STRONG CONVERGENCE THEOREMS BY THE HYBRID METHOD FOR FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES

K. Nakajo, K. Shimoji and W. Takahashi

Abstract

Let C be a nonempty closed convex subset of a real Hilbert space and let $\left\{T_{n}\right\}$ be a family of mappings of C into itself such that the set of all common fixed points of $\left\{T_{n}\right\}$ is nonempty. We consider a sequence $\left\{x_{n}\right\}$ generated by the hybrid method in mathematical programming and give the conditions of $\left\{T_{n}\right\}$ under which $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $\left\{T_{n}\right\}$.

1. Introduction

Throughout this paper, let H be a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$ and let \mathbf{N} and \mathbf{R} be the set of all positive integers and the set of all real numbers, respectively. Haugazeau [7] introduced a sequence $\left\{x_{n}\right\}$ generated by the hybrid method, that is, let $\left\{T_{n}\right\}$ be a family of mappings of H into itself with $\cap_{n=0}^{\infty} F\left(T_{n}\right) \neq \emptyset$, where $F\left(T_{n}\right)$ is the set of all fixed points of T_{n} and let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in H \tag{1}\\
y_{n}=T_{n} x_{n} \\
C_{n}=\left\{z \in H \mid\left(x_{n}-y_{n}, y_{n}-z\right) \geq 0\right\} \\
Q_{n}=\left\{z \in H \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for each $n \in \mathbf{N} \cup\{0\}$, where $P_{C_{n} \cap Q_{n}}$ is the metric projection onto $C_{n} \cap Q_{n}$. He proved a strong convergence theorem when $T_{n}=P_{n(\bmod m)+1}$ for every $n \in$

[^0]$\mathbf{N} \cup\{0\}$, where P_{i} is the metric projection onto a nonempty closed convex subset C_{i} of H for each $i=1,2, \cdots, m$ and $\cap_{i=1}^{m} C_{i} \neq \emptyset$. Later, Solodov and Svaiter [21] proved a strong convergence theorem for a maximal monotone operator and Bauschke and Combettes [4] proved the following theorem: Let $\left\{T_{n}\right\}$ be a family of mappings of H into itself with $\cap_{n=0}^{\infty} F\left(T_{n}\right) \neq \emptyset$ which satisfies the following conditions: (I) $\left(x-T_{n} x, T_{n} x-z\right) \geq 0$ for every $n \in \mathbf{N} \cup\{0\}, x \in H$ and $z \in F\left(T_{n}\right)$; (II) (coherent) for every bounded sequence $\left\{z_{n}\right\}$ in H, there holds that $\sum_{n=0}^{\infty}\left\|z_{n+1}-z_{n}\right\|^{2}<\infty$ and $\sum_{n=0}^{\infty}\left\|z_{n}-T_{n} z_{n}\right\|^{2}<\infty$ imply $\omega_{w}\left(z_{n}\right) \subset$ $\cap_{n=0}^{\infty} F\left(T_{n}\right)$, where $\omega_{w}\left(z_{n}\right)$ is the set of all weak cluster points of $\left\{z_{n}\right\}$. Then, $\left\{x_{n}\right\}$ generated by (1) converges strongly to $z_{0}=P_{F}\left(x_{0}\right)$, where $F=\cap_{n=0}^{\infty} F\left(T_{n}\right)$. On the other hand, Nakajo and Takahashi [13] proved the following theorem: Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by
\[

\left\{$$
\begin{array}{l}
x_{0}=x \in C \tag{2}\\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n} \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}
$$\right.
\]

for each $n \in \mathbf{N} \cup\{0\}$, where $\left\{\alpha_{n}\right\} \subset[0, a]$ for some $a \in[0,1)$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(T)}\left(x_{0}\right)$. Later, Nakajo and Takahashi [14], Kikkawa and Takahashi [11], Atsushiba and Takahashi [3], Iiduka, Takahashi and Toyoda [9] and Iiduka and Takahashi [10] studied strong convergence of $\left\{x_{n}\right\}$ generated by type (2). And recently, Nakajo, Shimoji and Takahashi [15] studied strong convergence by type (1) and (2).

Motivated by Bauschke and Combettes [4] and Nakajo, Shimoji and Takahashi [15], in this paper, we consider unification of types of (1) and (2) and prove a strong convergence theorem.

2. Preliminaries and Lemmas

We write $x_{n} \rightharpoonup x$ to indicate that a sequence $\left\{x_{n}\right\}$ converges weakly to x. Similarly, $x_{n} \rightarrow x$ will symbolize strong convergence. We know that H satisfies Opial's condition [16], that is, for any sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x$, the inequality $\lim \inf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|$ holds for every $y \in H$ with $y \neq x$. It is known that $\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}$ for each $x, y \in H$ and $\lambda \in \mathbf{R}$. We also know that the norm is lower semicontinuous, that is, for any sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x,\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$ holds. Further, it is known that for any sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x$ and
$\left\|x_{n}\right\| \rightarrow\|x\|, x_{n} \rightarrow x$ holds. Let C be a nonempty closed convex subset of H and let T be a mapping of C into itself. T is said to be firmly nonexpansive if $\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(I-T) x-(I-T) y\|^{2}$ for every $x, y \in C$, where I is the identity mapping. T is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for every $x, y \in C$. If T is firmly nonexpansive, T is nonexpansive. We know that P_{C} is firmly nonexpansive. It is known that $F(T)$ is closed and convex if T is a nonexpansive mapping of C into itself.
An operator $A: H \longrightarrow 2^{H}$ is said to be monotone if $\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \geq 0$ whenever $y_{1} \in A x_{1}$ and $y_{2} \in A x_{2}$. A monotone operator A is said to be maximal if the graph of A is not properly contained in the graph of any other monotone operator. It is known that a monotone operator A is maximal if and only if $R(I+\lambda A)=H$ for every $\lambda>0$, where $R(I+\lambda A)$ is the range of $I+\lambda A$. It is also known that a monotone operator A is maximal if and only if for $(u, v) \in H \times H,(x-u, y-v) \geq 0$ for every $(x, y) \in A$ implies $v \in A u$. For a maximal monotone operator A, we know that $A^{-1} 0=\{x \in H \mid 0 \in A x\}$ is closed and convex. If A is monotone, then we can define, for each $\lambda>0$, a mapping $J_{\lambda}: R(I+\lambda A) \longrightarrow D(A)$ by $J_{\lambda}=(I+\lambda A)^{-1}$, where $D(A)$ is the domain of $A . J_{\lambda}$ is called the resolvent of A. We also define the Yosida approximation A_{λ} by $A_{\lambda}=\left(I-J_{\lambda}\right) / \lambda$; see [24, 25] for more details. The following are the fundamental results for resolvents of monotone operators; see [17, 24, 25].

