tx ⊂ G} is open in X ; and compact if the range
T (X) = {y ∈ Y : y ∈ Tx for some x ∈ X} is contained in a compact subset
of Y . A polytope is a finite dimensional compact convex subset of a topological
vector space.

An admissible class Aκ
c (X, Y ) of maps T : X � Y is one such that, for each

compact subset K of X , there exists a map S ∈ Ac(K, Y ) satisfying S(x) ⊂ T (x)
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for all x ∈ K; where Ac is consisting of finite compositions of maps in A, and A

is a class of maps satisfying the following properties:

(i) A contains the class C of (single-valued) continuous functions;
(ii) each F ∈ Ac is u.s.c. and compact-valued; and
(iii) for each polytope P , each F ∈ Ac(P, P ) has a fixed point, where the inter-

mediate spaces of compositions are suitably chosen for each A.

Examples of A are continuous functions C, the Kakutani maps K (with convex
values and codomains are convex spaces), the Aronszajn maps M (with Rδ values),
the acyclic maps V (with acyclic values), the Powers maps Vc, the O’Neil maps
N (continuous with values of one or m acyclic components, where m is fixed),
the approachable maps A (whose domains and codomains are subsets of uniform
spaces), admissible maps of Górniewicz, σ-selectionable maps of Haddad and Lasry,
permissible maps of Dzedzej, and others. Further, K+

c due to Lassonde, V+
c due

to Park et al., and approximable maps A
κ due to Ben-El-Mechaiekh and Idzik are

examples of Aκ
c . For the literature, see [18, 19, 23]. Many other careless authors

or printers mistook A for U .

3. GENERALIZED CONVEX SPACES

An ω-connected space X is a topological space which is n-connected for all n ≥
0 (or infinitely connected; that is, any continuous function defined on the boundary
of a finite dimensional ball with values in X can be extended to a continuous
function on the ball with values in X).

We give some examples of ω-connected spaces as follows: (1) convex or star-
shaped subsets of topological vector spaces; (2) convex spaces; (3) hyperconvex
metric spaces; (4) contractible spaces (for examples, see Horvath [10, 11]); (5)
the union of two comb spaces with identifying particular points in each space; see
Spanier [33]; and (6) a path-connected topological semilattice X with an element
x ∈ X such that x ≤ x for all x ∈ X [13, Lemma 1].

In our earlier works [21-26, 28, 30, 31], we introduced the following unified
generalization of various abstract convexities without any linear structure:

A generalized convex space or a G-convex space (X, D; Γ) consists of a topo-
logical space X and a nonempty set D such that for each finite A = {a0, a1, · ·
·, an} ⊂ D, there exist a subset Γ(A) of X and a continuous function φA : ∆n →
Γ(A) such that J ⊂ {0, 1, · · ·, n} implies φA(∆J) ⊂ Γ({aj : j ∈ J}), where ∆n

is an n-simplex with vertices v0, v1, · · ·, vn and ∆J=co {vj : j ∈ J} the face of
∆n corresponding to J . We may write ΓA = Γ(A) for each A ∈ 〈D〉, where 〈D〉
denotes the set of all nonempty finite subsets of D. If X = D, then we denote
(X ; Γ) = (X, X ; Γ).
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For a G-convex space (X, D; Γ) with X ⊃ D, a subset C of X is said to be
Γ-convex if for each A ∈ 〈D〉, A ⊂ C implies ΓA ⊂ C. For details on G-convex
spaces, see [21-26], where basic theory was extensively developed.

There are lots of examples of G-convex spaces:
If X = D is a convex subset of a vector space and each ΓA is the convex hull

of A ∈ 〈X〉 equipped with the Euclidean topology, then (X ; Γ) becomes a convex
space in the sense of Lassonde [17]. Note that any convex subset of a topological
vector space is a convex space, but not conversely.

A G-convex space (X, D; Γ) reduces to an H-space [29] if each ΓA for A ∈ 〈D〉
is contractible (or more generally, ω-connected) in X and, for each A, B ∈ 〈D〉,
A ⊂ B implies ΓA ⊂ ΓB . If X = D, then the H-space (X ; Γ) becomes a C-space
due to Horvath [11, 12].

