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STRONG CONVERGENCE THEOREMS BY THE HYBRID METHOD
FOR FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES

K. Nakajo, K. Shimoji and W. Takahashi

Abstract. Let C be a nonempty closed convex subset of a real Hilbert space
and let {T,,} be a family of mappings of C into itself such that the set of
all common fixed points of {7,,} is nonempty. We consider a sequence {x,}
generated by the hybrid method in mathematical programming and give the
conditions of {T,,} under which {x,,} converges strongly to a common fixed
point of {T;,}.

1. INTRODUCTION

Throughout this paper, let H be a real Hilbert space with inner product (-, -)
and norm | - || and let N and R be the set of all positive integers and the set of all
real numbers, respectively. Haugazeau [7] introduced a sequence {x,} generated
by the hybrid method, that is, let {7},} be a family of mappings of H into itself
with N> F(T,,) # (), where F'(T;,) is the set of all fixed points of T, and let {x,, }
be a sequence generated by

ro=x € H,
yn:Tnxnv
) Co={2 € H|(zn — Yn,yn — 2) 2 0},

Qn={z€ H|(xp — 2,20 — x,) >0},

Tntl = PCann (UUO)

for each n € N U {0}, where Pc,g, is the metric projection onto C,, N Q.
He proved a strong convergence theorem when 7;, = P, (04 m)+1 fOr every n €
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N U {0}, where P; is the metric projection onto a nonempty closed convex subset
C; of H for each i = 1,2,---,m and N",C; # 0. Later, Solodov and Svaiter
[21] proved a strong convergence theorem for a maximal monotone operator and
Bauschke and Combettes [4] proved the following theorem: Let {7’} be a family
of mappings of H into itself with N, F(T;,) # (0 which satisfies the following
conditions: () (x — Thx, T,z — z) > 0 for every n € NU {0}, x € H and
z € F(T,); (I1) (coherent)for every bounded sequence {z,} in H, there holds
that >0 o |2nt1 — znl? < 0o and S°°° ) [l2n — Thzall? < oo imply wy(2,) C
N> F(Ty,), where wy,(zy,) is the set of all weak cluster points of {z,}. Then,
{z,} generated by (1) converges strongly to zy = Pp(xz¢), Where F' = N>2  F(T5,).
On the other hand, Nakajo and Takahashi [13] proved the following theorem: Let
C' be a nonempty closed convex subset of H and let 7" be a nonexpansive mapping
of C into itself such that F(T") # (). Let {z,,} be a sequence generated by

o=z € C,

Yn = anZp + (1 — )Ty,

() Cn ={2€C|llyn— 2|l < llwn — 2|},
Qn=12€C|(xp—2z,20—2y) >0},

Tpt1 = Po,nq. (o)

for each n € N U {0}, where {a,,} C [0,a] for some a € [0,1). Then, {z,}
converges strongly to 2z = Pr(7)(zo). Later, Nakajo and Takahashi [14], Kikkawa
and Takahashi [11], Atsushiba and Takahashi [3], liduka, Takahashi and Toyoda [9]
and liduka and Takahashi [10] studied strong convergence of {x,,} generated by type
(2). And recently, Nakajo, Shimoji and Takahashi [15] studied strong convergence

by type (1) and (2).
Motivated by Bauschke and Combettes [4] and Nakajo, Shimoji and Takahashi

[15], in this paper, we consider unification of types of (1) and (2) and prove a strong
convergence theorem.

2. PRELIMINARIES AND LEMMAS

We write z,, — =z to indicate that a sequence {z,} converges weakly to x.
Similarly, x,, — z will symbolize strong convergence. We know that H satisfies
Opial’s condition [16], that is, for any sequence {z,} C H with z,, — =z, the
inequality lim inf,, . ||z, —2z|| < liminf, . ||z, —y]|| holds for every y € H with
y # x. Itis known that | Az+(1—A)y||2 = Az 2+ (1=A)[Jy|2=A1=N)|lz—y|?
for each x,y € H and A € R. We also know that the norm is lower semicontinuous,
that is, for any sequence {z,} € H with z,, — =z, ||z|| < liminf, o [|2,]]
holds. Further, it is known that for any sequence {z,} C H with z,, — z and
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|zn|| — ||z||, ©» — x holds. Let C' be a nonempty closed convex subset of H
and let T' be a mapping of C into itself. T is said to be firmly nonexpansive if
| Tz — Ty|? < ||z —yl|? = |(I — T)x — (I —T)y|? for every =,y € C, where
I is the identity mapping. T is said to be nonexpansive if ||Tx — Ty|| < ||z — y|
for every z,y € C. If T is firmly nonexpansive, 7" is nonexpansive. We know that
Pc is firmly nonexpansive. It is known that F(T') is closed and convex if T is a
nonexpansive mapping of C' into itself.

An operator A : H — 2 is said to be monotone if (z;—x2, 51 —y2) > 0 whenever
y1 € Az and yo € Azo. A monotone operator A is said to be maximal if the graph
of A is not properly contained in the graph of any other monotone operator. It is
known that a monotone operator A is maximal if and only if R(I + AA) = H for
every A > 0, where R(I + A\A) is the range of I + XA. It is also known that a
monotone operator A is maximal if and only if for (u,v) € HxH, (z—u,y—v) >0
for every (z,y) € A implies v € Au. For a maximal monotone operator A, we
know that A='0 = {z € H|0 € Az} is closed and convex. If A is monotone,
then we can define, for each A > 0, a mapping Jy : R(I + AA) — D(A) by
Jy = (I+XA)~1, where D(A) is the domain of A. Jy is called the resolvent of A.
We also define the Yosida approximation Ay by Ay = (I — Jy)/\; see [24, 25] for
more details. The following are the fundamental results for resolvents of monotone
operators; see [17, 24, 25].

