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STRONG CONVERGENCE THEOREMS BY THE HYBRID METHOD
FOR FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES

K. Nakajo, K. Shimoji and W. Takahashi

Abstract. Let C be a nonempty closed convex subset of a real Hilbert space
and let {Tn} be a family of mappings of C into itself such that the set of
all common fixed points of {Tn} is nonempty. We consider a sequence {xn}
generated by the hybrid method in mathematical programming and give the
conditions of {Tn} under which {xn} converges strongly to a common fixed
point of {Tn}.

1. INTRODUCTION

Throughout this paper, let H be a real Hilbert space with inner product ( · , · )
and norm ‖ · ‖ and let N and R be the set of all positive integers and the set of all
real numbers, respectively. Haugazeau [7] introduced a sequence {xn} generated
by the hybrid method, that is, let {Tn} be a family of mappings of H into itself
with ∩∞

n=0F (Tn) �= ∅, where F (Tn) is the set of all fixed points of Tn and let {xn}
be a sequence generated by




x0 = x ∈ H ,

yn = Tnxn ,

Cn = {z ∈ H | (xn − yn, yn − z) ≥ 0} ,

Qn = {z ∈ H | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

(1)

for each n ∈ N ∪ {0}, where PCn∩Qn is the metric projection onto Cn ∩ Qn.
He proved a strong convergence theorem when Tn = Pn(mod m)+1 for every n ∈
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N ∪ {0}, where Pi is the metric projection onto a nonempty closed convex subset
Ci of H for each i = 1, 2, · · · , m and ∩m

i=1Ci �= ∅. Later, Solodov and Svaiter
[21] proved a strong convergence theorem for a maximal monotone operator and
Bauschke and Combettes [4] proved the following theorem: Let {Tn} be a family
of mappings of H into itself with ∩∞

n=0F (Tn) �= ∅ which satisfies the following
conditions: (I) (x − Tnx, Tnx − z) ≥ 0 for every n ∈ N ∪ {0}, x ∈ H and
z ∈ F (Tn); (II) (coherent) for every bounded sequence {zn} in H , there holds
that

∑∞
n=0 ‖zn+1 − zn‖2 < ∞ and

∑∞
n=0 ‖zn − Tnzn‖2 < ∞ imply ωw(zn) ⊂

∩∞
n=0F (Tn), where ωw(zn) is the set of all weak cluster points of {zn}. Then,

{xn} generated by (1) converges strongly to z0 = PF (x0), where F = ∩∞
n=0F (Tn).

On the other hand, Nakajo and Takahashi [13] proved the following theorem: Let
C be a nonempty closed convex subset of H and let T be a nonexpansive mapping
of C into itself such that F (T ) �= ∅. Let {xn} be a sequence generated by




x0 = x ∈ C ,

yn = αnxn + (1 − αn)Txn ,

Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ C | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

(2)

for each n ∈ N ∪ {0}, where {αn} ⊂ [0, a] for some a ∈ [0, 1). Then, {xn}
converges strongly to z0 = PF (T )(x0). Later, Nakajo and Takahashi [14], Kikkawa
and Takahashi [11], Atsushiba and Takahashi [3], Iiduka, Takahashi and Toyoda [9]
and Iiduka and Takahashi [10] studied strong convergence of {xn} generated by type
(2). And recently, Nakajo, Shimoji and Takahashi [15] studied strong convergence
by type (1) and (2).

Motivated by Bauschke and Combettes [4] and Nakajo, Shimoji and Takahashi
[15], in this paper, we consider unification of types of (1) and (2) and prove a strong
convergence theorem.

2. PRELIMINARIES AND LEMMAS

We write xn ⇀ x to indicate that a sequence {xn} converges weakly to x.
Similarly, xn → x will symbolize strong convergence. We know that H satisfies
Opial’s condition [16], that is, for any sequence {xn} ⊂ H with xn ⇀ x, the
inequality lim infn→∞ ‖xn−x‖ < lim infn→∞ ‖xn−y‖ holds for every y ∈ H with
y �= x. It is known that ‖λx+(1−λ)y‖2 = λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)‖x−y‖2

for each x, y ∈ H and λ ∈ R. We also know that the norm is lower semicontinuous,
that is, for any sequence {xn} ⊂ H with xn ⇀ x, ‖x‖ ≤ lim infn→∞ ‖xn‖
holds. Further, it is known that for any sequence {xn} ⊂ H with xn ⇀ x and
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‖xn‖ → ‖x‖, xn → x holds. Let C be a nonempty closed convex subset of H

and let T be a mapping of C into itself. T is said to be firmly nonexpansive if
‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖(I − T )x − (I − T )y‖2 for every x, y ∈ C, where
I is the identity mapping. T is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖
for every x, y ∈ C. If T is firmly nonexpansive, T is nonexpansive. We know that
PC is firmly nonexpansive. It is known that F (T ) is closed and convex if T is a
nonexpansive mapping of C into itself.
An operator A : H −→ 2H is said to be monotone if (x1−x2, y1−y2) ≥ 0 whenever
y1 ∈ Ax1 and y2 ∈ Ax2. A monotone operator A is said to be maximal if the graph
of A is not properly contained in the graph of any other monotone operator. It is
known that a monotone operator A is maximal if and only if R(I + λA) = H for
every λ > 0, where R(I + λA) is the range of I + λA. It is also known that a
monotone operator A is maximal if and only if for (u, v) ∈ H×H , (x−u, y−v) ≥ 0
for every (x, y) ∈ A implies v ∈ Au. For a maximal monotone operator A, we
know that A−10 = {x ∈ H | 0 ∈ Ax} is closed and convex. If A is monotone,
then we can define, for each λ > 0, a mapping Jλ : R(I + λA) −→ D(A) by
Jλ = (I +λA)−1, where D(A) is the domain of A. Jλ is called the resolvent of A.
We also define the Yosida approximation Aλ by Aλ = (I − Jλ)/λ; see [24, 25] for
more details. The following are the fundamental results for resolvents of monotone
operators; see [17, 24, 25].

Lemma 2.1. Let A : H −→ 2H be a monotone operator and λ > 0. Then,
the following hold:

(i) F (Jλ) = A−10;
(ii) ‖Jλx − Jλy‖2 ≤ ‖x − y‖2 − ‖(I − Jλ)x − (I − Jλ)y‖2 for every x, y ∈

R(I + λA).