The other major examples of G-convex spaces are metric spaces with Michael’s
convex structure, Pasicki’s S-contractible spaces, Horvath’s pseudoconvex spaces,
Komiya’s convex spaces, Bielawski’s simplicial convexities, Joó’s pseudoconvex
spaces, L-spaces of Ben-El-Mechaiekh et al. [2], continuous images of G-convex
spaces, Verma’s generalized H-spaces, Kulpa’s simplicial structures, P1,1-spaces
of Forgo and Joó, generalized H-spaces of Stachó, and mc-spaces of Llinares.
Moreover, Ben-El-Mechaiekh et al. [2] gave examples of G-convex spaces (X ; Γ)
as follows: B′-simplicial convexity, hyperconvex metric spaces due to Aronszajn
and Panitchpakdi, and Takahashi’s convexity in metric spaces.

Futhermore, any hyperbolic space X in the sense of Kirk and Reich-Shafrir is a
G-convex space, since the closed convex hull of any A ∈ 〈X〉 is contractible. This
class of metric spaces contains all normed vector spaces, all Hadamard manifolds,
the Hilbert ball with the hyperbolic metric, and others. Note that an arbitrary product
of hyperbolic spaces is also hyperbolic. For the literature, see [19, 21-26].

We need the following coincidence theorem [26, 32]:

Theorem 3.1. Let (X, D; Γ) be a G-convex space, Y a Hausdorff space,
S : D � Y, T : X � Y two maps, and F ∈ Aκ

c (X, Y ). Suppose that

(1) for each z ∈ D, Sz is open [resp. closed] in Y ;
(2) for each y ∈ F (X), M ∈ 〈S−y〉 implies ΓM ⊂ T−y [or, φM (∆|M |−1) ⊂

T−y]; and
(3) F (X) ⊂ S(N ) [resp. Y = S(N )] for some N ∈ 〈D〉.

Then there exists an x ∈ X such that Fx ∩ Tx 
= ∅.

Note that if F is single-valued, we do not need the Hausdorffness of Y .
From Theorem 3.1 with F := 1X , the identity map on X , we have the following

in [24]:
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Theorem 3.2. Let (X, D; Γ) be a G-convex space, and S : D � X , T : X �
X two maps satisfying

(1) for each z ∈ D, Sz is open [resp. closed ];

(2) for each y ∈ X, M ∈ 〈S−y〉 implies ΓM ⊂ T−y [or, φM(∆|M |−1) ⊂ T−y];
and

(3) X = S(N ) for some N ∈ 〈D〉.
Then T has a fixed point x0 ∈ X ; that is, x0 ∈ Tx0.

If X is a convex subset of a topological vector space and ΓN = co N for
N ∈ 〈X〉, then Theorem 3.2 is a generalization of the Fan-Browder fixed point
theorem; see [4, 24]. Theorem 3.2 is obtained in [24] and applied to various
forms of the Fan–Browder theorem, the Ky Fan intersection theorem, and the Nash
equilibrium theorem for G-convex spaces.

From Theorem 3.2, we deduced the following in [26]:

Theorem 3.3. Let (X ⊃ D; Γ) be a G-convex space and A : X � X a
multimap such that Ax is Γ-convex for each x ∈ X . If there exist z 1, z2, · · · , zn ∈
D and nonempty open [resp. closed ] subsets G i ⊂ A−zi for i = 1, 2, · · · , n such
that X =

⋃n
i=1 Gi, then A has a fixed point.

The following selection theorem is given in the proof of [30, Theorem 1] im-
plicitly or [21, Theorem 1(i)] explicitly.

Theorem 3.4. Let X be a Hausdorff space, (Y, D; Γ) a G-convex space, and
S : X � D, T : X � Y maps satisfying

(1) for each x ∈ X , M ∈ 〈Sx〉 implies ΓM ⊂ Tx; and

(2) X =
⋃{IntS−y : y ∈ D}.

Then T ∈ Cκ(X, Y ) ⊂ Aκ
c (X, Y ). More precisely, for any nonempty compact

subset K of X , T |K has a continuous selection f : K → Y ; that is, fx ∈ Tx for
all x ∈ K, such that f(K) ⊂ ΓA for some A ∈ 〈D〉.

We will show that all of the results in this paper are consequences of Theorem
3.1 with or without the aid of Theorem 3.4, and so are results on contractible spaces
in [5-12, 27, 35-37].