Lemma 2.1. Let A: H — 29 be a monotone operator and A > 0. Then,
the following hold:
(i) F(Jy) = A710;
(iN) |2 = Dyll* < llo = yl> = (T = Iz = (I = Ja)yll* for every z,y €
R(I+ \A).

Let o > 0 and let C be a nonempty closed convex subset of H. An operator
A :C — H is said to be a-inverse-strongly-monotone [5, 12, 14] if (x — y, Ax —
Ay) > al|Az — Ay||? for all 2,y € C. We have the following lemma for inverse-
strongly-monotone operators; see [14].

Lemma2.2. Leta > 0. Let A: H — H be an a-inverse-strongly-monotone
operator with D(A) = H and let B : H — 2% be a maximal monotone operator
such that (A + B) =10 # (). Then the following hold:

(i) A is maximal monotone;
(i) A + B is maximal monotone and (A + B) ~10 is closed and convex;
(iii) for every X\ € [0,2a], I — XA : H — H is nonexpansive;
(iv) forevery A€ (0, 00), T\ = JZ(I-)\A) is well defined and (4+B) ~10=F(T}),
where JZ =(I+AB)~! and F(T}) is the set of all fixed points of T';
(v) for every A € (0,2a], T is nonexpansive.
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Let C' be a nonempty closed convex subset of H and let A be a mapping of C'
into H. Then, an element = in C is a solution of the variational inequality of A if
(y —x,Az) > 0 for all y € C. It is known that for A > 0, z € C' is a solution
of the variational inequality of A if and only if z = Po(I — AA)z. We denote by
VI(C, A) the set of all solutions of the variational inequality of A. We know that
VI(C, A) is a closed convex subset of C' if A is monotone and continuous. We
also have the following result for inverse-strongly -monotone operators.

Lemma 2.3. Let a > 0 and C be a nonempty closed convex subset of H. Let
A : C — H be an a-inverse-strongly-monotone operator with VI(C, A) # (.
Then, for every A > 0, x € C and z € VI(C, A), ||[Pc(I — NA)z — 2|]? <
lz = 2[|* = 2522 [l — Pe(I — AA)z|

Proof. Let A >0,z € C and z € VI(C,A). We have
|Po(I — XA)x — z||?

< (1 = AM)a = (I = A2 = (I = Pe)(I = Az — (I — Po)(I - AA)z|?
= |(z — 2) = MAz — A2)||? — ||(z — Po(I — AA)z) — M(Az — Az)||?
<z — 2||? = 20\ || Az — Az|)? + 2)\|| Az — Az||

Jla = Po(I = XA)z|| — ||z — Po(I — AA)z|
= Jlz — 2I? ~ 200{|| Az — Az]| — o[}z — Po(I — Ad)a]}

2a

200 — A
20

|z — Po(I — XA)z||?
200 — \
— Po(I — MA)z |
70 |z — Po(I — AA)z|| u

Let C' be a nonempty closed convex subset of H. Let {S,} be a family of
mappings of C into itself and let {3, x : n,k € N, 1 < k < n} be a sequence of
real numbers such that 0 < 3; ; < 1 for every i, j € N with < > 5. Then, for any
n € N, Takahashi [19, 23, 25] introduced a mapping W,, of C into itself as follows:

Un,n = ﬁn,nsn + (1 - /Bn,n)lv
Un,n—l = ﬁn,n—lsn—lUn,n + (1 - /Bn,n—l)lv

< o -z -

Un,k = ﬁn,kSkUn,k—l—l + (1 - /Bn,k‘)lv

Un2 = Bn2S2Unz+ (1= PBn2)l,
Wn = Un,l = ﬁn,lSIUn,Q + (1 - ﬁn,l)l-
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Such a mapping W,, is called the W-mapping generated by S,,,.S,,_1,---,.51 and
Brms Bran—1,- -, Bn,1. The following lemma was proved by Takahashi and Shimoyji
[26] (see also [25]).

Lemma 2.4. Let C be a nonempty closed convex subset of H. Let Sq, So,
.-+, S, be nonexpansive mappings of C' into itself with N, F'(S;) # ( and let
Bn.1s Bn2, -+ Bnn be real numbers with 0 < 8, ; < 1 for every i =2,--- ,n and
0 < Bp1 < 1. Let W, be the W-mapping generated by S,,,S,—1,---,51 and
ﬁn,nvﬁn,n—lv to 7571,1- Then, F(Wn) = ﬂ?:lF(Sz)

We have that if 5, = Ok (Vn = k,k+ 1,---) for every k € N such that
0<pr<b<1(VkeN)forsomebe (0,1)and {S,} isa family of nonexpansive
mappings of C into itself with N2, F(S,,) # 0, lim,, o U, kx eXists for every
xz € C and k € N; see [19]. By this, we define a mapping W of C into itself as
follows:

Wz = lim Wyr = lim U,z

n—oo n—oo

for every z € C. Such a W is called the W-mapping generated by .51, .55, --- and
B1, B2, - --. We have that F'(WW) = N2, F'(S;); see [19].

Let C be a nonempty closed convex subset of H. A family S = {T'(s) |0 < s <
oo} of mappings of C' into itself is called a one-parameter nonexpansive semigroup
on C' if it satisfies the following conditions:

() T(0)z =z for all x € C;

(i) T(s+t) =T(s)T'(t) for every s, t > 0;
(iii) | T(s)x — T(s)y|| < ||z — y|| for each s > 0 and =,y € C,
(iv) for all z € C, s — T'(s)x is continuous.