Let α > 0 and let C be a nonempty closed convex subset of H . An operator
A : C −→ H is said to be α-inverse-strongly-monotone [5, 12, 14] if (x− y, Ax−
Ay) ≥ α‖Ax − Ay‖2 for all x, y ∈ C. We have the following lemma for inverse-
strongly-monotone operators; see [14].

Lemma 2.2. Let α > 0. Let A : H −→ H be an α-inverse-strongly-monotone
operator with D(A) = H and let B : H −→ 2H be a maximal monotone operator
such that (A + B)−10 �= ∅. Then the following hold:

(i) A is maximal monotone;
(ii) A + B is maximal monotone and (A + B)−10 is closed and convex;
(iii) for every λ ∈ [0, 2α], I − λA : H −→ H is nonexpansive;
(iv) for every λ∈(0,∞), Tλ ≡ JB

λ (I−λA) is well defined and (A+B)−10=F (Tλ),
where JB

λ =(I+λB)−1 and F (Tλ) is the set of all fixed points of T λ;
(v) for every λ ∈ (0, 2α], Tλ is nonexpansive.
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Let C be a nonempty closed convex subset of H and let A be a mapping of C

into H . Then, an element x in C is a solution of the variational inequality of A if
(y − x, Ax) ≥ 0 for all y ∈ C. It is known that for λ > 0, x ∈ C is a solution
of the variational inequality of A if and only if x = PC(I − λA)x. We denote by
V I(C, A) the set of all solutions of the variational inequality of A. We know that
V I(C, A) is a closed convex subset of C if A is monotone and continuous. We
also have the following result for inverse-strongly -monotone operators.

Lemma 2.3. Let α > 0 and C be a nonempty closed convex subset of H . Let
A : C −→ H be an α-inverse-strongly-monotone operator with V I(C, A) �= ∅.
Then, for every λ > 0, x ∈ C and z ∈ V I(C, A), ‖PC(I − λA)x − z‖2 ≤
‖x − z‖2 − 2α−λ

2α ‖x − PC(I − λA)x‖2.

Proof. Let λ > 0, x ∈ C and z ∈ V I(C, A). We have

‖PC(I − λA)x − z‖2

≤ ‖(I − λA)x − (I − λA)z‖2 − ‖(I − PC)(I − λA)x− (I − PC)(I − λA)z‖2

= ‖(x− z) − λ(Ax − Az)‖2 − ‖(x− PC(I − λA)x)− λ(Ax− Az)‖2

≤ ‖x − z‖2 − 2αλ‖Ax − Az‖2 + 2λ‖Ax− Az‖
·‖x− PC(I − λA)x‖ − ‖x − PC(I − λA)x‖2

= ‖x − z‖2 − 2αλ
{
‖Ax − Az‖ − 1

2α
‖x − PC(I − λA)x‖

}2

−2α − λ

2α
‖x − PC(I − λA)x‖2

≤ ‖x − z‖2 − 2α − λ

2α
‖x − PC(I − λA)x‖2.

Let C be a nonempty closed convex subset of H . Let {Sn} be a family of
mappings of C into itself and let {βn,k : n, k ∈ N, 1 ≤ k ≤ n} be a sequence of
real numbers such that 0 ≤ βi,j ≤ 1 for every i, j ∈ N with i ≥ j. Then, for any
n ∈ N, Takahashi [19, 23, 25] introduced a mapping Wn of C into itself as follows:

Un,n = βn,nSn + (1− βn,n)I,

Un,n−1 = βn,n−1Sn−1Un,n + (1− βn,n−1)I,

...
Un,k = βn,kSkUn,k+1 + (1 − βn,k)I,

...
Un,2 = βn,2S2Un,3 + (1 − βn,2)I,

Wn = Un,1 = βn,1S1Un,2 + (1 − βn,1)I.
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Such a mapping Wn is called the W -mapping generated by Sn, Sn−1, · · · , S1 and
βn,n, βn,n−1, · · · , βn,1. The following lemma was proved by Takahashi and Shimoji
[26] (see also [25]).

Lemma 2.4. Let C be a nonempty closed convex subset of H . Let S1, S2,
· · · , Sn be nonexpansive mappings of C into itself with ∩ n

i=1F (Si) �= ∅ and let
βn,1, βn,2, · · · βn,n be real numbers with 0 < βn,i < 1 for every i = 2, · · · , n and
0 < βn,1 ≤ 1. Let Wn be the W -mapping generated by Sn, Sn−1, · · · , S1 and
βn,n, βn,n−1, · · · , βn,1. Then, F (Wn) = ∩n

i=1F (Si).

We have that if βn,k = βk (∀n = k, k + 1, · · ·) for every k ∈ N such that
0 < βk ≤ b < 1 (∀k ∈ N) for some b ∈ (0, 1) and {Sn} is a family of nonexpansive
mappings of C into itself with ∩∞

n=1F (Sn) �= ∅, limn→∞ Un,kx exists for every
x ∈ C and k ∈ N; see [19]. By this, we define a mapping W of C into itself as
follows:

Wx = lim
n→∞ Wnx = lim

n→∞Un,1x

for every x ∈ C. Such a W is called the W -mapping generated by S1, S2, · · · and
β1, β2, · · · . We have that F (W ) = ∩∞

i=1F (Si); see [19].

Let C be a nonempty closed convex subset of H . A family S = {T (s) | 0 ≤ s <

∞} of mappings of C into itself is called a one-parameter nonexpansive semigroup
on C if it satisfies the following conditions:

(i) T (0)x = x for all x ∈ C;
(ii) T (s + t) = T (s)T (t) for every s, t ≥ 0;
(iii) ‖T (s)x− T (s)y‖ ≤ ‖x − y‖ for each s ≥ 0 and x, y ∈ C;
(iv) for all x ∈ C, s �−→ T (s)x is continuous.

We denote by F (S) the set of all common fixed points of S , that is, F (S) =
∩0≤s<∞F (T (s)). It is known that F (S) is closed and convex. The following
lemma was proved by Shimizu and Takahashi [18]; see also [2, 6, 20].