Lemma 2.1. Let $A: H \longrightarrow 2^{H}$ be a monotone operator and $\lambda>0$. Then, the following hold:
(i) $F\left(J_{\lambda}\right)=A^{-1} 0$;
(ii) $\left\|J_{\lambda} x-J_{\lambda} y\right\|^{2} \leq\|x-y\|^{2}-\left\|\left(I-J_{\lambda}\right) x-\left(I-J_{\lambda}\right) y\right\|^{2}$ for every $x, y \in$ $R(I+\lambda A)$.

Let $\alpha>0$ and let C be a nonempty closed convex subset of H. An operator $A: C \longrightarrow H$ is said to be α-inverse-strongly-monotone [5, 12, 14] if $(x-y, A x-$ $A y) \geq \alpha\|A x-A y\|^{2}$ for all $x, y \in C$. We have the following lemma for inverse-strongly-monotone operators; see [14].

Lemma 2.2. Let $\alpha>0$. Let $A: H \longrightarrow H$ be an α-inverse-strongly-monotone operator with $D(A)=H$ and let $B: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A+B)^{-1} 0 \neq \emptyset$. Then the following hold:
(i) A is maximal monotone;
(ii) $A+B$ is maximal monotone and $(A+B)^{-1} 0$ is closed and convex;
(iii) for every $\lambda \in[0,2 \alpha], I-\lambda A: H \longrightarrow H$ is nonexpansive;
(iv) for every $\lambda \in(0, \infty), T_{\lambda} \equiv J_{\lambda}^{B}(I-\lambda A)$ is well defined and $(A+B)^{-1} 0=F\left(T_{\lambda}\right)$, where $J_{\lambda}^{B}=(I+\lambda B)^{-1}$ and $F\left(T_{\lambda}\right)$ is the set of all fixed points of T_{λ};
(v) for every $\lambda \in(0,2 \alpha], T_{\lambda}$ is nonexpansive.

Let C be a nonempty closed convex subset of H and let A be a mapping of C into H. Then, an element x in C is a solution of the variational inequality of A if $(y-x, A x) \geq 0$ for all $y \in C$. It is known that for $\lambda>0, x \in C$ is a solution of the variational inequality of A if and only if $x=P_{C}(I-\lambda A) x$. We denote by $\operatorname{VI}(C, A)$ the set of all solutions of the variational inequality of A. We know that $V I(C, A)$ is a closed convex subset of C if A is monotone and continuous. We also have the following result for inverse-strongly -monotone operators.

Lemma 2.3. Let $\alpha>0$ and C be a nonempty closed convex subset of H. Let $A: C \longrightarrow H$ be an α-inverse-strongly-monotone operator with $\operatorname{VI}(C, A) \neq \emptyset$. Then, for every $\lambda>0, x \in C$ and $z \in V I(C, A),\left\|P_{C}(I-\lambda A) x-z\right\|^{2} \leq$ $\|x-z\|^{2}-\frac{2 \alpha-\lambda}{2 \alpha}\left\|x-P_{C}(I-\lambda A) x\right\|^{2}$.

Proof. Let $\lambda>0, x \in C$ and $z \in V I(C, A)$. We have

$$
\begin{aligned}
\| & P_{C}(I-\lambda A) x-z \|^{2} \\
\leq & \|(I-\lambda A) x-(I-\lambda A) z\|^{2}-\left\|\left(I-P_{C}\right)(I-\lambda A) x-\left(I-P_{C}\right)(I-\lambda A) z\right\|^{2} \\
= & \|(x-z)-\lambda(A x-A z)\|^{2}-\left\|\left(x-P_{C}(I-\lambda A) x\right)-\lambda(A x-A z)\right\|^{2} \\
\leq & \|x-z\|^{2}-2 \alpha \lambda\|A x-A z\|^{2}+2 \lambda\|A x-A z\| \\
& \cdot\left\|x-P_{C}(I-\lambda A) x\right\|-\left\|x-P_{C}(I-\lambda A) x\right\|^{2} \\
= & \|x-z\|^{2}-2 \alpha \lambda\left\{\|A x-A z\|-\frac{1}{2 \alpha}\left\|x-P_{C}(I-\lambda A) x\right\|\right\}^{2} \\
& -\frac{2 \alpha-\lambda}{2 \alpha}\left\|x-P_{C}(I-\lambda A) x\right\|^{2} \\
\leq & \|x-z\|^{2}-\frac{2 \alpha-\lambda}{2 \alpha}\left\|x-P_{C}(I-\lambda A) x\right\|^{2} .
\end{aligned}
$$