We denote by F'(S) the set of all common fixed points of S, that is, F(S) =
No<s<oo F'(T'(s)). It is known that F'(S) is closed and convex. The following
lemma was proved by Shimizu and Takahashi [18]; see also [2, 6, 20].

Lemma 2.5. Let C be a nonempty bounded closed convex subset of H and
let S = {T'(s)|0 < s < oo} be a one-parameter nonexpansive semigroup on C.
Then, for any h > 0,

lim sup
t—00 peC

%/OtT(s)xds—T(h) <%/OtT(s)xds>H:0.

Let .S be a semigroup and let B(S) be the Banach space of all bounded real
valued functions on .S with supremum norm. Then, for every s € S and f € B(S),
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we can define ryf € B(S) and Isf € B(S) by (rsf)(t) = f(ts) and (I5f)(t) =
f(st) for each ¢t € S, respectively. We also denote by % and [ the conjugate
operators of ry and I, respectively. Let D be a subspace of B(S) containing
constants and let ;2 be an element of D*. A linear functional x is called a mean
on D if ||u|| = p(1) = 1. Let C be a nonempty closed convex subset of H. A
family S = {T'(s) | s € S} of mappings of C into itself is called a nonexpansive
semigroup on C' if it satisfies the following conditions:

(i) T(st) =T(s)T(t) for all s,t € S,
(i) |T(s)z —T(s)yll < ||z -yl for every s € S and z,y € C.

It is known that F'(S) is closed and convex. Takahashi [22] proved the following;
see also [8].

Lemma 2.6. Let S be a semigroup. Let C' be a nonempty closed convex
subset of H and let S = {T'(s) | s € S} be a nonexpansive semigroup on C' such
that F/(S) # (). Let D be a subspace of B(S) such that D contains constants and
(T'(-)z,y) € D for every x € C and y € H. Then, for any mean p on D and
x € C, there exists a unique element 7',« in C such that (T,z, z) = ps(T'(s)z, 2)
forall z € H. And T, is a nonexpansive mapping of C' into itself.

Further, Atsushiba and Takahashi [1] proved the following.

Lemma 2.7. Let C be a nonempty bounded closed convex subset of H and
let S be a semigroup. Let S = {T'(s) | s € S} be a nonexpansive semigroup on C
and let D be a subspace of B(S) containing constants and invariant under [ 4 for
all s € S. Suppose that for every x € C and z € H, the function t — (T'(t)z, z) is
in D. Let {u,} be a sequence of means on D such that lim,, o ||tn, — U pn|| =0
for each s € S. Then, lim,, .o sup,cc | T,z — T(t)T,,z|| =0 forall t € S,

3. STRONG CONVERGENCE THEOREMS

Let C' be a nonempty closed convex subset of H and let {7,,} be a family
of mappings of C' into itself with N2 F(7,,) # 0 which satisfies the following
condition: There exists {a,,} C (—1,00) such that

3) |1Toz = 2% < o = 2] = anl|(I = T)z®

for every n e NU {0}, x € C and z € F(T;,). Then, we know that N2° ,F'(T,) is
closed (see [15]). We also have that N0, F'(T},) is convex. In fact, letn € NU{0}
and let z1,29 € F(T,), 0 < o < 1land z = az + (1 — a)ze. Suppose that
x # Tpz. For some 5 € (0, 1) with a,, > —[3, we get
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1Be+(1=B) Tz —z* = Bla—zl*+1—B)Twz 21>~ B(1~B)|la—Tnz|?
< Bllz =21+ Q=B {lle—21)* ~anlle—Taz|*}

(1= )|z~ Tn|?

lz =211 = (1= B)(an+B) &= Tnz||* < |~z

Similarly, ||fz+(1—8)T,x— 22| < ||z —22|| holds. So, we obtain

21— 22| < H 21 —{Br+(1-0)Thx} H-i—” {Br+(1-B)Thr} -2 H
< lz—zl+llz =zl = (1-a)llz1 -zl +allz1—zll = |21 — 2|

This is a contradiction. Therefore, F/(T},) is convex. Let us define a sequence {z,,}
as follows:

rg=x€C,

Yn = TnPo(xn+en),

@1 Cu={z € Clllyn—2I” < llzn+en—zl* —anl Po(zn+en) —ynll’},
Qn=1{2z€C|(xp—2,z0—x,) >0},

Ty = Po,no.(20)

for each n € NU{0}, where {¢,} € H and liminf, . a, >—1. Now, we get the
following.

Theorem 3.1. The followings hold:

(i) A sequence {x,} generated by (4) is well defined and {z,} C C;

(ii) assume that Y>_°° ||en > < co and for every bounded sequence {z,} in C,
there holds that >"°°  [lznt1 — 2all? < o0 and >0 |lzn — Thzn|? < oo
imply wy, (2,) C NS F(T,). Then, {z,} converges strongly to zo = Pr(x),
where F' = M52, F(T5);

(iif) assume that lim,,_, ||e,|| = 0 and for every bounded sequence {z,} in C,
there holds that lim,, . ||z, — Thznl = 0 implies wy,(2,) C N2 o F(T,).
Then, {x, } converges strongly to zg = Pp(xg).