4. COINCIDENCE THEOREMS FOR ω-CONNECTED SPACES

We begin, in this section, with the following coincidence theorem:
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Theorem 4.1. Let X be an ω-connected space, Y a Hausdorff space, and
F ∈ Aκ

c (X, Y ). Suppose that a map G : Y � X satisfies the following:

(1) for each open subset O of Y , the set
⋂

y∈O Gy is empty or ω-connected; and

(2) F (X) ⊂ ⋃{Int G−x : x ∈ D} for some D ∈ 〈X〉.

Then there exist an x0 ∈ X and a y0 ∈ Y such that y0 ∈ Fx0 and x0 ∈ Gy0.

Proof. Let us define an H-space (X, D; Γ) as follows: For any J ∈ 〈D〉, let

ΓJ :=

{⋂{Gy : y ∈ ⋂
x∈J Int G−x} if

⋂
x∈J Int G−x 
= ∅,

X otherwise.

Note that if y ∈ ⋂
x∈J Int G−x, then J ∈ 〈Gy〉. Therefore, if O =

⋂
x∈J Int G−x 
=

∅, then ΓJ =
⋂

y∈O Gy is an ω-connected set by (1). Moreover, it is clear that
ΓJ ⊂ ΓJ ′ whenever J ⊂ J ′ ∈ 〈D〉. Now (X, D; Γ) is a G-convex space.

We apply the open case of Theorem 3.1 with S = (Int G−)|D and T = G−.
Then conditions (1) and (3) of Theorem 3.1 are readily satisfied. We show that
condition (2) of Theorem 3.1 holds. In fact, for each y ∈ Y and M ∈ 〈S−y〉 ⊂
〈D ∩ Gy〉, we have y ∈ ⋂

x∈M Sx =
⋂

x∈M Int G−x 
= ∅. Hence ΓM =
⋂{Gz :

z ∈ ⋂
x∈M Int G−x} ⊂ Gy = T−y. Therefore, by Theorem 3.1, the conclusion

follows.

Remarks.

(1) Theorem 4.1 is a restatement of [24, Theorem 5.1] and contains a num-
ber of particular cases by replacing ω-connectedness by its particular forms–
convexity, star-shapeness, contractibility, and others. If F is single-valued,
then the Hausdorffness of Y is redundant.

(2) If X is a convex space, then Theorem 4.1 reduces to a result equivalent to
[18, Theorem 5], which extends many known theorems and has numerous
applications in the KKM theory.

(3) If ω-connected sets are replaced by contractible sets, then Theorem 4.1 reduces
to Park and Jeong [27, Theorem 2].

Similarly, from the closed case of Theorem 3.1, we have the following:

Theorem 4.1′ Let X be an ω-connected space, Y a Hausdorff space, and
F ∈ Aκ

c (X, Y ). Suppose that a map G : Y � X satisfies the following:

(1) for each closed subset C of Y , the set
⋂

y∈C Gy is empty or ω-connected;
and
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(2) there exists a D ∈ 〈X〉 such that, for each z ∈ D, G−z is closed and
Y = G−(D).

Then there exist an x0 ∈ X and a y0 ∈ Y such that y0 ∈ Fx0 and x0 ∈ Gy0.

If F is a compact map in Theorem 4.1, we have the following:

Corollary 4.2. Let X be an ω-connected space, Y a Hausdorff space, and
A ∈ Aκ

c (X, Y ) a compact map. Suppose that B : Y � X is a map such that

(1) for each open subset O in Y , the set
⋂

y∈O By is empty or ω-connected; and

(2) A(X) ⊂ ⋃
x∈X Int B−x.

Then there exist an x0 ∈ X and a y0 ∈ Y such that y0 ∈ Ax0 and x0 ∈ By0.

Proof. Let F := A and G := B in Theorem 4.1. Since A(X) is compact,
condition (2) implies (2) of Theorem 4.1. Then the conclusion follows.

Remarks.

(1) Corollary 4.2 originates from Browder [4, Theorem 7].
(2) Replacing ω-connected sets by contractible sets, Tarafdar and Yuan [35, The-

orem 1] obtained a particular form of Corollary 4.2 for an u.s.c. map A with
compact contractible values and, later, gave some applications in [37].

(3) Replacing ω-connected sets by contractible sets, Theorem 4.2 reduces to Park
and Jeong [27, Theorem 3].

(4) If X = Y and A = F = 1X , the identity map on X , each of Theorem 4.1
and Corollary 4.2 reduces to a fixed point theorem.