Let C be a nonempty closed convex subset of H. Let $\left\{S_{n}\right\}$ be a family of mappings of C into itself and let $\left\{\beta_{n, k}: n, k \in \mathbf{N}, 1 \leq k \leq n\right\}$ be a sequence of real numbers such that $0 \leq \beta_{i, j} \leq 1$ for every $i, j \in \mathbf{N}$ with $i \geq j$. Then, for any $n \in \mathbf{N}$, Takahashi [19, 23, 25] introduced a mapping W_{n} of C into itself as follows:

$$
\begin{aligned}
U_{n, n} & =\beta_{n, n} S_{n}+\left(1-\beta_{n, n}\right) I, \\
U_{n, n-1} & =\beta_{n, n-1} S_{n-1} U_{n, n}+\left(1-\beta_{n, n-1}\right) I, \\
\vdots & \\
U_{n, k} & =\beta_{n, k} S_{k} U_{n, k+1}+\left(1-\beta_{n, k}\right) I, \\
\vdots & \\
U_{n, 2} & =\beta_{n, 2} S_{2} U_{n, 3}+\left(1-\beta_{n, 2}\right) I, \\
W_{n}=U_{n, 1} & =\beta_{n, 1} S_{1} U_{n, 2}+\left(1-\beta_{n, 1}\right) I .
\end{aligned}
$$

Such a mapping W_{n} is called the W-mapping generated by $S_{n}, S_{n-1}, \cdots, S_{1}$ and $\beta_{n, n}, \beta_{n, n-1}, \cdots, \beta_{n, 1}$. The following lemma was proved by Takahashi and Shimoji [26] (see also [25]).

Lemma 2.4. Let C be a nonempty closed convex subset of H. Let S_{1}, S_{2}, \cdots, S_{n} be nonexpansive mappings of C into itself with $\cap_{i=1}^{n} F\left(S_{i}\right) \neq \emptyset$ and let $\beta_{n, 1}, \beta_{n, 2}, \cdots \beta_{n, n}$ be real numbers with $0<\beta_{n, i}<1$ for every $i=2, \cdots, n$ and $0<\beta_{n, 1} \leq 1$. Let W_{n} be the W-mapping generated by $S_{n}, S_{n-1}, \cdots, S_{1}$ and $\beta_{n, n}, \beta_{n, n-1}, \cdots, \beta_{n, 1}$. Then, $F\left(W_{n}\right)=\cap_{i=1}^{n} F\left(S_{i}\right)$.

We have that if $\beta_{n, k}=\beta_{k}(\forall n=k, k+1, \cdots)$ for every $k \in \mathbf{N}$ such that $0<\beta_{k} \leq b<1(\forall k \in \mathbf{N})$ for some $b \in(0,1)$ and $\left\{S_{n}\right\}$ is a family of nonexpansive mappings of C into itself with $\cap_{n=1}^{\infty} F\left(S_{n}\right) \neq \emptyset, \lim _{n \rightarrow \infty} U_{n, k} x$ exists for every $x \in C$ and $k \in \mathbf{N}$; see [19]. By this, we define a mapping W of C into itself as follows:

$$
W x=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x
$$

for every $x \in C$. Such a W is called the W-mapping generated by S_{1}, S_{2}, \cdots and $\beta_{1}, \beta_{2}, \cdots$. We have that $F(W)=\cap_{i=1}^{\infty} F\left(S_{i}\right)$; see [19].

Let C be a nonempty closed convex subset of H. A family $\mathcal{S}=\{T(s) \mid 0 \leq s<$ $\infty\}$ of mappings of C into itself is called a one-parameter nonexpansive semigroup on C if it satisfies the following conditions:
(i) $T(0) x=x$ for all $x \in C$;
(ii) $T(s+t)=T(s) T(t)$ for every $s, t \geq 0$;
(iii) $\|T(s) x-T(s) y\| \leq\|x-y\|$ for each $s \geq 0$ and $x, y \in C$;
(iv) for all $x \in C, s \longmapsto T(s) x$ is continuous.

We denote by $F(\mathcal{S})$ the set of all common fixed points of \mathcal{S}, that is, $F(\mathcal{S})=$ $\cap_{0 \leq s<\infty} F(T(s))$. It is known that $F(\mathcal{S})$ is closed and convex. The following lemma was proved by Shimizu and Takahashi [18]; see also [2, 6, 20].

Lemma 2.5. Let C be a nonempty bounded closed convex subset of H and let $\mathcal{S}=\{T(s) \mid 0 \leq s<\infty\}$ be a one-parameter nonexpansive semigroup on C. Then, for any $h \geq 0$,

$$
\lim _{t \rightarrow \infty} \sup _{x \in C}\left\|\frac{1}{t} \int_{0}^{t} T(s) x d s-T(h)\left(\frac{1}{t} \int_{0}^{t} T(s) x d s\right)\right\|=0 .
$$

Let S be a semigroup and let $B(S)$ be the Banach space of all bounded real valued functions on S with supremum norm. Then, for every $s \in S$ and $f \in B(S)$,
we can define $r_{s} f \in B(S)$ and $l_{s} f \in B(S)$ by $\left(r_{s} f\right)(t)=f(t s)$ and $\left(l_{s} f\right)(t)=$ $f(s t)$ for each $t \in S$, respectively. We also denote by r_{s}^{*} and l_{s}^{*} the conjugate operators of r_{s} and l_{s}, respectively. Let D be a subspace of $B(S)$ containing constants and let μ be an element of D^{*}. A linear functional μ is called a mean on D if $\|\mu\|=\mu(1)=1$. Let C be a nonempty closed convex subset of H. A family $\mathcal{S}=\{T(s) \mid s \in S\}$ of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:
(i) $T(s t)=T(s) T(t)$ for all $s, t \in S$;
(ii) $\|T(s) x-T(s) y\| \leq\|x-y\|$ for every $s \in S$ and $x, y \in C$.

It is known that $F(\mathcal{S})$ is closed and convex. Takahashi [22] proved the following; see also [8].

Lemma 2.6. Let S be a semigroup. Let C be a nonempty closed convex subset of H and let $\mathcal{S}=\{T(s) \mid s \in S\}$ be a nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$. Let D be a subspace of $B(S)$ such that D contains constants and $(T(\cdot) x, y) \in D$ for every $x \in C$ and $y \in H$. Then, for any mean μ on D and $x \in C$, there exists a unique element $T_{\mu} x$ in C such that $\left(T_{\mu} x, z\right)=\mu_{s}(T(s) x, z)$ for all $z \in H$. And T_{μ} is a nonexpansive mapping of C into itself.