Proof. As in the proof of [15, Theorem 4.2], we get that {z,,} is well defined,
{z,} cCand F C C,NQ, for each n € NU{0}. So, the proof of (i) is complete.
We have, for zp = Pr(x0),

(5) |Zn+1 — Zoll < |[20 — 2ol
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and

201 — Zall* = [|(Tn41 — @0) + (20 — )|
= ||#nt1 — zol|* + 2(@ns1 — T0, 20 — Tn) + [|z0 — Tn?
= lzns1 — 2oll” = [lzn — zol* + 2(&ns1 — T, 7o — 25)

< llwnsr = 2ol = [l — wol|?

for every n € NU {0} by (20 — zpn, xpt1 — x,) < 0. So, we obtain that {x,} is
bounded and the limit

(6) lim ||x, — o]
n—oo

exists. We get
o

(7) Z |Zni1 — xa]|? < 0.
n=0

From liminf,, . a, > —1, there exists a« € (0,1) such that a,, > —a for all
neNU{0}. Let 3 € (0,1=%) and o = %Hﬁ)b 0). We have

| Po(zn + €n) — ynH2

< o +en — ynH2 < (Jon +en — Tpga || + [|ons1 — ynH)2

IN

1
(1+ a) |z + en = 21|l + (1 + @)l|zns1 = Yl

IN

1

(14 =) lan + 20 = Tl + (L4 @)z + £n = @i

—(1+a)an||Po(zn +en) — ynH2

which implies

af||Pe(tn + en) = yull* = {1 = (1 + a)a}| Po(zn + en) = ynll?
< {1+ 1+ a)an}|| Po(an +en) = yal®
1 2

< <2+a—|— a)Hocn—i—en — Zn]|

for each n € NU {0}. So, we get

22+ a+ 1)

(8) ”PC(xn+€n)_yn”2 S aﬂ

(lzn = znral* + llenl®)

for every n € NU {0}.
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(ii) Assume that >°°  llenl|? < oo. If 2z, = Po(zn + &), We have that {z,} is
bounded and

o0 o
> llen = Tuzall* = 37 [ Potan + ) = wall* < oo
n=0 n=0

from (7) and (8). Further we obtain
Hzn_zn-i—lHQSH(xn +5n)_(xn+1+5n+1)H2S?’Hxn_xn—f—l”2"'3”571”2"'3”571—1—1”2

for all n € N U {0} which implies >°°° ||z, — 2n11]|* < co. Therefore, we have
wy(2zn) C F. AS lim, o ||z, — 2n]| = 0 from ||z, — 2,|| < |len]| for every
n € NU {0}, we get w,(x,) C F. So, assume that a subsequence {z,,} of {z,}
converges weakly to w; € F. We have

|20 — 20|l < [|wo — w1]| < lim [|xg — 2p,[| < [|20 — 20|
11— 00

by the lower semicontinuity of the norm, (5) and (6). Thus, we obtain lim; .« ||y, —
zo|| = ||zo — w1 = |lzo — 20||. This implies

T,

7

— W1 = 20-

Therefore, we have x,, — zg. So, the proof of (ii) is complete.

(iii) Assume lim,, . ||n || = 0. If 2, = Po(x,+e,), We get that {z,,} is bounded,
limy, o0 ||Zn — 20|l = 0 @and lim,, . ||z, — Th2n|| = 0 by (7) and (8). Therefore,
we obtain w,,(z,) C F. As in the proof of (ii), we have z,, — zy. So, the proof of
(iii) is complete. ]

The following is the result proved by Bauschke and Combettes [4].

Theorem 3.2.  Let {T,,} be a family of mappings of H into itself with
N F(T,,) # 0 which satisfies the following conditions: (1) (z — Tz, Tz — 2z) >
0 for every n € NU {0}, x € H and z € F(T,); (ll)(coherent)for every
bounded sequence {z,} in H, there holds that > °° ; ||zn11 — 24]|?> < oo and
S0 o 20 = Tozal|? < 00 imply wy,(2,,) € NS F(T},). Then, {z,} generated by
(1) converges strongly to zgp = Pr(z), Where F' = N2 F(T,).

Proof. If C = H, a,, =1 and ¢,, = 0 for every n € NU {0} in Theorem 3.1,
we have

| Thx — zH2 < |lx — zH2 — ||z — Tan2 — (x—Tha, Tz —2) >0

foreachn e NU{0},z € Handz € F(T,,)and C,, = {z € H | (x,—Yn, Yn—2) >
0} for all n € NU {0}. Further, >>° |le,||* < oo. Therefore, {z,} converges
strongly to zy = Pr(zg) from (ii) in Theorem 3.1. [ ]
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The following is a generalization of the result proved by Solodov and Svaiter
[21].

Theorem 3.3. Let A: H — 2 be a maximal monotone operator such that
A710 # (0 and let {z,,} be a sequence generated by
ro=x € H,
Yn = JIn, (Tn + €n)
Cn={z€ H|(¥n—Yn +&n,yn —2) = 0},
n=1{z€H|(xy, —2z,x0—x,) >0},

Tntl = PCann (UUO)

for every n € N U {0}, where {\,,} C (0,00) and Jy, = (I + \,A)~! for each
n € NU{0}. If (i) lim inf,, 00 A, > 0 @nd limy, .o ||€n|| = 0 0r (i) Y00y A2 = 0o
and >°°°  [len]|? < oo, then, {z,,} converges strongly to zg = P4-14(z0).

Proof. If C = H and T,, = J,, for all n € NU {0} in Theorem 3.1, we have
F(T,) = A='0 and a,, = 1 for every n € NU {0} by (i) and (ii) in Lemma 2.1.
SowegetC, ={z¢€ H|(xy — yn+en,yn —2) >0} for each n € NU {0}.