Lemma 2.5. Let C be a nonempty bounded closed convex subset of H and
let S = {T (s) | 0 ≤ s < ∞} be a one-parameter nonexpansive semigroup on C.
Then, for any h ≥ 0,

lim
t→∞ sup

x∈C

∥∥∥∥ 1
t

∫ t

0
T (s)x ds− T (h)

( 1
t

∫ t

0
T (s)x ds

)∥∥∥∥= 0 .

Let S be a semigroup and let B(S) be the Banach space of all bounded real
valued functions on S with supremum norm. Then, for every s ∈ S and f ∈ B(S),
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we can define rsf ∈ B(S) and lsf ∈ B(S) by (rsf)(t) = f(ts) and (lsf)(t) =
f(st) for each t ∈ S, respectively. We also denote by r∗s and l∗s the conjugate
operators of rs and ls, respectively. Let D be a subspace of B(S) containing
constants and let µ be an element of D∗. A linear functional µ is called a mean
on D if ‖µ‖ = µ(1) = 1. Let C be a nonempty closed convex subset of H . A
family S = {T (s) | s ∈ S} of mappings of C into itself is called a nonexpansive
semigroup on C if it satisfies the following conditions:

(i) T (st) = T (s)T (t) for all s, t ∈ S;

(ii) ‖T (s)x − T (s)y‖ ≤ ‖x − y‖ for every s ∈ S and x, y ∈ C.

It is known that F (S) is closed and convex. Takahashi [22] proved the following;
see also [8].

Lemma 2.6. Let S be a semigroup. Let C be a nonempty closed convex
subset of H and let S = {T (s) | s ∈ S} be a nonexpansive semigroup on C such
that F (S) �= ∅. Let D be a subspace of B(S) such that D contains constants and
(T (·)x, y) ∈ D for every x ∈ C and y ∈ H . Then, for any mean µ on D and
x ∈ C, there exists a unique element Tµx in C such that (Tµx, z) = µs(T (s)x, z)
for all z ∈ H . And Tµ is a nonexpansive mapping of C into itself.

Further, Atsushiba and Takahashi [1] proved the following.

Lemma 2.7. Let C be a nonempty bounded closed convex subset of H and
let S be a semigroup. Let S = {T (s) | s ∈ S} be a nonexpansive semigroup on C
and let D be a subspace of B(S) containing constants and invariant under l s for
all s ∈ S. Suppose that for every x ∈ C and z ∈ H , the function t �→ (T (t)x, z) is
in D. Let {µn} be a sequence of means on D such that limn→∞ ‖µn − l∗sµn‖ = 0
for each s ∈ S. Then, limn→∞ supx∈C ‖Tµnx − T (t)Tµnx‖ = 0 for all t ∈ S.

3. STRONG CONVERGENCE THEOREMS

Let C be a nonempty closed convex subset of H and let {Tn} be a family
of mappings of C into itself with ∩∞

n=0F (Tn) �= ∅ which satisfies the following
condition: There exists {an} ⊂ (−1,∞) such that

‖Tnx − z‖2 ≤ ‖x − z‖2 − an‖(I − Tn)x‖2(3)

for every n ∈ N ∪ {0}, x ∈ C and z ∈ F (Tn). Then, we know that ∩∞
n=0F (Tn) is

closed (see [15]). We also have that ∩∞
n=0F (Tn) is convex. In fact, let n ∈ N∪{0}

and let z1, z2 ∈ F (Tn), 0 ≤ α ≤ 1 and x = αz1 + (1 − α)z2. Suppose that
x �= Tnx. For some β ∈ (0, 1) with an > −β, we get
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‖βx+(1−β)Tnx−z1‖2 = β‖x−z1‖2+(1−β)‖Tnx−z1‖2−β(1−β)‖x−Tnx‖2

≤ β‖x−z1‖2+(1−β){‖x−z1‖2−an‖x−Tnx‖2}
−β(1−β)‖x−Tnx‖2

= ‖x−z1‖2−(1−β)(an+β)‖x−Tnx‖2 < ‖x−z1‖2.

Similarly, ‖βx+(1−β)Tnx−z2‖ < ‖x−z2‖ holds. So, we obtain

‖z1−z2‖ ≤ ∥∥ z1−{βx+(1−β)Tnx}
∥∥+

∥∥ {βx+(1−β)Tnx}−z2

∥∥
< ‖x−z1‖+‖x−z2‖ = (1−α)‖z1−z2‖+α‖z1−z2‖ = ‖z1−z2‖.

This is a contradiction. Therefore, F (Tn) is convex. Let us define a sequence {xn}
as follows:




x0 = x ∈ C ,

yn = TnPC(xn+εn) ,

Cn = {z ∈ C | ‖yn−z‖2 ≤ ‖xn+εn−z‖2−an‖PC(xn+εn)−yn‖2} ,

Qn = {z ∈ C | (xn−z, x0−xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

(4)

for each n ∈ N∪{0}, where {εn} ⊂ H and lim infn→∞ an >−1. Now, we get the
following.

Theorem 3.1. The followings hold:

(i) A sequence {xn} generated by (4) is well defined and {xn} ⊂ C;

(ii) assume that
∑∞

n=0 ‖εn‖2 < ∞ and for every bounded sequence {zn} in C,
there holds that

∑∞
n=0 ‖zn+1 − zn‖2 < ∞ and

∑∞
n=0 ‖zn − Tnzn‖2 < ∞

imply ωw(zn) ⊂ ∩∞
n=0F (Tn). Then, {xn} converges strongly to z0 = PF (x0),

where F = ∩∞
n=0F (Tn);

(iii) assume that limn→∞ ‖εn‖ = 0 and for every bounded sequence {zn} in C,
there holds that limn→∞ ‖zn − Tnzn‖ = 0 implies ωw(zn) ⊂ ∩∞

n=0F (Tn).
Then, {xn} converges strongly to z0 = PF (x0).