Further, Atsushiba and Takahashi [1] proved the following.
Lemma 2.7. Let C be a nonempty bounded closed convex subset of H and let S be a semigroup. Let $\mathcal{S}=\{T(s) \mid s \in S\}$ be a nonexpansive semigroup on C and let D be a subspace of $B(S)$ containing constants and invariant under l_{s} for all $s \in S$. Suppose that for every $x \in C$ and $z \in H$, the function $t \mapsto(T(t) x, z)$ is in D. Let $\left\{\mu_{n}\right\}$ be a sequence of means on D such that $\lim _{n \rightarrow \infty}\left\|\mu_{n}-l_{s}^{*} \mu_{n}\right\|=0$ for each $s \in S$. Then, $\lim _{n \rightarrow \infty} \sup _{x \in C}\left\|T_{\mu_{n}} x-T(t) T_{\mu_{n}} x\right\|=0$ for all $t \in S$.

3. Strong Convergence Theorems

Let C be a nonempty closed convex subset of H and let $\left\{T_{n}\right\}$ be a family of mappings of C into itself with $\cap_{n=0}^{\infty} F\left(T_{n}\right) \neq \emptyset$ which satisfies the following condition: There exists $\left\{a_{n}\right\} \subset(-1, \infty)$ such that

$$
\begin{equation*}
\left\|T_{n} x-z\right\|^{2} \leq\|x-z\|^{2}-a_{n}\left\|\left(I-T_{n}\right) x\right\|^{2} \tag{3}
\end{equation*}
$$

for every $n \in \mathbf{N} \cup\{0\}, x \in C$ and $z \in F\left(T_{n}\right)$. Then, we know that $\cap_{n=0}^{\infty} F\left(T_{n}\right)$ is closed (see [15]). We also have that $\cap_{n=0}^{\infty} F\left(T_{n}\right)$ is convex. In fact, let $n \in \mathbf{N} \cup\{0\}$ and let $z_{1}, z_{2} \in F\left(T_{n}\right), 0 \leq \alpha \leq 1$ and $x=\alpha z_{1}+(1-\alpha) z_{2}$. Suppose that $x \neq T_{n} x$. For some $\beta \in(0,1)$ with $a_{n}>-\beta$, we get

$$
\begin{aligned}
\left\|\beta x+(1-\beta) T_{n} x-z_{1}\right\|^{2}= & \beta\left\|x-z_{1}\right\|^{2}+(1-\beta)\left\|T_{n} x-z_{1}\right\|^{2}-\beta(1-\beta)\left\|x-T_{n} x\right\|^{2} \\
\leq & \beta\left\|x-z_{1}\right\|^{2}+(1-\beta)\left\{\left\|x-z_{1}\right\|^{2}-a_{n}\left\|x-T_{n} x\right\|^{2}\right\} \\
& -\beta(1-\beta)\left\|x-T_{n} x\right\|^{2} \\
= & \left\|x-z_{1}\right\|^{2}-(1-\beta)\left(a_{n}+\beta\right)\left\|x-T_{n} x\right\|^{2}<\left\|x-z_{1}\right\|^{2} .
\end{aligned}
$$

Similarly, $\left\|\beta x+(1-\beta) T_{n} x-z_{2}\right\|<\left\|x-z_{2}\right\|$ holds. So, we obtain

$$
\begin{aligned}
\left\|z_{1}-z_{2}\right\| & \leq\left\|z_{1}-\left\{\beta x+(1-\beta) T_{n} x\right\}\right\|+\left\|\left\{\beta x+(1-\beta) T_{n} x\right\}-z_{2}\right\| \\
& <\left\|x-z_{1}\right\|+\left\|x-z_{2}\right\|=(1-\alpha)\left\|z_{1}-z_{2}\right\|+\alpha\left\|z_{1}-z_{2}\right\|=\left\|z_{1}-z_{2}\right\| .
\end{aligned}
$$

This is a contradiction. Therefore, $F\left(T_{n}\right)$ is convex. Let us define a sequence $\left\{x_{n}\right\}$ as follows:
(4)

$$
\text { 4) }\left\{\begin{array}{l}
x_{0}=x \in C, \\
y_{n}=T_{n} P_{C}\left(x_{n}+\varepsilon_{n}\right), \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\|^{2} \leq\left\|x_{n}+\varepsilon_{n}-z\right\|^{2}-a_{n}\left\|P_{C}\left(x_{n}+\varepsilon_{n}\right)-y_{n}\right\|^{2}\right\}, \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for each $n \in \mathbf{N} \cup\{0\}$, where $\left\{\varepsilon_{n}\right\} \subset H$ and $\liminf _{n \rightarrow \infty} a_{n}>-1$. Now, we get the following.

Theorem 3.1. The followings hold:

(i) A sequence $\left\{x_{n}\right\}$ generated by (4) is well defined and $\left\{x_{n}\right\} \subset C$;
(ii) assume that $\sum_{n=0}^{\infty}\left\|\varepsilon_{n}\right\|^{2}<\infty$ and for every bounded sequence $\left\{z_{n}\right\}$ in C, there holds that $\sum_{n=0}^{\infty}\left\|z_{n+1}-z_{n}\right\|^{2}<\infty$ and $\sum_{n=0}^{\infty}\left\|z_{n}-T_{n} z_{n}\right\|^{2}<\infty$ imply $\omega_{w}\left(z_{n}\right) \subset \cap_{n=0}^{\infty} F\left(T_{n}\right)$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F}\left(x_{0}\right)$, where $F=\cap_{n=0}^{\infty} F\left(T_{n}\right)$;
(iii) assume that $\lim _{n \rightarrow \infty}\left\|\varepsilon_{n}\right\|=0$ and for every bounded sequence $\left\{z_{n}\right\}$ in C, there holds that $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$ implies $\omega_{w}\left(z_{n}\right) \subset \cap_{n=0}^{\infty} F\left(T_{n}\right)$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F}\left(x_{0}\right)$.