(i) Assume that lim inf, oo A, > 0 and lim, . ||, || = 0. There exists A > 0
with A, > X for each n € NU {0}. Let {z,} be a bounded sequence in H which
satisfies lim,, oo || 2n — Jx, 2 || = 0. And suppose that z,, — w. For all (u,v) € A4,

we obtain
—J
<Jknzn_ujw_v) >0
An

which implies
1

(Ja,2n — uy, —v) > — (I, 2n — Uy I, 2n — 2n)

(©) An

1
2 =yl nzn = ull - [ Ix, 20 = 2
n

for every n € N U {0}. As a sequence {ﬁHJMzn — u|} is bounded, we have
(w —u, —v) > 0 for each (u,v) € A. Therefore, w € A~'0 from maximality of A.
By (iii) in Theorem 3.1, {:cn} converges strongly to z.

(ii) Assume that > °° (A2 = oo and 3" |len||? < oo. Let {2,} be a bounded
sequence in H which satisfies >"°°  ||2n+1— 2,12 < oo and Y02 [|zn—Jx, 2| <
oo. And suppose that z,, — w. We get lim,, oo ||2n—J), 2n|| = liminf,, ﬁ”zn—
Iaznll =00y Y07 n(kn l2n — Jx, znl)? < oo. From (9), we obtain

1
(w—wu,—v) > —hmlnf—HJ,\nzn Znll * 1In, 20 — ul] =0
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for all (u,v) € A. So, we have w € A~10. By (ii) in Theorem 3.1, {x,,} converges
strongly to z. [ |

The following is a genaralization of the result proved by Nakajo and Takahashi
[13].

Theorem 3.4. Let A : H — 2 be a maximal monotone operator such that
A~10 # () and let {x,,} be a sequence generated by

ro=x € H,

Yn = In, (Tn +en)

Co ={2€ H||lyn — 2[| < llzn + &n — 2I},
Qn={2z€H|(xy— 2,20 — ) >0},

Tntl = PCann (UUO)

for every n € N U {0}, where {\,,} C (0,00) and J,, = (I + \,A)~! for each
n € NU{0}. If (i) lim inf,— o0 Ay, > 0 @nd limy, o ||en|| = 0 0r (ii) 500 A2 = oo
and >°°°  [len]|? < oo, then, {z,,} converges strongly to zg = P4-14(zo).

Proof. If C = H and T,, = J,, for all n € NU {0} in Theorem 3.1, we
can select a,, = 0 for every n € NU {0}. As in the proof of Theorem 3.3, {z,}
converges strongly to z. [

The following is the result proved by Nakajo and Takahashi [13].

Theorem 3.5. Let C be a nonempty closed convex subset of H and let T’
be a nonexpansive mapping of C into itself such that F(T") # 0. Let {x,} be a
sequence generated by

ro=x € C,

Yn = anZpn + (1 — ap) Ty,

Cn ={2 € Clllyn — 2[l < llzn — 2[I},
Qn=1{2€C|(xy— 2,20 — ) >0},

Tptl = PCann (UUO)

for each n € N U {0}, where {a,,} C [0,a] for some a € [0,1). Then, {z,}
converges strongly to 2o = Pp(7y(zo).

Proof. If T,, = a1 + (1 — a,)T and g, = 0 for all n € NU {0} in Theorem
3.1, we have that F(T,,) = F(T) and a,, = 0 for every n € NU {0}. Let {2,}
be a bounded sequence in C' which satisfies lim,, . ||z, — Tnzn| = 0. We obtain
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limy, o ||2zn, — T2n|| = 0. So, by Opial’s condition, we get wy(z,) C F(T).
Therefore, {x,,} converges strongly to z from (ii) or (iii) in Theorem 3.1. ]

The following is a generalization of the result proved by Nakajo and Takahashi
[14].

Theorem 3.6. Let o > 0. Let A : H — H be an a-inverse-strongly-
monotone operator with D(A) = H and let B : H — 2 be a maximal monotone
operator such that (A 4 B) =10 # (). Let {x,,} be a sequence generated by

ro=2x € H,

yn:Jﬁ(I—)\nA)xn,

Cn ={2 € H|llyn — 2|l < |lzn — 2},
Qn={z€ H|(xy,— 2,20 — ) >0},

Tpt1 = Po,nq. (o)

for every n € N U {0}, where {)\,} C (0,2a] with >°° /A2 = co. Then, {z,}
converges strongly to zo = P 44p)-10(70)-

Proof. If C = H, T, = JZ (I - X\,A) and &, = 0 for all n. € NU {0} in
Theorem 3.1, we have F(T},) = (A+ B)~10 and a,, = 0 for every n € NU{0} by
(iv) and (v) in Lemma 2.2. Let {z,} be a bounded sequence in H which satisfies
>0 lzns1 — znll* < oo and Y07 [lzn — J (I — AnA)zp||* < co. We obtain
limy, oo | 20—JE (I=AnA)z,| = 0and liminf,, oo 5= 20—JE (I-AnA)za| = 0
from 3707 0 A2 {5bllzn — I (I = XpA) 2, [} < oo, Assume that z, — w. As in

the proof of [14, Theorem 3.1], we get

<un—u, Z”;un —Azn—(v—Au)) >0

for every (u,v) € A+ B and n € NU {0}, where u, = J} (I — X\, A)z, for all
n € NU{0}. So, we have

(up, —u, —v) > <un —u, Un = %0 (Az, — Au))

An
1
= )\—(un—u, (I = MA)up—(I=X,A)zn) + (up — u, Auy, — Au)
1
> _)\_Hun —ull - (I = AnA)up — (I = A A)zy||
1
> ——|un — ull - [|un — 2|

=N,
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by (iii) in Lemma 2.2 which implies
1
(w—wu,—v) > — hmlnf Hun —ull - ||up —2zn]| =0
n—oo

for every (u,v) € A + B since a sequence {u, — u} is bounded. Therefore,
€ (A+B)~'0 as A+ B is maximal monotone from (ii) in Lemma 2.2. Therefore,
{z,,} converges strongly to z by (ii) in Theorem 3.1. [ |

The following is a generalization of the result proved by liduka, Takahashi and
Toyoda [9].