Proof. As in the proof of [15, Theorem 4.2], we get that {xn} is well defined,
{xn} ⊂ C and F ⊂ Cn∩Qn for each n ∈ N∪{0}. So, the proof of (i) is complete.
We have, for z0 = PF (x0),

‖xn+1 − x0‖ ≤ ‖z0 − x0‖(5)
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and

‖xn+1 − xn‖2 = ‖(xn+1 − x0) + (x0 − xn)‖2

= ‖xn+1 − x0‖2 + 2(xn+1 − x0, x0 − xn) + ‖x0 − xn‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 + 2(xn+1 − xn, x0 − xn)
≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2

for every n ∈ N ∪ {0} by (x0 − xn, xn+1 − xn) ≤ 0. So, we obtain that {xn} is
bounded and the limit

lim
n→∞ ‖xn − x0‖(6)

exists. We get

∞∑
n=0

‖xn+1 − xn‖2 < ∞.(7)

From lim infn→∞ an > −1, there exists a ∈ (0, 1) such that an ≥ −a for all
n ∈ N ∪ {0}. Let β ∈ (0, 1−a

a ) and α = 1−a(1+β)
a (> 0). We have

‖PC(xn + εn)− yn‖2

≤ ‖xn + εn − yn‖2 ≤ (‖xn + εn − xn+1‖ + ‖xn+1 − yn‖)2

≤
(
1 +

1
α

)
‖xn + εn − xn+1‖2 + (1 + α)‖xn+1 − yn‖2

≤
(
1 +

1
α

)
‖xn + εn − xn+1‖2 + (1 + α)‖xn + εn − xn+1‖2

−(1 + α)an‖PC(xn + εn) − yn‖2

which implies

aβ‖PC(xn + εn) − yn‖2 = {1 − (1 + α)a}‖PC(xn + εn) − yn‖2

≤ {1 + (1 + α)an}‖PC(xn + εn) − yn‖2

≤
(
2 + α +

1
α

)
‖xn + εn − xn+1‖2

for each n ∈ N ∪ {0}. So, we get

‖PC(xn + εn) − yn‖2 ≤ 2
(
2 + α + 1

α

)
aβ

(‖xn − xn+1‖2 + ‖εn‖2)(8)

for every n ∈ N ∪ {0}.
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(ii) Assume that
∑∞

n=0 ‖εn‖2 < ∞. If zn = PC(xn + εn), we have that {zn} is
bounded and

∞∑
n=0

‖zn − Tnzn‖2 =
∞∑

n=0

‖PC(xn + εn)− yn‖2 < ∞

from (7) and (8). Further we obtain

‖zn−zn+1‖2≤‖(xn + εn)−(xn+1+εn+1)‖2≤3‖xn−xn+1‖2+3‖εn‖2+3‖εn+1‖2

for all n ∈ N ∪ {0} which implies
∑∞

n=0 ‖zn − zn+1‖2 < ∞. Therefore, we have
ωw(zn) ⊂ F . As limn→∞ ‖xn − zn‖ = 0 from ‖xn − zn‖ ≤ ‖εn‖ for every
n ∈ N ∪ {0}, we get ωw(xn) ⊂ F . So, assume that a subsequence {xni} of {xn}
converges weakly to w1 ∈ F . We have

‖x0 − z0‖ ≤ ‖x0 − w1‖ ≤ lim
i→∞

‖x0 − xni‖ ≤ ‖x0 − z0‖

by the lower semicontinuity of the norm, (5) and (6). Thus, we obtain limi→∞ ‖xni−
x0‖ = ‖x0 − w1‖ = ‖x0 − z0‖. This implies

xni → w1 = z0.

Therefore, we have xn → z0. So, the proof of (ii) is complete.
(iii) Assume limn→∞ ‖εn‖ = 0. If zn = PC(xn +εn), we get that {zn} is bounded,
limn→∞ ‖xn − zn‖ = 0 and limn→∞ ‖zn − Tnzn‖ = 0 by (7) and (8). Therefore,
we obtain ωw(xn) ⊂ F . As in the proof of (ii), we have xn → z0. So, the proof of
(iii) is complete.

The following is the result proved by Bauschke and Combettes [4].

Theorem 3.2. Let {Tn} be a family of mappings of H into itself with
∩∞

n=0F (Tn) �= ∅ which satisfies the following conditions: (I) (x−Tnx, Tnx− z) ≥
0 for every n ∈ N ∪ {0}, x ∈ H and z ∈ F (Tn); (II) (coherent) for every
bounded sequence {zn} in H , there holds that

∑∞
n=0 ‖zn+1 − zn‖2 < ∞ and∑∞

n=0 ‖zn − Tnzn‖2 < ∞ imply ωw(zn) ⊂ ∩∞
n=0F (Tn). Then, {xn} generated by

(1) converges strongly to z0 = PF (x0), where F = ∩∞
n=0F (Tn).

Proof. If C = H , an = 1 and εn = 0 for every n ∈ N ∪ {0} in Theorem 3.1,
we have

‖Tnx − z‖2 ≤ ‖x − z‖2 − ‖x − Tnx‖2 ⇐⇒ (x− Tnx, Tnx − z) ≥ 0

for each n ∈ N∪{0}, x ∈ H and z ∈ F (Tn) and Cn = {z ∈ H | (xn−yn, yn−z) ≥
0} for all n ∈ N ∪ {0}. Further,

∑∞
n=0 ‖εn‖2 < ∞. Therefore, {xn} converges

strongly to z0 = PF (x0) from (ii) in Theorem 3.1.
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The following is a generalization of the result proved by Solodov and Svaiter
[21].

Theorem 3.3. Let A : H −→ 2H be a maximal monotone operator such that
A−10 �= ∅ and let {xn} be a sequence generated by



x0 = x ∈ H ,

yn = Jλn(xn + εn) ,

Cn = {z ∈ H | (xn − yn + εn, yn − z) ≥ 0} ,

Qn = {z ∈ H | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

for every n ∈ N ∪ {0}, where {λn} ⊂ (0,∞) and Jλn = (I + λnA)−1 for each
n ∈ N∪{0}. If (i) lim infn→∞ λn > 0 and limn→∞ ‖εn‖ = 0 or (ii)

∑∞
n=0 λ2

n = ∞
and

∑∞
n=0 ‖εn‖2 < ∞, then, {xn} converges strongly to z0 = PA−10(x0).

