TAIWANESE JOURNAL OF MATHEMATICS
Vol. 10, No. 2, pp. 409-415, February 2006
This paper is available online at http://www.math.nthu.edu.tw/tjm/

SOME ASYMPTOTES RELATED TO k-th-POWER FREE NUMBERS

Jong-Yi Chen

Abstract. In this note we find some relations between k—free numbers. We
obtain some asymptotes of the error term in the summation of k£—free integers
Ry.(z). Further, we determine some constants which happen in the summation
of k—free integers.

1. INTRODUCTION AND RESULTS

Let gi(n) be the index function of k-free number, i.e.

(n) 1 if nis k-free,
IR =3 0 otherwise.

By the property of Mobius function, it is not difficult to show that the number of
k-free natural numbers not exceeding x is

Qu(@) =3 gu(n) =33 uld) = =~ + Rua),

n<z n<z dk[n C(k)

where Ry (z) is the error term and

Since the generating function L“”)) has poles on the line R(s) = ﬁ it follows

C(ks
that )
Rk(x) = Q(xﬁ)

(See [2, 3]). And it is thus conjectured
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Ri(z) = O(x% ),

where e denote any small positive real number. The modern estimate belongs to
Walfisz [4]. He showed that

Ry(z) = O(x% exp(—ck%g(logx)%(loglog x)_?l))

Clearly, any substantial sharpening of Ry (z) results in a wider zero-free region for
the Riemann Zeta function ¢(s) .

In this note we study the average behaviour of the error terms Ry (x) and provide
a fundamental viewpoint to them . Some relations between k-free numbers are
established (lemma 2.1, corollary 2.2). Applying these relations, we acquire some
asymptotes of Ry (x). The obtained results are stated as follows.

Theorem 1.1. Let k,h > 1 be integers, x be a large number. The following
asymptotes hold.

(2)
%
x x 1
(1.1) 1 gh(n)Rk(J) = (k 7 C(k)C(h) —I—O(xkh)
n<zk
(17)
%
x x
: —) = s 1
. 2 BGE) = G nem O
n<zxk
(i)
gr(n) _loga
1.3 = ——+cp+O(xz* " logx),
(1.3) 2= g e Ot s
where ¢ = —%(,f)) + %k) are constants which depend on k. Here ~ denotes
the Euler’s constant.
(i)

z.  y—=1 k{(k) 11
1.4 —) = — 0 1 .
(1.4) %gk(n)Rk(n) (B ~ B )=+ O loga)
The equations (1.1),(1.2) and (1.4) give us patterns of elimination of the sum-
mands Ry (%) and Ry (¥). Equation (1.3) is necessary to deduce (1.4). It is
obtained by elementary method. It is also a better result than what the partial
summation method can give.
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2. LEMMAS
The following lemmas will be applied in the proof of the theorem.

Lemma 2.1. For any complex number s, we have

gn(n) gr(m) gen(N)

nks ‘ ms Ns
n<x % ms nk N<z

Proof. Clearly, if p is a prime and a < kh is a natural number, then the
kh—free number N = p can be expressed uniquely as N = nFmgy(n)gr(m),
where n = p? and m = p” are h- free and k- free integers respectively by the fact
that « = k@ + R has unique integer solution (Q, R) = (b, ) under the restriction
0<r<k.

Likewise, if p1, po, - - - p; are prime numbers and «;, aa, - - - ¢ are natural num-
bers less than kh, then by the fundamental theorem of arithmetic, the kh- free
number N = p{'pS2...p* can be expressed uniquely as N = n*mgy,(n)gi(m),
where n = p7'p22 . pPt and m = p)*pJ2...p)"* are h- free and k- free integers
respectively by the fact that the equation system

ar = Q1k+ Ry
ay = (Qok+ Ry
oy = th + Rt

has unique integer solution (Q1,Q2,- -+, R1,Ra,---) = (01,02, .-, 71,72, ---)
under the restriction 0 < ~; < k for 1 <i <.