Theorem 3.7. Let a > 0 and let C' be a nonempty closed convex subset
of H. Let A: C — H be an a-inverse-strongly-monotone operator such that
VI(C,A) #10. Let {x,} be a sequence generated by
rg=1x€ C,

Yn = Po(I — M\yA)zy, ,
Cn={2€Cllyn— 2l <llzn— =2},
Qn ={2€C|(xy— 2,20 — ) >0},

Tptl = PCann (UUO)

for every n € NU {0}, where {\,} C (0,2a] with >>>°
converges strongly to 2o = Py 7(c, 4) (o).

= oo. Then, {z,}

nOn

Proof. If T,, = Po(I — A\, A) and ¢, = 0 for all n € NU {0} in Theorem
3.1, we have F(T,,) = VI(C, A) for every n € NU {0}. Further, we get @, =0
for each n € NU {0} from Lemma 2.3. Let {z,} be a bounded sequence in C
which satisfies >°°°  [|2n4+1 — 2a]|> < oo and Y_°° ||zn — val/? < oo, Where

= Po(I — \yA)z, forall n € NU{0}. We get lim,,_.~ ||zn — vs|| = 0 and
liminfn_,Oo 3 llzn = onll =0 from 3202 A2 {520 — va|}? < oo, Assume that
z, — w. For every u € C, we have

(zn — ApAzy — vy, v —u) >0

which implies

1
(Au,u —vy,) > (Av, — Au, v, — u) + )\—((I — MA) vy, — (I — M\A)zp, vy — 1)

n

1
> _)\_H'Un —ull - [[(I = ApA)vn — (I = Ay A) 2|

for all n € NU {0} since A is monotone. And we obtain

H(I_)‘nA)vn_(I_)‘nA)anQ < an_anQ"")‘n()‘n_Qa)HA'Un_AZnHQ < H'Un_an2
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and hence
1
(Au, u—v,) > _)\_H'Un - uH : H'Un - an
n

for every u € C and n € NU{0}. So, we get (Au,u —w) > 0 foreachu € C as a
sequence {v,, — u} is bounded. Since A is continuous, we obtain (u — w, Aw) > 0
forall uw € C, that is, w € VI(C, A). Therefore, {x,,} converges strongly to z by
(it) in Theorem 3.1. ]

The following are the results by liduka and Takahashi [10].

Theorem 3.8. Let o > 0 and let C be a nonempty closed convex subset of
H. Let T' be a nonexpansive mapping of C into itself and let A : C — H be an
a-inverse-strongly-monotone operator such that F(T) N VI(C, A) # (. Let {z,}
be a sequence generated by

o=z € C,

Un :PC(I—)\nA)Txn,

Cn ={2€C|llyn— 2|l < llwn — 2|},
Qn=12€C|(xp—2z,20—2y) >0},

Tntl = PCann (UUO)

for every n € NU {0}, where {\,} C [a,b] for some a,b € (0,2a) with a < b.
Then, {z,,} converges strongly to zo = Pr(ryavi(c,a) (To)-

Proof. If T,, = Po(I — \,A)T and &,, = 0 for all n. € NU {0} in Theorem
3.1, we have F(T,) = F(T)NVI(C,A) for every n € NU{0}. In fact, F(T) N
VI(C,A) C F(T,) is trivial. Let z € F(T,,) and u € F(T)NVI(C, A). We get

200 — Ay,
2c

| Tz — Po(I — X\ A)Tz|?

|z—u|® = |Po(I-XA)Tz—ul]?<||Tz—ul*~ | T2~ Po(I—X\,A)Tz||?
20 — b

2c

< e —ul? -

from Lemma 2.3. So we obtain Tz = FPo(I — A\, A)Tz which implies Tz = =.
And we have Po(I — \yA)z = Po(I — M\yA)Tz = z. Therefore, F(T,,) C
F(T)nVI(C,A). And we get a,, = 0 for each n € NU {0} by nonexpansivity
of T"and Lemma 2.3. Let {z,} be a bounded sequence in C' which satisfies
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lim, o0 ||2n, — Thzn|| =0 and let w € F(T)NVI(C, A). We obtain
l2n = ull® < (llzn = Taznll + [ Tnzn — ul))?
= [lzn — Tnan2 + 2[|zn — Ty
N Po(I = MpA) Tz —ul| + || Po(I — A\ A) T2y, — ul|?
< Nlzn = Tozall? + 2]z = Tuznl| - | T2n — u|
200 — Ay,
2a

+{ T2, — ul|® — | T2, — Po(I — )\nA)TanZ}

< lzn — Tnan2 + 2|20 — Thzal| - (120 — ul|

200 — b
+Hzn —uH2— B HTzn_Tnan2
(6%
for all n € N from Lemma 2.3. So, we have

200 — b
20

for every n € N and hence limy, ., || T2, — T2, || = 0. Therefore, lim,, . ||2n, —
Tz,|| = 0 by limy, o ||z, — T2y || = 0. From Opial’s condition, we get w,,(z,) C
F(T). Further, we obtain

lzn = Po(I — AnA) 2|
< lzn = Tznll + T2 — Po(I — My A)T 2y ||
+|Po(I — MyA) Tz, — Po(I — M\ A) 2y ||
< 2|z — Tzn|l + | T2 — Po(I — MyA)T 2, ||