Proof. If C = H and Tn = Jλn for all n ∈ N ∪ {0} in Theorem 3.1, we have
F (Tn) = A−10 and an = 1 for every n ∈ N ∪ {0} by (i) and (ii) in Lemma 2.1.
So we get Cn = {z ∈ H | (xn − yn + εn, yn − z) ≥ 0} for each n ∈ N ∪ {0}.
(i) Assume that lim infn→∞ λn > 0 and limn→∞ ‖εn‖ = 0. There exists λ > 0
with λn ≥ λ for each n ∈ N ∪ {0}. Let {zn} be a bounded sequence in H which
satisfies limn→∞ ‖zn−Jλnzn‖ = 0. And suppose that zn ⇀ w. For all (u, v) ∈ A,
we obtain (

Jλnzn − u,
zn − Jλnzn

λn
− v

)
≥ 0

which implies

(9)
(Jλnzn − u,−v) ≥ 1

λn
(Jλnzn − u, Jλnzn − zn)

≥ − 1
λn

‖Jλnzn − u‖ · ‖Jλnzn − zn‖

for every n ∈ N ∪ {0}. As a sequence { 1
λn

‖Jλnzn − u‖} is bounded, we have
(w−u,−v) ≥ 0 for each (u, v) ∈ A. Therefore, w ∈ A−10 from maximality of A.
By (iii) in Theorem 3.1, {xn} converges strongly to z0.
(ii) Assume that

∑∞
n=0 λ2

n = ∞ and
∑∞

n=0 ‖εn‖2 < ∞. Let {zn} be a bounded
sequence in H which satisfies

∑∞
n=0 ‖zn+1−zn‖2 < ∞ and

∑∞
n=0 ‖zn−Jλnzn‖2 <

∞. And suppose that zn ⇀ w. We get limn→∞ ‖zn−Jλnzn‖ = lim infn→∞ 1
λn

‖zn−
Jλnzn‖ = 0 by

∑∞
n=0 λ2

n( 1
λn

‖zn − Jλnzn‖)2 < ∞. From (9), we obtain

(w − u,−v) ≥ − lim inf
n→∞

1
λn

‖Jλnzn − zn‖ · ‖Jλnzn − u‖ = 0
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for all (u, v) ∈ A. So, we have w ∈ A−10. By (ii) in Theorem 3.1, {xn} converges
strongly to z0.

The following is a genaralization of the result proved by Nakajo and Takahashi
[13].

Theorem 3.4. Let A : H −→ 2H be a maximal monotone operator such that
A−10 �= ∅ and let {xn} be a sequence generated by




x0 = x ∈ H ,

yn = Jλn(xn + εn) ,

Cn = {z ∈ H | ‖yn − z‖ ≤ ‖xn + εn − z‖} ,

Qn = {z ∈ H | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

for every n ∈ N ∪ {0}, where {λn} ⊂ (0,∞) and Jλn = (I + λnA)−1 for each
n ∈ N∪{0}. If (i) lim infn→∞ λn > 0 and limn→∞ ‖εn‖ = 0 or (ii)

∑∞
n=0 λ2

n = ∞
and

∑∞
n=0 ‖εn‖2 < ∞, then, {xn} converges strongly to z0 = PA−10(x0).

Proof. If C = H and Tn = Jλn for all n ∈ N ∪ {0} in Theorem 3.1, we
can select an = 0 for every n ∈ N ∪ {0}. As in the proof of Theorem 3.3, {xn}
converges strongly to z0.

The following is the result proved by Nakajo and Takahashi [13].

Theorem 3.5. Let C be a nonempty closed convex subset of H and let T
be a nonexpansive mapping of C into itself such that F (T ) �= ∅. Let {x n} be a
sequence generated by




x0 = x ∈ C ,

yn = αnxn + (1 − αn)Txn ,

Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ C | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

for each n ∈ N ∪ {0}, where {αn} ⊂ [0, a] for some a ∈ [0, 1). Then, {xn}
converges strongly to z0 = PF (T )(x0).

Proof. If Tn = αnI + (1− αn)T and εn = 0 for all n ∈ N ∪ {0} in Theorem
3.1, we have that F (Tn) = F (T ) and an = 0 for every n ∈ N ∪ {0}. Let {zn}
be a bounded sequence in C which satisfies limn→∞ ‖zn − Tnzn‖ = 0. We obtain
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limn→∞ ‖zn − Tzn‖ = 0. So, by Opial’s condition, we get ωw(zn) ⊂ F (T ).
Therefore, {xn} converges strongly to z0 from (ii) or (iii) in Theorem 3.1.

The following is a generalization of the result proved by Nakajo and Takahashi
[14].

Theorem 3.6. Let α > 0. Let A : H −→ H be an α-inverse-strongly-
monotone operator with D(A) = H and let B : H −→ 2H be a maximal monotone
operator such that (A + B)−10 �= ∅. Let {xn} be a sequence generated by




x0 = x ∈ H ,

yn = JB
λn

(I − λnA)xn ,

Cn = {z ∈ H | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ H | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

for every n ∈ N ∪ {0}, where {λn} ⊂ (0, 2α] with
∑∞

n=0 λ2
n = ∞. Then, {xn}

converges strongly to z0 = P(A+B)−10(x0).

Proof. If C = H , Tn = JB
λn

(I − λnA) and εn = 0 for all n ∈ N ∪ {0} in
Theorem 3.1, we have F (Tn) = (A+ B)−10 and an = 0 for every n ∈ N∪{0} by
(iv) and (v) in Lemma 2.2. Let {zn} be a bounded sequence in H which satisfies∑∞

n=0 ‖zn+1 − zn‖2 < ∞ and
∑∞

n=0 ‖zn − JB
λn

(I − λnA)zn‖2 < ∞. We obtain
limn→∞ ‖zn−JB

λn
(I−λnA)zn‖ = 0 and lim infn→∞ 1

λn
‖zn−JB

λn
(I−λnA)zn‖ = 0

from
∑∞

n=0 λ2
n{ 1

λn
‖zn − JB

λn
(I − λnA)zn‖}2 < ∞. Assume that zn ⇀ w. As in

the proof of [14, Theorem 3.1], we get
(

un − u,
zn − un

λn
− Azn − (v − Au)

)
≥ 0

for every (u, v) ∈ A + B and n ∈ N ∪ {0}, where un = JB
λn

(I − λnA)zn for all
n ∈ N ∪ {0}. So, we have

(un − u,−v) ≥
(

un − u,
un − zn

λn
+ (Azn − Au)

)

=
1
λn

(un−u, (I − λnA)un−(I−λnA)zn)+(un − u, Aun − Au)

≥ − 1
λn

‖un − u‖ · ‖(I − λnA)un − (I − λnA)zn‖

≥ − 1
λn

‖un − u‖ · ‖un − zn‖
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by (iii) in Lemma 2.2 which implies

(w − u,−v) ≥ − lim inf
n→∞

1
λn

‖un − u‖ · ‖un − zn‖ = 0

for every (u, v) ∈ A + B since a sequence {un − u} is bounded. Therefore,
w ∈ (A+B)−10 as A+B is maximal monotone from (ii) in Lemma 2.2. Therefore,
{xn} converges strongly to z0 by (ii) in Theorem 3.1.