(5) The main result of Ding [5, Theorem 1] is a particular form of Corollary
4.2 by replacing ω-connectedness by contractibility for an acyclic map A.
Moreover, he should assume the Hausdorffness of Y .

In many cases, X itself is assumed to be compact in Corollary 4.2. For a
long period, many authors tried to weaken the compactness in such situation. The
following is the prototype of such intention:

Theorem 4.3. Let X be a topological space, Y a Hausdorff space, K a
nonempty subset of Y , F : X � Y , and G : Y � X . Suppose that

(1) K ∩ F (X) ⊂ ⋃
x∈N Int G−x for some N ∈ 〈X〉;

(2) there exists an ω-connected subset LN of X containing N such that F |LN
∈

Aκ
c (LN , Y );
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(3) for each open subset O of Y , the set LN ∩⋂
y∈O Gy is empty or ω-connected;

and
(4) F (LN )\K ⊂ ⋃

x∈M Int G−x for some M ∈ 〈LN〉.
Then there exist an x0 ∈ X and a y0 ∈ K such that y0 ∈ Fx0 and x0 ∈ Gy0.

Proof. Let A := F |LN
: LN � Y and let B : Y � LN be defined by

By := Gy ∩ LN for y ∈ Y . Note that A ∈ Aκ
c (LN , Y ). We apply Corollary 4.2

with X = LN .
For each open subset O of Y , the set

⋂
y∈O By = LN ∩ ⋂

y∈O Gy is empty or
ω-connected by (3). Moreover,

A(LN) = F (LN) ⊂ (F (LN) \ K) ∪ (F (X) ∩ K)

⊂ [
⋃

x∈M Int G−x] ∪ [
⋃

x∈N Int G−x]

⊂ ⋃
x∈M∪N Int G−x =

⋃
x∈M∪N Int B−x,

where M ∪ N ∈ 〈LN〉.
Therefore, by Corollary 4.2, we have an x0 ∈ LN and a y0 ∈ Y such that

y0 ∈ Ax0 = Fx0 and x0 ∈ By0 = Gy0.

Remarks.

(1) If LN is compact, then we may assume F (LN ) = F (LN ) since Y is Haus-
dorff.

(2) Particular forms of Theorem 4.3 appear in Ding [6, Theorems 1.1 and 1.2].
(3) If F is a compact map, then by putting Y = K = F (X), condition (4) holds

trivially.

From Theorem 3.4 we have the following particular case:

Lemma 4.4. Let X be a Hausdorff compact space, Y an ω-connected space,
and S, T : X � Y maps satisfying

(i) for each y ∈ Y , S−y is open;

(ii) for each x ∈ X , Sx ⊂ Tx; and
(iii) for any open set O of X ,

⋂
x∈O T (x) is empty or ω-connected.

Then T has a continuous selection.

Proof. Since our maps are nonempty-valued by definition, for any x ∈ X , there
exists a y ∈ Sx or x ∈ S−y. Since X is compact, there exists a subset D ∈ 〈Y 〉
such that X =

⋃{S−y : y ∈ D}.
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We can make an H-space (Y, D; Γ) as follows: For any J ∈ 〈D〉, let

ΓJ :=




⋂{Tx : x ∈ ⋂
y∈J S−y} if

⋂
y∈J S−y 
= ∅,

Y otherwise.

Note that if x ∈ ⋂
y∈J S−y, then J ∈ 〈Sx〉. Therefore, if O =

⋂
y∈J S−y 
= ∅,

then ΓJ =
⋂

x∈O Tx is not empty (since O 
= ∅ and J ⊂ Sx ⊂ Tx for each x ∈ O)
and hence ω-connected by (iii). Moreover, it is clear that ΓJ ⊂ ΓJ ′ whenever
J ⊂ J ′ ∈ 〈D〉. Therefore (Y, D; Γ) is a G-convex space.

Define S ′ : X � D by

S ′x := {y ∈ D : y ∈ Sx} = D ∩ Sx.

For each x ∈ X and M ∈ 〈S′x〉 = 〈D∩Sx〉, we have x ∈ ⋂
y∈M S−y 
= ∅. Hence

ΓM =
⋂{Tx :

⋂
y∈M S−y} ⊂ Tx. Therefore condition (1) of Theorem 3.4 for S′

is satisfied.
Recall that X =

⋃{S−y : y ∈ D} =
⋃{(S ′)−y : y ∈ D}, which shows that

condition (2) of Theorem 3.4 is also satisfied. Therefore, by Theorem 3.4 for S′, T
has a continuous selection.