T2 — Tnan2 < |lzn — Tnan2 + 2|20 — Thzall - 120 — ul|

for every n € N by nonexpansivity of 2-(I—\,,A) and hence lim,, . ||z, —Po (I —
AnA)zy|| = 0. As in the proof of Theorem 3.7, we have wy(z,) C VI(C, A). So,
ww(zn) C F(T)NVI(C,A). Therefore, {x,} converges strongly to z by (ii) or
(iii) in Theorem 3.1. ]

Theorem 3.9. Let o > 0 and let C be a nonempty closed convex subset of
H. Let T' be a nonexpansive mapping of C into itself and let A : C — H be an
a-inverse-strongly-monotone operator such that F(T) N VI(C, A) # 0. Let {z,}
be a sequence generated by

ro=x € C,

Un :TPC(I—)\RA)xn,

Cn ={2€C|llyn — 2|l <llzn — 2|},
Qn=1{2€C|(xp— 2,20 — ) >0},

Tptl = PCann (UUO)
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for every n € NU {0}, where {\,} C [a,b] for some a,b € (0,2a) with a < b.
Then, {x,} converges strongly to 2o = Pr(1ynvi(c,a)(To)-

Proof. If T,, = TPo(I — A\, A) and &, = 0 for all n € NU {0} in Theorem
3.1, we have F(T,,) = F(T)NVI(C, A) for every n € NU{0}. In fact, similarly
in Theorem 3.8, we get
200 — b

2c
for z € F(T,,) and uw € F(T)NVI(C, A). Hence we obtain z = Po(I — A\, A)z
and further z = Tz, too. And we have a,, = 0 for each n € NU{0} by Lemma 2.3.
Let {z,} be a bounded sequence in C' which satisfies lim,,_,oo ||z, — Thzn|| = 0
and let w € F(T)NVI(C, A). Similarly in Theorem 3.8, we get

Hzn—uH2 < Hzn_TnanQ""QHzn_Tnan

20— b

lz = ull® < [[Po(I = Xd)z —ul® < Iz —ul]? ~ l2 = Po(I = A A)2|?

|20 — Po(I — M\yA) 2z, ||?

Nln = ull + iz —ull* -

for all n € N. So, we obtain lim,,_. ||z, — Pc(I — A A)zy,|| = 0 which implies
wy(2zn) C VI(C, A). Further, we have

lzn=Tznll < llzn—Tnznll+ 1 Thzn—T2ull <20 —Tnznll + | Po(I = AnA) 2n— 2|
for every n € N. Therefore, lim,_. ||z, — T'z,| = 0. By Opial’s condition, we

get wy(z,) C F(T). So, {x,} converges strongly to z from (ii) or (iii) in Theorem
3.1. [

The following theorem contains the result proved by Kikkawa and Takahashi
[11].

Theorem 3.10. Let C' be a nonempty closed convex subset of H. Let {S,}
be a family of nonexpansive mappings of C' into itself with N §°, F'(S;) # () and let
{Bni : nkeN, 1 <k<n} C(0,1) be asequence of real numbers such that (i)
Bnk = Pk (VYn="Fk, k+1,---) forevery k € Nsuchthat0 < 85 <b < 1(Vk € N)
for some b € (0,1) or (i) a < B3;; < b for every i, € N (i > j) for some
a,b € (0,1) with a < b. Let W, (n = 1,2,---) be the W-mapping generated by
Spy Sn—1,--+,51 and Byn, Bnn—1,---,Pn1. Let {z,} be a sequence generated
by
r1=x€C,

Yn = Wy,
Crn={2€Cllyn— 2|l < llzn —2l},

Qn=A{2€C|(zn— 211 —x,) >0},

Tpt1 = Po,nq. (1)
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for each n € N. Then, {a;,} converges strongly to zo = P p(s,)(21).

Proof. If T,, = W, and ¢, = 0 for all n € N in Theorem 3.1, we have
N F(Ty) = Mo, F(W,) = N2, F(S;) and a, = 0 for every n € N by Lemma
2.4 and nonexpansivity of W,,. Let {z,} be a bounded sequence in C' which satisfies
limy, 00 |2, — Thzn|| = 0.

(i) Let W be the W-mapping generated by S1, S, - - - and (31, (2, - - -. Assume that
zp, — w. As in the proof of [11, Theorem 3.1], if we suppose that w # Wuw,

liminf ||z, — w| < liminf ||z, — Wuw||
n—oo n—oo
< hnrggolf(Hzn = Waza|l + Wz — Wypw|| + [[Whw — Wwl|)
< liminf([[zp = Wazn|| + |20 = w]| + [[Wnw = Wwl])
= liminf ||z, — w||
n—oo

by Opial’s condition. This is a contradiction. So, we get wy,(z,) C F(W) =
N2, F(S,).