The following is a generalization of the result proved by Iiduka, Takahashi and
Toyoda [9].

Theorem 3.7. Let α > 0 and let C be a nonempty closed convex subset
of H . Let A : C −→ H be an α-inverse-strongly-monotone operator such that
V I(C, A) �= ∅. Let {xn} be a sequence generated by



x0 = x ∈ C ,

yn = PC(I − λnA)xn ,

Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ C | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

for every n ∈ N ∪ {0}, where {λn} ⊂ (0, 2α] with
∑∞

n=0 λ2
n = ∞. Then, {xn}

converges strongly to z0 = PV I(C,A)(x0).

Proof. If Tn = PC(I − λnA) and εn = 0 for all n ∈ N ∪ {0} in Theorem
3.1, we have F (Tn) = V I(C, A) for every n ∈ N ∪ {0}. Further, we get an = 0
for each n ∈ N ∪ {0} from Lemma 2.3. Let {zn} be a bounded sequence in C

which satisfies
∑∞

n=0 ‖zn+1 − zn‖2 < ∞ and
∑∞

n=0 ‖zn − vn‖2 < ∞, where
vn = PC(I − λnA)zn for all n ∈ N ∪ {0}. We get limn→∞ ‖zn − vn‖ = 0 and
lim infn→∞ 1

λn
‖zn − vn‖ = 0 from

∑∞
n=0 λ2

n{ 1
λn

‖zn − vn‖}2 < ∞. Assume that
zn ⇀ w. For every u ∈ C, we have

(zn − λnAzn − vn, vn − u) ≥ 0

which implies

(Au, u− vn) ≥ (Avn − Au, vn − u) +
1
λn

((I − λnA)vn − (I − λnA)zn, vn − u)

≥ − 1
λn

‖vn − u‖ · ‖(I − λnA)vn − (I − λnA)zn‖

for all n ∈ N ∪ {0} since A is monotone. And we obtain

‖(I−λnA)vn−(I−λnA)zn‖2≤‖vn−zn‖2+λn(λn−2α)‖Avn−Azn‖2≤‖vn−zn‖2
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and hence

(Au, u− vn) ≥ − 1
λn

‖vn − u‖ · ‖vn − zn‖

for every u ∈ C and n ∈ N∪{0}. So, we get (Au, u−w) ≥ 0 for each u ∈ C as a
sequence {vn − u} is bounded. Since A is continuous, we obtain (u−w, Aw) ≥ 0
for all u ∈ C, that is, w ∈ V I(C, A). Therefore, {xn} converges strongly to z0 by
(ii) in Theorem 3.1.

The following are the results by Iiduka and Takahashi [10].

Theorem 3.8. Let α > 0 and let C be a nonempty closed convex subset of
H . Let T be a nonexpansive mapping of C into itself and let A : C −→ H be an
α-inverse-strongly-monotone operator such that F (T ) ∩ V I(C, A) �= ∅. Let {x n}
be a sequence generated by




x0 = x ∈ C ,

yn = PC(I − λnA)Txn ,

Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ C | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

for every n ∈ N ∪ {0}, where {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) with a ≤ b.
Then, {xn} converges strongly to z0 = PF (T )∩V I(C,A)(x0).

Proof. If Tn = PC(I − λnA)T and εn = 0 for all n ∈ N ∪ {0} in Theorem
3.1, we have F (Tn) = F (T ) ∩ V I(C, A) for every n ∈ N ∪ {0}. In fact, F (T ) ∩
V I(C, A) ⊂ F (Tn) is trivial. Let z ∈ F (Tn) and u ∈ F (T ) ∩ V I(C, A). We get

‖z−u‖2 = ‖PC(I−λnA)Tz−u‖2≤‖Tz−u‖2− 2α − λn

2α
‖Tz−PC(I−λnA)Tz‖2

≤ ‖z − u‖2 − 2α − b

2α
‖Tz − PC(I − λnA)Tz‖2

from Lemma 2.3. So we obtain Tz = PC(I − λnA)Tz which implies Tz = z.
And we have PC(I − λnA)z = PC(I − λnA)Tz = z. Therefore, F (Tn) ⊂
F (T ) ∩ V I(C, A). And we get an = 0 for each n ∈ N ∪ {0} by nonexpansivity
of T and Lemma 2.3. Let {zn} be a bounded sequence in C which satisfies
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limn→∞ ‖zn − Tnzn‖ = 0 and let u ∈ F (T ) ∩ V I(C, A). We obtain

‖zn − u‖2 ≤ (‖zn − Tnzn‖+ ‖Tnzn − u‖)2

= ‖zn − Tnzn‖2 + 2‖zn − Tnzn‖
·‖PC(I − λnA)Tzn − u‖ + ‖PC(I − λnA)Tzn − u‖2

≤ ‖zn − Tnzn‖2 + 2‖zn − Tnzn‖ · ‖Tzn − u‖

+
{
‖Tzn − u‖2 − 2α − λn

2α
‖Tzn − PC(I − λnA)Tzn‖2

}

≤ ‖zn − Tnzn‖2 + 2‖zn − Tnzn‖ · ‖zn − u‖

+‖zn − u‖2 − 2α − b

2α
‖Tzn − Tnzn‖2

for all n ∈ N from Lemma 2.3. So, we have
2α − b

2α
‖Tzn − Tnzn‖2 ≤ ‖zn − Tnzn‖2 + 2‖zn − Tnzn‖ · ‖zn − u‖

for every n ∈ N and hence limn→∞ ‖Tzn − Tnzn‖ = 0. Therefore, limn→∞ ‖zn −
Tzn‖ = 0 by limn→∞ ‖zn −Tnzn‖ = 0. From Opial’s condition, we get ωw(zn) ⊂
F (T ). Further, we obtain

‖zn − PC(I − λnA)zn‖
≤ ‖zn − Tzn‖ + ‖Tzn − PC(I − λnA)Tzn‖

+‖PC(I − λnA)Tzn − PC(I − λnA)zn‖
≤ 2‖zn − Tzn‖ + ‖Tzn − PC(I − λnA)Tzn‖

for every n ∈ N by nonexpansivity of PC(I−λnA) and hence limn→∞ ‖zn−PC (I−
λnA)zn‖ = 0. As in the proof of Theorem 3.7, we have ωw(zn) ⊂ V I(C, A). So,
ωw(zn) ⊂ F (T ) ∩ V I(C, A). Therefore, {xn} converges strongly to z0 by (ii) or
(iii) in Theorem 3.1.