Proof. As in the proof of [15, Theorem 4.2], we get that $\left\{x_{n}\right\}$ is well defined, $\left\{x_{n}\right\} \subset C$ and $F \subset C_{n} \cap Q_{n}$ for each $n \in \mathbf{N} \cup\{0\}$. So, the proof of (i) is complete. We have, for $z_{0}=P_{F}\left(x_{0}\right)$,

$$
\begin{equation*}
\left\|x_{n+1}-x_{0}\right\| \leq\left\|z_{0}-x_{0}\right\| \tag{5}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|^{2} & =\left\|\left(x_{n+1}-x_{0}\right)+\left(x_{0}-x_{n}\right)\right\|^{2} \\
& =\left\|x_{n+1}-x_{0}\right\|^{2}+2\left(x_{n+1}-x_{0}, x_{0}-x_{n}\right)+\left\|x_{0}-x_{n}\right\|^{2} \\
& =\left\|x_{n+1}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2}+2\left(x_{n+1}-x_{n}, x_{0}-x_{n}\right) \\
& \leq\left\|x_{n+1}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2}
\end{aligned}
$$

for every $n \in \mathbf{N} \cup\{0\}$ by $\left(x_{0}-x_{n}, x_{n+1}-x_{n}\right) \leq 0$. So, we obtain that $\left\{x_{n}\right\}$ is bounded and the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\| \tag{6}
\end{equation*}
$$

exists. We get

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\|x_{n+1}-x_{n}\right\|^{2}<\infty \tag{7}
\end{equation*}
$$

From $\lim \inf _{n \rightarrow \infty} a_{n}>-1$, there exists $a \in(0,1)$ such that $a_{n} \geq-a$ for all $n \in \mathbf{N} \cup\{0\}$. Let $\beta \in\left(0, \frac{1-a}{a}\right)$ and $\alpha=\frac{1-a(1+\beta)}{a}(>0)$. We have

$$
\begin{aligned}
& \left\|P_{C}\left(x_{n}+\varepsilon_{n}\right)-y_{n}\right\|^{2} \\
& \quad \leq\left\|x_{n}+\varepsilon_{n}-y_{n}\right\|^{2} \leq\left(\left\|x_{n}+\varepsilon_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|\right)^{2} \\
& \quad \leq\left(1+\frac{1}{\alpha}\right)\left\|x_{n}+\varepsilon_{n}-x_{n+1}\right\|^{2}+(1+\alpha)\left\|x_{n+1}-y_{n}\right\|^{2} \\
& \quad \leq\left(1+\frac{1}{\alpha}\right)\left\|x_{n}+\varepsilon_{n}-x_{n+1}\right\|^{2}+(1+\alpha)\left\|x_{n}+\varepsilon_{n}-x_{n+1}\right\|^{2} \\
& \quad-(1+\alpha) a_{n}\left\|P_{C}\left(x_{n}+\varepsilon_{n}\right)-y_{n}\right\|^{2}
\end{aligned}
$$

which implies

$$
\begin{aligned}
a \beta\left\|P_{C}\left(x_{n}+\varepsilon_{n}\right)-y_{n}\right\|^{2} & =\{1-(1+\alpha) a\}\left\|P_{C}\left(x_{n}+\varepsilon_{n}\right)-y_{n}\right\|^{2} \\
& \leq\left\{1+(1+\alpha) a_{n}\right\}\left\|P_{C}\left(x_{n}+\varepsilon_{n}\right)-y_{n}\right\|^{2} \\
& \leq\left(2+\alpha+\frac{1}{\alpha}\right)\left\|x_{n}+\varepsilon_{n}-x_{n+1}\right\|^{2}
\end{aligned}
$$

for each $n \in \mathbf{N} \cup\{0\}$. So, we get
(8) $\quad\left\|P_{C}\left(x_{n}+\varepsilon_{n}\right)-y_{n}\right\|^{2} \leq \frac{2\left(2+\alpha+\frac{1}{\alpha}\right)}{a \beta}\left(\left\|x_{n}-x_{n+1}\right\|^{2}+\left\|\varepsilon_{n}\right\|^{2}\right)$
for every $n \in \mathbf{N} \cup\{0\}$.
(ii) Assume that $\sum_{n=0}^{\infty}\left\|\varepsilon_{n}\right\|^{2}<\infty$. If $z_{n}=P_{C}\left(x_{n}+\varepsilon_{n}\right)$, we have that $\left\{z_{n}\right\}$ is bounded and

$$
\sum_{n=0}^{\infty}\left\|z_{n}-T_{n} z_{n}\right\|^{2}=\sum_{n=0}^{\infty}\left\|P_{C}\left(x_{n}+\varepsilon_{n}\right)-y_{n}\right\|^{2}<\infty
$$

from (7) and (8). Further we obtain

$$
\left\|z_{n}-z_{n+1}\right\|^{2} \leq\left\|\left(x_{n}+\varepsilon_{n}\right)-\left(x_{n+1}+\varepsilon_{n+1}\right)\right\|^{2} \leq 3\left\|x_{n}-x_{n+1}\right\|^{2}+3\left\|\varepsilon_{n}\right\|^{2}+3\left\|\varepsilon_{n+1}\right\|^{2}
$$

for all $n \in \mathbf{N} \cup\{0\}$ which implies $\sum_{n=0}^{\infty}\left\|z_{n}-z_{n+1}\right\|^{2}<\infty$. Therefore, we have $\omega_{w}\left(z_{n}\right) \subset F$. As $\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0$ from $\left\|x_{n}-z_{n}\right\| \leq\left\|\varepsilon_{n}\right\|$ for every $n \in \mathbf{N} \cup\{0\}$, we get $\omega_{w}\left(x_{n}\right) \subset F$. So, assume that a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ converges weakly to $w_{1} \in F$. We have