Remarks.

(1) If we replace ω-connectedness by convexity, then Lemma 4.4 was given im-
plicitly in [4].

(2) If we replace ω-connectedness by contractibility, Lemma 4.4 reduces to Hor-
vath [9, Theorem 3] and includes [8, Lemma 2].

Theorem 4.5. Let X be a Hausdorff compact ω-connected space, and R, S :
X � X maps satisfying

(1) for each x ∈ X , S−x 
= ∅;
(2) for each x ∈ X , R−x and Sx are open; and
(3) for any open subset O of X ,

⋂
x∈O Rx and

⋂
x∈O S−x are empty or ω-

connected.
Then there exists an x0 ∈ X such that Rx0 ∩ Sx0 
= ∅.

Proof. By Lemma 4.4, the map R has a continuous selection f : X → X and
f ∈ Aκ

c (X, X). Consider B := S− : X � X . By (1), for each x ∈ X , there exists
a y ∈ Bx 
= ∅ or x ∈ B−y. Since B−y = Sy is open, X =

⋃{B−y : y ∈ X}.
Therefore, by Corollary 4.2 with A := f , there exist an x0 ∈ X and a y0 ∈ X
such that y0 = fx0 and x0 ∈ By0. Hence y0 ∈ Rx0 ∩ B−x0 = Rx0 ∩ Sx0. This
completes our proof.
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Remark. Theorem 4.5 generalizes Horvath [8, Theorem 3], which is originated
from Ky Fan.

5. FIXED POINT THEOREMS FOR ω-CONNECTED SPACES

The following simple consequence of Theorem 4.1 with F := 1X or Corollary
4.2 with A := 1X generalizes the Fan-Browder theorem:

Theorem 5.1. Let X be an ω-connected space and G : X � X a map
satisfying

(1) for each open subset O of X , the set
⋂

x∈O Gx is empty or ω-connected; and

(2) X =
⋃

x∈D Int G−x for some D ∈ 〈X〉.
Then G has a fixed point x0 ∈ X .

Remark.
(1) If ω-connected sets are replaced by convex sets, Theorem 5.1 reduces to the

Fan-Browder fixed point theorem.
(2) If ω-connected sets are replaced by contractible sets, Theorem 5.1 contains

results due to Horvath [8-12]; see also [27, Theorem 4].
(3) Theorem 5.1 sharpens Bielawski [3, Corollary 4.10].
(4) Note that Theorem 5.1 follows also from Theorems 3.2 or 3.3.

From Theorem 4.1′ with F := 1X , we have the following:

Theorem 5.1′. Let X be an ω-connected space and G : X � X a map
satisfying

(1) for each closed subset C of X , the set
⋂

y∈C Gy is empty or ω-connected;
and

(2) there exists a D ∈ 〈X〉 such that, for each z ∈ D, G−z is closed and
X = G−(D).

Then G has a fixed point x0 ∈ X .

Remark. Theorem 5.1′ follows also from Theorems 3.2 or 3.3.

From Theorem 5.1, we deduce the following maximal element theorem (where
a map may have empty values):

Theorem 5.2. Let X be a compact ω-connected space and G : X � X a
map satisfying
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(1) for each open subsetO of X , the set
⋂

x∈O Gx is empty or ω-connected; and

(2) for each x ∈ X , G−x is open.
Then either G has a fixed point x0 ∈ X or a maximal element y0 ∈ X (that is,
Gy0 = ∅).

Proof. Suppose Gy 
= ∅ for all y ∈ X . Then y ∈ G−x for some x ∈ X , and
hence X =

⋃
x∈X G−x. Since each G−x is open we have X =

⋃
x∈X Int G−x.

Therefore by Theorem 5.1, G has a fixed point x0 ∈ X .

Remark.

(1) If we replace ω-connectedness by convexity, then Theorem 5.2 reduces to the
classical result of Yannelis and Prabhakar [36].

(2) If we replace ω-connectedness by contractibility, Theorem 5.2 reduces to Hor-
vath [8, Theorem 2].