Theorem 3.9. Let α > 0 and let C be a nonempty closed convex subset of
H . Let T be a nonexpansive mapping of C into itself and let A : C −→ H be an
α-inverse-strongly-monotone operator such that F (T ) ∩ V I(C, A) �= ∅. Let {x n}
be a sequence generated by



x0 = x ∈ C ,

yn = TPC(I − λnA)xn ,

Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ C | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)
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for every n ∈ N ∪ {0}, where {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) with a ≤ b.
Then, {xn} converges strongly to z0 = PF (T )∩V I(C,A)(x0).

Proof. If Tn = TPC(I − λnA) and εn = 0 for all n ∈ N ∪ {0} in Theorem
3.1, we have F (Tn) = F (T ) ∩ V I(C, A) for every n ∈ N ∪ {0}. In fact, similarly
in Theorem 3.8, we get

‖z − u‖2 ≤ ‖PC(I − λnA)z − u‖2 ≤ ‖z − u‖2 − 2α − b

2α
‖z − PC(I − λnA)z‖2

for z ∈ F (Tn) and u ∈ F (T ) ∩ V I(C, A). Hence we obtain z = PC(I − λnA)z
and further z = Tz, too. And we have an = 0 for each n ∈ N∪{0} by Lemma 2.3.
Let {zn} be a bounded sequence in C which satisfies limn→∞ ‖zn − Tnzn‖ = 0
and let u ∈ F (T ) ∩ V I(C, A). Similarly in Theorem 3.8, we get

‖zn − u‖2 ≤ ‖zn − Tnzn‖2 + 2‖zn − Tnzn‖

·‖zn − u‖ + ‖zn − u‖2 − 2α − b

2α
‖zn − PC(I − λnA)zn‖2

for all n ∈ N. So, we obtain limn→∞ ‖zn − PC(I − λnA)zn‖ = 0 which implies
ωw(zn) ⊂ V I(C, A). Further, we have

‖zn−Tzn‖ ≤ ‖zn−Tnzn‖+‖Tnzn−Tzn‖≤‖zn−Tnzn‖+‖PC(I−λnA)zn−zn‖
for every n ∈ N. Therefore, limn→∞ ‖zn − Tzn‖ = 0. By Opial’s condition, we
get ωw(zn) ⊂ F (T ). So, {xn} converges strongly to z0 from (ii) or (iii) in Theorem
3.1.

The following theorem contains the result proved by Kikkawa and Takahashi
[11].

Theorem 3.10. Let C be a nonempty closed convex subset of H . Let {Sn}
be a family of nonexpansive mappings of C into itself with ∩ ∞

i=1F (Si) �= ∅ and let
{βn,k : n, k ∈ N, 1 ≤ k ≤ n} ⊂ (0, 1) be a sequence of real numbers such that (i)
βn,k = βk (∀n = k, k+1, · · ·) for every k ∈ N such that 0 < βk ≤ b < 1 (∀k ∈ N)
for some b ∈ (0, 1) or (ii) a ≤ βi,j ≤ b for every i, j ∈ N (i ≥ j) for some
a, b ∈ (0, 1) with a ≤ b. Let Wn (n = 1, 2, · · ·) be the W-mapping generated by
Sn, Sn−1, · · · , S1 and βn,n, βn,n−1, · · · , βn,1. Let {xn} be a sequence generated
by 



x1 = x ∈ C ,

yn = Wnxn ,

Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ C | (xn − z, x1 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x1)
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for each n ∈ N. Then, {xn} converges strongly to z0 = P∩∞
i=1F (Si)(x1).

Proof. If Tn = Wn and εn = 0 for all n ∈ N in Theorem 3.1, we have
∩∞

n=1F (Tn) = ∩∞
n=1F (Wn) = ∩∞

i=1F (Si) and an = 0 for every n ∈ N by Lemma
2.4 and nonexpansivity of Wn. Let {zn} be a bounded sequence in C which satisfies
limn→∞ ‖zn − Tnzn‖ = 0.
(i) Let W be the W -mapping generated by S1, S2, · · · and β1, β2, · · · . Assume that
zn ⇀ w. As in the proof of [11, Theorem 3.1], if we suppose that w �= Ww,

lim inf
n→∞ ‖zn − w‖ < lim inf

n→∞ ‖zn − Ww‖

≤ lim inf
n→∞ (‖zn − Wnzn‖ + ‖Wnzn − Wnw‖ + ‖Wnw − Ww‖)

≤ lim inf
n→∞ (‖zn − Wnzn‖ + ‖zn − w‖ + ‖Wnw − Ww‖)

= lim inf
n→∞ ‖zn − w‖

by Opial’s condition. This is a contradiction. So, we get ωw(zn) ⊂ F (W ) =
∩∞

n=1F (Sn).
(ii) We get limn→∞ ‖zn−S1Un,2zn‖ = 0 from 0 < a ≤ βn,1. Let z ∈ ∩∞

n=1F (Sn).
We obtain

‖zn − z‖2 ≤ (‖zn − S1Un,2zn‖+ ‖S1Un,2zn − z‖)2

= ‖zn − S1Un,2zn‖(‖zn − S1Un,2zn‖
+2‖S1Un,2zn − z‖) + ‖S1Un,2zn − z‖2

≤ M‖zn − S1Un,2zn‖ + ‖Un,2zn − z‖2

= M‖zn − S1Un,2zn‖ + βn,2‖S2Un,3zn − z‖2

+(1 − βn,2)‖zn − z‖2 − βn,2(1 − βn,2)‖S2Un,3zn − zn‖2

≤ M‖zn − S1Un,2zn‖ + ‖zn − z‖2 − βn,2(1− βn,2)‖S2Un,3zn − zn‖2

for each n ∈ N, where M = supn∈N{‖zn − S1Un,2zn‖ + 2‖S1Un,2zn − z‖}. So,
we obtain limn→∞ ‖S2Un,3zn − zn‖ = 0. By induction, we have