$$
\left\|x_{0}-z_{0}\right\| \leq\left\|x_{0}-w_{1}\right\| \leq \lim _{i \rightarrow \infty}\left\|x_{0}-x_{n_{i}}\right\| \leq\left\|x_{0}-z_{0}\right\|
$$

by the lower semicontinuity of the norm, (5) and (6). Thus, we obtain $\lim _{i \rightarrow \infty} \| x_{n_{i}}-$ $x_{0}\|=\| x_{0}-w_{1}\|=\| x_{0}-z_{0} \|$. This implies

$$
x_{n_{i}} \rightarrow w_{1}=z_{0} .
$$

Therefore, we have $x_{n} \rightarrow z_{0}$. So, the proof of (ii) is complete.
(iii) Assume $\lim _{n \rightarrow \infty}\left\|\varepsilon_{n}\right\|=0$. If $z_{n}=P_{C}\left(x_{n}+\varepsilon_{n}\right)$, we get that $\left\{z_{n}\right\}$ is bounded, $\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$ by (7) and (8). Therefore, we obtain $\omega_{w}\left(x_{n}\right) \subset F$. As in the proof of (ii), we have $x_{n} \rightarrow z_{0}$. So, the proof of (iii) is complete.

The following is the result proved by Bauschke and Combettes [4].
Theorem 3.2. Let $\left\{T_{n}\right\}$ be a family of mappings of H into itself with $\cap_{n=0}^{\infty} F\left(T_{n}\right) \neq \emptyset$ which satisfies the following conditions: (I) $\left(x-T_{n} x, T_{n} x-z\right) \geq$ 0 for every $n \in \boldsymbol{N} \cup\{0\}, x \in H$ and $z \in F\left(T_{n}\right)$; (II) (coherent)for every bounded sequence $\left\{z_{n}\right\}$ in H, there holds that $\sum_{n=0}^{\infty}\left\|z_{n+1}-z_{n}\right\|^{2}<\infty$ and $\sum_{n=0}^{\infty}\left\|z_{n}-T_{n} z_{n}\right\|^{2}<\infty$ imply $\omega_{w}\left(z_{n}\right) \subset \cap_{n=0}^{\infty} F\left(T_{n}\right)$. Then, $\left\{x_{n}\right\}$ generated by (1) converges strongly to $z_{0}=P_{F}\left(x_{0}\right)$, where $F=\cap_{n=0}^{\infty} F\left(T_{n}\right)$.

Proof. If $C=H, a_{n}=1$ and $\varepsilon_{n}=0$ for every $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have

$$
\left\|T_{n} x-z\right\|^{2} \leq\|x-z\|^{2}-\left\|x-T_{n} x\right\|^{2} \Longleftrightarrow\left(x-T_{n} x, T_{n} x-z\right) \geq 0
$$

for each $n \in \mathbf{N} \cup\{0\}, x \in H$ and $z \in F\left(T_{n}\right)$ and $C_{n}=\left\{z \in H \mid\left(x_{n}-y_{n}, y_{n}-z\right) \geq\right.$ $0\}$ for all $n \in \mathbf{N} \cup\{0\}$. Further, $\sum_{n=0}^{\infty}\left\|\varepsilon_{n}\right\|^{2}<\infty$. Therefore, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F}\left(x_{0}\right)$ from (ii) in Theorem 3.1.

The following is a generalization of the result proved by Solodov and Svaiter [21].

Theorem 3.3. Let $A: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $A^{-1} 0 \neq \emptyset$ and let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in H, \\
y_{n}=J_{\lambda_{n}}\left(x_{n}+\varepsilon_{n}\right), \\
C_{n}=\left\{z \in H \mid\left(x_{n}-y_{n}+\varepsilon_{n}, y_{n}-z\right) \geq 0\right\}, \\
Q_{n}=\left\{z \in H \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for every $n \in \boldsymbol{N} \cup\{0\}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $J_{\lambda_{n}}=\left(I+\lambda_{n} A\right)^{-1}$ for each
 and $\sum_{n=0}^{\infty}\left\|\varepsilon_{n}\right\|^{2}<\infty$, then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{A^{-1} 0}\left(x_{0}\right)$.

Proof. If $C=H$ and $T_{n}=J_{\lambda_{n}}$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have $F\left(T_{n}\right)=A^{-1} 0$ and $a_{n}=1$ for every $n \in \mathbf{N} \cup\{0\}$ by (i) and (ii) in Lemma 2.1. So we get $C_{n}=\left\{z \in H \mid\left(x_{n}-y_{n}+\varepsilon_{n}, y_{n}-z\right) \geq 0\right\}$ for each $n \in \mathbf{N} \cup\{0\}$.
(i) Assume that $\liminf _{n \rightarrow \infty} \lambda_{n}>0$ and $\lim _{n \rightarrow \infty}\left\|\varepsilon_{n}\right\|=0$. There exists $\lambda>0$ with $\lambda_{n} \geq \lambda$ for each $n \in \mathbf{N} \cup\{0\}$. Let $\left\{z_{n}\right\}$ be a bounded sequence in H which satisfies $\lim _{n \rightarrow \infty}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|=0$. And suppose that $z_{n} \rightharpoonup w$. For all $(u, v) \in A$, we obtain

$$
\left(J_{\lambda_{n}} z_{n}-u, \frac{z_{n}-J_{\lambda_{n}} z_{n}}{\lambda_{n}}-v\right) \geq 0
$$

which implies

$$
\begin{align*}
\left(J_{\lambda_{n}} z_{n}-u,-v\right) & \geq \frac{1}{\lambda_{n}}\left(J_{\lambda_{n}} z_{n}-u, J_{\lambda_{n}} z_{n}-z_{n}\right) \\
& \geq-\frac{1}{\lambda_{n}}\left\|J_{\lambda_{n}} z_{n}-u\right\| \cdot\left\|J_{\lambda_{n}} z_{n}-z_{n}\right\| \tag{9}
\end{align*}
$$