Corollary 5.3. Let X and G be the same as in Theorem 5.2. If Gx 
= ∅ for
all x ∈ X , then for every continuous function f : X → X there exists x 0 ∈ X
such that x0 ∈ G(fx0).

Proof. The map G′ : X � X defined by G′x = G(fx) for x ∈ X satisfies
the hypothesis of Theorem 5.2.

Corollary 5.4. Let X be a compact ω-connected space. If the diagonal
∆ ⊂ X × X has a basis {Vi}i∈I of open neighborhoods such that, for each i ∈ I
and each open subset U ⊂ X , the intersection

⋂
x∈U Vi[x], where Vi[x] := {y ∈

X : (x, y) ∈ Vi}, is empty or ω-connected, then X has the fixed point property.

Proof. If f : X → X is a continuous function without fixed point, then

{(fx, x) : x ∈ X} ∩ ∆ = ∅.
Hence there is an i0 ∈ I such that {(fx, x) : x ∈ X} ∩ Vi0 = ∅, which contradicts
Corollary 5.3.

Corollary 5.5. Let X be a compact ω-connected metric space. If there exists
ε0 > 0 such that for every ε < ε0 and every open subset U ⊂ X , the intersection⋂

x∈U B(x, ε) of open balls is empty or ω-connected, then X has the fixed point
property.

Remark.

(1) Corollaries 5.3-5.5 are essentially due to Horvath [8] and can be extended to
the G-convex space cases.
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(2) Horvath [8] noted that Corollary 5.4 generalizes Ky Fan’s extension of the
Tychonoff fixed point theorem for topological vector spaces having sufficiently
many linear functionals; for references, see [19].

From Theorem 5.1, we have the following:

Theorem 5.6. Let X be a Hausdorff compact topological space, Y an ω-
connected subspace of X , and A, B : Y � X maps satisfying

(1) for each x ∈ X , B−x 
= ∅ and for each y ∈ Y , By is open;
(2) for each y ∈ Y , By ⊂ Ay; and
(3) for each open subset O of X , the set

⋂
x∈O A−x is empty or ω-connected.

Then A has a fixed point.

Remark. Replacing ω-connectedness by contractibility, Theorem 5.6 reduces
to Horvath [9, Theorem 4].

For X = Y and F = 1X , Theorem 4.3 reduces to the following:

Theorem 5.7. Let X be a topological space, K a nonempty subset of X , and
G : X � X . Suppose that

(1) K ⊂ ⋃
x∈N Int G−x for some N ∈ 〈X〉;

(2) there exists an ω-connected subset LN of X containing N ;
(3) for each open subset O of X , the set LN∩⋂

x∈O Gx is empty or ω-connected;
and

(4) LN\K ⊂ ⋃
x∈M Int G−x for some M ∈ 〈LN〉.

Then there exists an x0 ∈ X such that x0 ∈ Gx0.

Remark.

(1) Ding [6, Corollary 1.1] is a particular form of Theorem 5.7 and applied to
obtain an abstract variational inequality [6, Theorem 2.1].

(2) Ding [7, Lemma 1.1] is an another particular form of Theorem 5.7 and ap-
plied to the existence of solutions of a general quasi-equilibrium problem [7,
Theorem 2.1] and other problems [7, Theorem 3.1].

(3) Since Theorem 5.7 is a variant of Theorem 5.1, this can be applied to the
problems considered by Ding for more simple, but still equivalent, situations.
In such a way, any interested reader can simplify the main results of [6, 7] in
more essential forms.
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6. HYPERCONVEX METRIC SPACES

A metric space (H, d) is said to be hyperconvex if⋂
α

B(xα, rα) 
= ∅

for any collection {B(xα, rα)} of closed balls in H for which d(xα, xβ) ≤ rα+rβ .
It is known that the space C(E) of all continuous real functions on a Stonian

space E (that is, an extremally disconnected compact Hausdorff space) with the
usual norm is hyperconvex, and that every hyperconvex real Banach space is a
space C(E) for some Stonian space E . Therefore, (Rn, ‖ · ‖∞), l∞, and L∞ are
concrete examples of hyperconvex spaces.

Results of Aronszajn and Panitchpakti [1, Theorem 1′] and Isbell [14, Theorem
1.1] are combined in the following:

Lemma 6.1. A hyperconvex space is complete and (freely) contractible.