lim
n→∞ ‖SmUn,m+1zn − zn‖ = 0

for all m ∈ N. Since

‖zn − Smzn‖ ≤ ‖zn − SmUn,m+1zn‖ + ‖SmUn,m+1zn − Smzn‖
≤ ‖zn − SmUn,m+1zn‖ + ‖Un,m+1zn − zn‖
= ‖zn − SmUn,m+1zn‖ + βn,m+1‖Sm+1Un,m+2zn − zn‖
≤ ‖zn − SmUn,m+1zn‖ + b‖Sm+1Un,m+2zn − zn‖
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for every n ∈ N, we get limn→∞ ‖zn − Smzn‖ = 0 for all m ∈ N. By Opial’s
condition, ωw(zn) ⊂ F (Sm) for each m ∈ N which implies ωw(zn) ⊂ ∩∞

n=1F (Tn).
Therefore, {xn} converges strongly to z0 from (ii) or (iii) in Theorem 3.1.

The following is the result proved by Nakajo and Takahashi [13].

Theorem 3.11. Let C be a nonempty closed convex subset of H and let
S = {T (s) | 0 ≤ s < ∞} be a one-parameter nonexpansive semigroup on C such
that F (S) �= ∅. Let {xn} be a sequence generated by



x0 = x ∈ C ,

yn = αnxn + (1− αn)
1
tn

∫ tn

0
T (s)xn ds ,

Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ C | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

for every n ∈ N∪{0}, where {αn} ⊂ [0, a] for some a ∈ [0, 1) and {tn} is a positive
real divergent sequence. Then, {xn} converges strongly to z0 = PF (S)(x0).

Proof. If Tnx = αnx + (1− αn) 1
tn

∫ tn
0 T (s)x ds (∀x ∈ C) and εn = 0 for all

n ∈ N ∪ {0} in Theorem 3.1, we have that Tn : C −→ C for every n ∈ N ∪ {0},
∩∞

n=0F (Tn) = F (S) and an = 0 for each n ∈ N ∪ {0}. Let {zn} be a bounded
sequence in C which satisfies limn→∞ ‖zn − Tnzn‖ = 0. At first, we have

(1−a)
∥∥∥∥ zn− 1

tn

∫ tn

0
T (s)zn ds

∥∥∥∥≤(1−αn)
∥∥∥∥ zn− 1

tn

∫ tn

0
T (s)zn ds

∥∥∥∥=‖zn−Tnzn‖

for all n ∈ N which implies

lim
n→∞

∥∥∥∥ zn − 1
tn

∫ tn

0
T (s)zn ds

∥∥∥∥= 0.

And as in the proof of [13, Theorem 4.1], we have, for every h ≥ 0,

‖zn − T (h)zn‖ ≤
∥∥∥∥ zn − 1

tn

∫ tn

0

T (s)zn ds

∥∥∥∥
+

∥∥∥∥ 1
tn

∫ tn

0
T (s)zn ds − T (h)

( 1
tn

∫ tn

0
T (s)zn ds

) ∥∥∥∥
+

∥∥∥∥ T (h)zn − T (h)
( 1

tn

∫ tn

0
T (s)zn ds

) ∥∥∥∥
≤ 2

∥∥∥∥ zn − 1
tn

∫ tn

0
T (s)zn ds

∥∥∥∥



Strong Convergence Theorems 357

+
∥∥∥∥ 1

tn

∫ tn

0
T (s)zn ds − T (h)

( 1
tn

∫ tn

0
T (s)zn ds

) ∥∥∥∥
for each n ∈ N. So, we get

lim
n→∞ ‖zn − T (h)zn‖ = 0

for all h ≥ 0 by Lemma 2.5. By Opial’s condition, we obtain ωw(zn) ⊂ F (S).
Therefore, {xn} converges strongly to z0 from (ii) or (iii) in Theorem 3.1.

The following is the result proved by Atsushiba and Takahashi [3].

Theorem 3.12. Let C be a nonempty closed convex subset of H and let S be
a commutative semigroup. Let S = {T (t) | t ∈ S} be a nonexpansive semigroup
on C such that F (S) �= ∅. Let D be a subspace of B(S) such that D contains
constants, D is invariant under r s for every s ∈ S and t �→ (T (t)x, y) is in D
for each x ∈ C and y ∈ H . Let {µn} be a sequence of means on D such that
limn→∞ ‖µn − r∗sµn‖ = 0 for all s ∈ S. Let {xn} be a sequence generated by



x0 = x ∈ C ,

yn = αnxn + (1 − αn)Tµnxn ,

Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ C | (xn − z, x0 − xn) ≥ 0} ,

xn+1 = PCn∩Qn(x0)

for every n ∈ N ∪ {0}, where {αn} ⊂ [0, a] for some a ∈ (0, 1). Then, {xn}
converges strongly to z0 = PF (S)(x0).

Proof. If Tn = αnI +(1−αn)Tµn and εn = 0 for all n ∈ N∪{0} in Theorem
3.1, we have Tn : C −→ C, an = 0 for every n ∈ N∪{0} and ∩∞

n=0F (Tn) = F (S)
from Lemmas 2.6 and 2.7. Let {zn} be a bounded sequence in C which satisfies
limn→∞ ‖zn − Tnzn‖ = 0. At first, we get

(1− a)‖zn − Tµnzn‖ ≤ (1 − αn)‖zn − Tµnzn‖ = ‖zn − Tnzn‖
for each n ∈ N which implies

lim
n→∞ ‖zn − Tµnzn‖ = 0.

And for all t ∈ S,

‖zn − T (t)zn‖ ≤ ‖zn − Tµnzn‖ + ‖Tµnzn − T (t)Tµnzn‖
+‖T (t)Tµnzn − T (t)zn‖

≤ 2‖zn − Tµnzn‖ + ‖Tµnzn − T (t)Tµnzn‖.
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So, we obtain limn→∞ ‖zn − T (t)zn‖ = 0 for every t ∈ S by Lemma 2.7. By
Opial’s condition, we get ωw(zn) ⊂ F (S). Therefore, {xn} converges strongly to
z0 by (ii) or (iii) in Theorem 3.1.
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