for every $n \in \mathbf{N} \cup\{0\}$. As a sequence $\left\{\frac{1}{\lambda_{n}}\left\|J_{\lambda_{n}} z_{n}-u\right\|\right\}$ is bounded, we have $(w-u,-v) \geq 0$ for each $(u, v) \in A$. Therefore, $w \in A^{-1} 0$ from maximality of A. By (iii) in Theorem 3.1, $\left\{x_{n}\right\}$ converges strongly to z_{0}.
(ii) Assume that $\sum_{n=0}^{\infty} \lambda_{n}^{2}=\infty$ and $\sum_{n=0}^{\infty}\left\|\varepsilon_{n}\right\|^{2}<\infty$. Let $\left\{z_{n}\right\}$ be a bounded sequence in H which satisfies $\sum_{n=0}^{\infty}\left\|z_{n+1}-z_{n}\right\|^{2}<\infty$ and $\sum_{n=0}^{\infty}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|^{2}<$ ∞. And suppose that $z_{n} \rightharpoonup w$. We get $\lim _{n \rightarrow \infty}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|=\liminf _{n \rightarrow \infty} \frac{1}{\lambda_{n}} \| z_{n}-$ $J_{\lambda_{n}} z_{n} \|=0$ by $\sum_{n=0}^{\infty} \lambda_{n}^{2}\left(\frac{1}{\lambda_{n}}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|\right)^{2}<\infty$. From (9), we obtain

$$
(w-u,-v) \geq-\liminf _{n \rightarrow \infty} \frac{1}{\lambda_{n}}\left\|J_{\lambda_{n}} z_{n}-z_{n}\right\| \cdot\left\|J_{\lambda_{n}} z_{n}-u\right\|=0
$$

for all $(u, v) \in A$. So, we have $w \in A^{-1} 0$. By (ii) in Theorem 3.1, $\left\{x_{n}\right\}$ converges strongly to z_{0}.

The following is a genaralization of the result proved by Nakajo and Takahashi [13].

Theorem 3.4. Let $A: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $A^{-1} 0 \neq \emptyset$ and let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in H \\
y_{n}=J_{\lambda_{n}}\left(x_{n}+\varepsilon_{n}\right) \\
C_{n}=\left\{z \in H \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}+\varepsilon_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in H \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for every $n \in N \cup\{0\}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $J_{\lambda_{n}}=\left(I+\lambda_{n} A\right)^{-1}$ for each $n \in N \cup\{0\}$. If (i) $\liminf _{n \rightarrow \infty} \lambda_{n}>0$ and $\lim _{n \rightarrow \infty}\left\|\varepsilon_{n}\right\|=0$ or (ii) $\sum_{n=0}^{\infty} \lambda_{n}^{2}=\infty$ and $\sum_{n=0}^{\infty}\left\|\varepsilon_{n}\right\|^{2}<\infty$, then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{A^{-1} 0}\left(x_{0}\right)$.

Proof. If $C=H$ and $T_{n}=J_{\lambda_{n}}$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we can select $a_{n}=0$ for every $n \in \mathbf{N} \cup\{0\}$. As in the proof of Theorem 3.3, $\left\{x_{n}\right\}$ converges strongly to z_{0}.

The following is the result proved by Nakajo and Takahashi [13].
Theorem 3.5. Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in C \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n} \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for each $n \in N \cup\{0\}$, where $\left\{\alpha_{n}\right\} \subset[0, a]$ for some $a \in[0,1)$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(T)}\left(x_{0}\right)$.

Proof. If $T_{n}=\alpha_{n} I+\left(1-\alpha_{n}\right) T$ and $\varepsilon_{n}=0$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have that $F\left(T_{n}\right)=F(T)$ and $a_{n}=0$ for every $n \in \mathbf{N} \cup\{0\}$. Let $\left\{z_{n}\right\}$ be a bounded sequence in C which satisfies $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$. We obtain
$\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=0$. So, by Opial's condition, we get $\omega_{w}\left(z_{n}\right) \subset F(T)$. Therefore, $\left\{x_{n}\right\}$ converges strongly to z_{0} from (ii) or (iii) in Theorem 3.1.

The following is a generalization of the result proved by Nakajo and Takahashi [14].

Theorem 3.6. Let $\alpha>0$. Let $A: H \longrightarrow H$ be an α-inverse-stronglymonotone operator with $D(A)=H$ and let $B: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A+B)^{-1} 0 \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in H \\
y_{n}=J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) x_{n} \\
C_{n}=\left\{z \in H \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\| \|\right\} \\
Q_{n}=\left\{z \in H \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for every $n \in \boldsymbol{N} \cup\{0\}$, where $\left\{\lambda_{n}\right\} \subset(0,2 \alpha]$ with $\sum_{n=0}^{\infty} \lambda_{n}^{2}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{(A+B)^{-1} 0}\left(x_{0}\right)$.