Therefore the summation items of the left-hand side and the right-hand side are
exactly the same and the identity is thus valid.

Choosing & large enough such that 2" > o , We obtain:

Corollary 2.2. Under the same hypothesis of Lemma 2.1, the following equality

holds.
Z 1 gr(m) _ 1
nks ms ns

1 =z <
n<ak m< K n<zw

Lemma 2.3. For any complex number s # 1 such that the real part %(s) = o
> 2, we have

= -

gin) s L 4,
v T Ao m e O

n<zx
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Proof. Let z < M. Denote Qy(z, M) = > _,<r9k(n) and Sy =
Y w<n<M 9’;&1 By the partial summation method, we have

M
Se.Mm = % —/ Qr(z, t)dt™°

M —x+O(M¥) /Mt—x+0(t%)st_s_1dt
C(k)M> v C(k)
Mgl 1 1
=————— +O(M*¥ %)+ O(zx ).
ST R
Note that 3, _ %) — CC((,;)) for o > 1. Then as o > 1 and M approaches
infinity, we have
ge(n) _ gk(n) ¢(s) zl ™ 1
A S/ — 1 _ Sm — O o .
LT Tt 2 T T g T e O

Thus we obtain this lemma for o > 1.

Denote f,(s) = X<, giln) _ (1i)_¢s(k)' Clearly, f,(s) converges to CC((,:S)) for

o > 1. Besides, we have

Ml—s _ xl—s 1 1
——— [ =O0(M* 7))+ O(x% ).
TEPRER (
By Cauchy condition for uniform convergence, f.(s) converges for o > % Further-
more, by the principle of analytic continuation of functions on the complex plane,

f=(s) converges to the same function CC((,:S)) not only for ¢ > 1 but also for o > %

Now this lemma can be obtained for o > % . We have

| fau(s) = fa(8)] = Sz —

. (n) . Ml—s
B =l )+

_ ) L o,

((ks) (1 —s)C(k)

- SJJ,M

Lemma 2.4. If ~ is Euler’s constant, then the following statement holds.

1 1
Z— =logz +v+ O(-).
n x

n<zx

Proof. See [1] theorem 3.2.
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3. ProOF OF THEOREM

Taking s = 0 for lemma 2.1 and expanding it by lemma 2.3, we have

20 o) 32 grm) = 3 o) (e + Balp)

_ N ) L )
¢k (M=) " C(kh)
FO(@)F M)+ 7 gn(m)Re(p).

On the other hand,

ngh(n) = C(kh) + O(xwr).

n<zx

Equating the previous both equalities, we obtain (1.1).
Choosing h large enough such that 2" > z% , we have on the left-hand side of

(1.1)
> amB) = D7 Relp)

1 1
nlzk nlzk

and on the right-hand side

zk L ot W2 | u(3) ,
G Demem TOE) = e o T )o@
(L'% Qh 2h 2h
~ oo POttt F 00
ECE RO

Thus we obtain (1.2) .
Furthermore, by lemma 2.4 and the fact

i M(d)diogd = C(s) for R(s) > 1,
d=1

(1.3) can be proved straightforwardly. We have
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n<zx n<z = dk|n
YEEY S
N dk m
dgm% ms dik

Cogr KCK) L (i
=07 ~ @ T O osa).

Now we are ready to prove (1.4). Applying (1.3) to the following iterated sum, we

get
S =" geln)gr(m)

x
n<r m< z

-3 ai (75t (D)

— ﬁ <1CO(% + ¢+ O(x%_l logx)> + ng(n)Rk <%> )

Note that the iterated sum S may be counted in another way by its symmetry of
. . . 1
summation with respect to the line y = f(x) = . Let u = 2, we have

n<zx

5 =233 gelngu(m) - (ngm))

“2 2o (cugfc)n o (@i» - (ﬁ +O(“%)>2
2—(1,' 2

logu - L . )
_C(k) <m+6k+0(wc 1logx)>+0<xku1 k)_ +O<u1+k>_

Equating both of previous equations, we acquire (1.4).

¢*(k)
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