(i) We get limy, o0 ||z, — S1Up22n|| =0from 0 < a < 1. Let z € N0 F(Sy,).
We obtain

|20 — ZH2 < (lzn — SlUn,2an + HSlUn,2zn - 2H)2

Hzn - SlUn,2an(Hzn - SlUn,2an
+2HS1UR,22n — ZH) + HSlUn,zzn — 2H2

IN

MHzn - SlUn,2an + HUn,2zn - ZH2

= MHzn - SlUn,2an + ﬁn,2”S2Un,32n - ZH2

+(1 - ﬁn,2)”zn - ZH2 - ﬁn,2(1 - ﬁn,2)”S2Un,32n - an2

MHzn - SlUn,2an + Hzn - ZH2 - ﬁn,2(1 - ﬁn,2)”S2Un,32n - an2

for each n € N, where M = sup,en{||zn — S1Un22n| + 2||S1Un 220 — 2||}. SO,
we obtain lim,, .« ||S2Un 32, — 2| = 0. By induction, we have

IN

lim ||SyUnmt12n — 2n|| =0
n—oo
for all m € N. Since
Hzn - man S Hzn - SmUn,m—l—lan + HSmUn,m—i—lzn - sznH
S Hzn - SmUn,m—l—lan + HUn,m—i—lzn - zn”
= Hzn - SmUn,m—l—lan + ﬁn,m—l—l”sm—l—lUn,m—i—Zzn - zn”

S Hzn - SmUn,m—l—lan + bHSm—i—lUn,m—f—2zn - zn”
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for every n € N, we get limy, o ||2n — Smzn|| = 0 for all m € N. By Opial’s
condition, wy, (2,) C F(Sy,) for each m € N which implies w,, (z,) C NS, F(T,).
Therefore, {x,,} converges strongly to z from (ii) or (iii) in Theorem 3.1. ]

The following is the result proved by Nakajo and Takahashi [13].

Theorem 3.11. Let C be a nonempty closed convex subset of H and let
S ={T(s)]|0 < s < oo} be a one-parameter nonexpansive semigroup on C' such
that F(S) # (0. Let {x,} be a sequence generated by

ro=xz € C,

1 [t
Yn = apty + (1 — an)t—/ T(s)xnds,
n

0
Cn=A{2 € Olllyn — 2l < llon — 2},
Qn={2 € C|(zn — 2,9 — 7n) > 0},

Tntl = PCann (UUO)

for every n € NU{0}, where {a,,} C [0, a] for some a € [0, 1) and {¢,,} is a positive
real divergent sequence. Then, {x,} converges strongly to 2o = Pp(s)(zo)-

Proof. If T,x = ax + (1 — O‘”)i Ot" T(s)xds (Vz € C) and g, = 0 for all
n € NU {0} in Theorem 3.1, we have that 7}, : C — C for every n € NU {0},
N F(T,) = F(S) and a,, = 0 for each n € NU {0}. Let {z,} be a bounded
sequence in C' which satisfies lim,, . ||2n, — Tn2n| = 0. At first, we have

1 [t 1 [t
(1—a) || zn— —/ T(s)zn ds zn——/ T(s)zn ds
tn Jo tn Jo

for all n € N which implies

<(1—ay) =||2n—Thznll

lim =0.
n—oo

1 [t
2y — — / T(s)zn ds
tn Jo

And as in the proof of [13, Theorem 4.1], we have, for every h > 0,

1 [t
zn——/ T(s)znds
tn Jo
tn

ti /0 T(s)znds—T(h)(ti /0 ! T(s)20 ds) H

n n

Iz = T(h)zn||

IN

N ‘T(h)zn—T(h)<i /Ot" T(s)z0 ds) H

n

IA
DO

1 [t
Zn — —/ T(s)zn ds
tn Jo
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i/otn T(s)zndé’—T(h)<i /Ot" T(S)znds> H

+| tn tn

for each n € N. So, we get
lim ||z, — T'(h)z,|| =0
n—oo

for all h > 0 by Lemma 2.5. By Opial’s condition, we obtain wy,(z,) C F(S).
Therefore, {x,,} converges strongly to z from (ii) or (iii) in Theorem 3.1. ]

The following is the result proved by Atsushiba and Takahashi [3].

Theorem 3.12. Let C be a nonempty closed convex subset of H and let S be
a commutative semigroup. Let S = {T'(t) |t € S} be a nonexpansive semigroup
on C such that F(S) # (0. Let D be a subspace of B(.S) such that D contains
constants, D is invariant under r, for every s € S and ¢t — (T'(t)z,y) is in D
for each z € C and y € H. Let {u,} be a sequence of means on D such that
limy, o0 ||ptn — rpn || = 0 for all s € S. Let {z,,} be a sequence generated by

rg=zx€ C,
yn:anxn+(1_an)Tunxn7

Cn ={2€C|llyn — 2|l <llzn — 2|},
Qn=1{2€C|(xy— 2,20 — ) >0},

Tptl = PCann (UUO)

for every n € NU {0}, where {«,} C [0,q] for some a € (0,1). Then, {z,}
converges strongly to zo = Pp(s)(zo)-

Proof. If T}, = a,, I+ (1 — )T}, and g, = 0 for all n € NU{0} in Theorem
3.1, wehave T, : C — C, a, =0 for every n € NU{0} and 2 F(T},) = F'(S)
from Lemmas 2.6 and 2.7. Let {z,} be a bounded sequence in C' which satisfies
limy, o0 ||2n, — Thzn|| = 0. At first, we get

(L= a)llzn = Ty, 2nll < (1 = am)ll2n — Ty, 2nll = 20 — Tnznl|

for each n € N which implies
lim ||z, — T}, 20| = 0.
n—oo

And for all t € S,

[zn = T () znll < ll2n = Tpo2nll + 1T 20 — T () Ty 20|
HINT ()T 20 = T () 20l

< 2[|zn = Ty 2nll + 11T 20 — T(8) Ty, 20 -
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So, we obtain lim,, . ||z, — T(t)z,]| = 0 for every t € S by Lemma 2.7. By
Opial’s condition, we get wy,(z,) C F(S). Therefore, {x,} converges strongly to
zo by (ii) or (iii) in Theorem 3.1. ]
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