The concepts of C-spaces, LC-spaces, and LC-metric spaces were introduced
and extensively studied by Horvath in a sequences of papers [8-12]:

A C-space (X ; Γ) is called an LC-space if X is a Hausdorff uniform space
and there exists a basis {Vλ}λ∈I for the uniform structure such that for each λ ∈ I ,
{x ∈ X : E ∩ Vλ[x] 
= ∅} is Γ-convex whenever E ⊂ X is Γ-convex, where

Vλ[x] = {x′ ∈ X : (x, x′) ∈ Vλ}.
For example, any nonempty convex subset X of a locally convex Hausdorff topo-
logical vector space is an LC-space with ΓA = co A, the convex hull of A ∈ 〈X〉.

A triple (X, d; Γ) is called an LC-metric space whenever (X, d) is a metric
space and (X ; Γ) is a C-space such that open balls are Γ-convex, and any neigh-
borhood {x ∈ X : d(x, Y ) < r} of a Γ-convex set Y ⊂ X is also Γ-convex.

Horvath [12, Theorem 9] obtained the following:

Lemma 6.2. Any hyperconvex metric space H is a complete LC-metric space
with

Γ(A) = ΓA :=
⋂

{B : B is a closed ball containing A}
for each A ∈ 〈H〉.

From now on, a hyperconvex metric space (H, d; Γ) is simply denoted by H ,
and BI(H) denotes the set of nonempty closed ball intersections in H . Elements of
BI(H) are sometimes called admissible subsets of H ; see [15]. It is well-known
that any admissible subset of a hyperconvex metric space is hyperconvex and hence
contractible.
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From Theorem 3.1 for the open case, we have the following:

Theorem 6.3. Let X be a hyperconvex metric space, Y a Hausdorff space,
and F ∈ Aκ

c (X, Y ). Suppose that a map G : Y � X satisfies the following:

(1) for each y ∈ Y , Gy is Γ-convex [e.g., Gy ∈ BI(X)]; and
(2) F (X) ⊂ ⋃{Int G−x : x ∈ D} for some D ∈ 〈X〉.

Then there exist an x0 ∈ X and a y0 ∈ Y such that y0 ∈ Fx0 and x0 ∈ Gy0.

From the closed case of Theorem 3.1, we have the following:

Theorem 6.3′. Let X be a hyperconvex metric space, Y a Hausdorff space,
and F ∈ Aκ

c (X, Y ). Suppose that a map G : Y � X satisfies the following:

(1) for each y ∈ Y , Gy is Γ-convex [e.g., Gy ∈ BI(X)]; and
(2) there exists a D ∈ 〈X〉 such that, for each z ∈ D, G−z is closed and

Y = G−(D).
Then there exist an x0 ∈ X and a y0 ∈ Y such that y0 ∈ Fx0 and x0 ∈ Gy0.

If F is a compact map in Theorem 6.3, we have the following:

Corollary 6.4. Let X be a hyperconvex metric space, Y a Hausdorff space,
and A ∈ Aκ

c (X, Y ) a compact map. Suppose that B : Y � X is a map such that

(1) for each y ∈ Y , By is Γ-convex [e.g., By ∈ BI(X)]; and
(2) A(X) ⊂ ⋃{Int B−x : x ∈ X}.

Then there exist an x0 ∈ X and a y0 ∈ Y such that y0 ∈ Ax0 and x0 ∈ By0.

From Theorem 6.3, we have the following:

Corollary 6.5. Let X be a hyperconvex metric space and T : X � X a map
such that

(1) for each x ∈ X , Tx is Γ-convex; and
(2) X ⊂ ⋃{Int T−x : x ∈ D} for some D ∈ 〈X〉.

Then there exist an x0 ∈ X such that x0 ∈ Tx0.

A particular form of Corollary 6.5 was obtained by Park [20, Theorem 3].

From Theorem 4.5, we have the following:

Theorem 6.6. Let X be a compact hyperconvex metric space, and R, S :
X � X maps satisfying

(1) for each x ∈ X , S−y 
= ∅;
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(2) for each x ∈ X , R−x and Sx are open; and
(3) for each x ∈ X , Rx and S−x are closed ball-intersections.

Then there exists an x0 ∈ X such that Rx0 ∩ Sx0 
= ∅.

Finally, for other forms of fixed point theorems on hyperconvex metric spaces,
the reader may refer to [16].
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