Proof. If $C=H, T_{n}=J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right)$ and $\varepsilon_{n}=0$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have $F\left(T_{n}\right)=(A+B)^{-1} 0$ and $a_{n}=0$ for every $n \in \mathbf{N} \cup\{0\}$ by (iv) and (v) in Lemma 2.2. Let $\left\{z_{n}\right\}$ be a bounded sequence in H which satisfies $\sum_{n=0}^{\infty}\left\|z_{n+1}-z_{n}\right\|^{2}<\infty$ and $\sum_{n=0}^{\infty}\left\|z_{n}-J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) z_{n}\right\|^{2}<\infty$. We obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) z_{n}\right\|=0$ and $\lim \inf _{n \rightarrow \infty} \frac{1}{\lambda_{n}}\left\|z_{n}-J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) z_{n}\right\|=0$ from $\sum_{n=0}^{\infty} \lambda_{n}^{2}\left\{\frac{1}{\lambda_{n}}\left\|z_{n}-J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) z_{n}\right\|\right\}^{2}<\infty$. Assume that $z_{n} \rightharpoonup w$. As in the proof of [14, Theorem 3.1], we get

$$
\left(u_{n}-u, \frac{z_{n}-u_{n}}{\lambda_{n}}-A z_{n}-(v-A u)\right) \geq 0
$$

for every $(u, v) \in A+B$ and $n \in \mathbf{N} \cup\{0\}$, where $u_{n}=J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) z_{n}$ for all $n \in \mathbf{N} \cup\{0\}$. So, we have

$$
\begin{aligned}
\left(u_{n}-u,-v\right) & \geq\left(u_{n}-u, \frac{u_{n}-z_{n}}{\lambda_{n}}+\left(A z_{n}-A u\right)\right) \\
& =\frac{1}{\lambda_{n}}\left(u_{n}-u,\left(I-\lambda_{n} A\right) u_{n}-\left(I-\lambda_{n} A\right) z_{n}\right)+\left(u_{n}-u, A u_{n}-A u\right) \\
& \geq-\frac{1}{\lambda_{n}}\left\|u_{n}-u\right\| \cdot\left\|\left(I-\lambda_{n} A\right) u_{n}-\left(I-\lambda_{n} A\right) z_{n}\right\| \\
& \geq-\frac{1}{\lambda_{n}}\left\|u_{n}-u\right\| \cdot\left\|u_{n}-z_{n}\right\|
\end{aligned}
$$

by (iii) in Lemma 2.2 which implies

$$
(w-u,-v) \geq-\liminf _{n \rightarrow \infty} \frac{1}{\lambda_{n}}\left\|u_{n}-u\right\| \cdot\left\|u_{n}-z_{n}\right\|=0
$$

for every $(u, v) \in A+B$ since a sequence $\left\{u_{n}-u\right\}$ is bounded. Therefore, $w \in(A+B)^{-1} 0$ as $A+B$ is maximal monotone from (ii) in Lemma 2.2. Therefore, $\left\{x_{n}\right\}$ converges strongly to z_{0} by (ii) in Theorem 3.1.

The following is a generalization of the result proved by Iiduka, Takahashi and Toyoda [9].

Theorem 3.7. Let $\alpha>0$ and let C be a nonempty closed convex subset of H. Let $A: C \longrightarrow H$ be an α-inverse-strongly-monotone operator such that $V I(C, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in C, \\
y_{n}=P_{C}\left(I-\lambda_{n} A\right) x_{n} \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\| \|,\right. \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for every $n \in \boldsymbol{N} \cup\{0\}$, where $\left\{\lambda_{n}\right\} \subset(0,2 \alpha]$ with $\sum_{n=0}^{\infty} \lambda_{n}^{2}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{V I(C, A)}\left(x_{0}\right)$.

Proof. If $T_{n}=P_{C}\left(I-\lambda_{n} A\right)$ and $\varepsilon_{n}=0$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have $F\left(T_{n}\right)=V I(C, A)$ for every $n \in \mathbf{N} \cup\{0\}$. Further, we get $a_{n}=0$ for each $n \in \mathbf{N} \cup\{0\}$ from Lemma 2.3. Let $\left\{z_{n}\right\}$ be a bounded sequence in C which satisfies $\sum_{n=0}^{\infty}\left\|z_{n+1}-z_{n}\right\|^{2}<\infty$ and $\sum_{n=0}^{\infty}\left\|z_{n}-v_{n}\right\|^{2}<\infty$, where $v_{n}=P_{C}\left(I-\lambda_{n} A\right) z_{n}$ for all $n \in \mathbf{N} \cup\{0\}$. We get $\lim _{n \rightarrow \infty}\left\|z_{n}-v_{n}\right\|=0$ and $\liminf _{n \rightarrow \infty} \frac{1}{\lambda_{n}}\left\|z_{n}-v_{n}\right\|=0$ from $\sum_{n=0}^{\infty} \lambda_{n}^{2}\left\{\frac{1}{\lambda_{n}}\left\|z_{n}-v_{n}\right\|\right\}^{2}<\infty$. Assume that $z_{n} \rightharpoonup w$. For every $u \in C$, we have

$$
\left(z_{n}-\lambda_{n} A z_{n}-v_{n}, v_{n}-u\right) \geq 0
$$

which implies

$$
\begin{aligned}
\left(A u, u-v_{n}\right) & \geq\left(A v_{n}-A u, v_{n}-u\right)+\frac{1}{\lambda_{n}}\left(\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}, v_{n}-u\right) \\
& \geq-\frac{1}{\lambda_{n}}\left\|v_{n}-u\right\| \cdot\left\|\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}\right\|
\end{aligned}
$$

for all $n \in \mathbf{N} \cup\{0\}$ since A is monotone. And we obtain

$$
\left\|\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}\right\|^{2} \leq\left\|v_{n}-z_{n}\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A v_{n}-A z_{n}\right\|^{2} \leq\left\|v_{n}-z_{n}\right\|^{2}
$$

and hence

$$
\left(A u, u-v_{n}\right) \geq-\frac{1}{\lambda_{n}}\left\|v_{n}-u\right\| \cdot\left\|v_{n}-z_{n}\right\|
$$

for every $u \in C$ and $n \in \mathbf{N} \cup\{0\}$. So, we get $(A u, u-w) \geq 0$ for each $u \in C$ as a sequence $\left\{v_{n}-u\right\}$ is bounded. Since A is continuous, we obtain $(u-w, A w) \geq 0$ for all $u \in C$, that is, $w \in \operatorname{VI}(C, A)$. Therefore, $\left\{x_{n}\right\}$ converges strongly to z_{0} by (ii) in Theorem 3.1.

The following are the results by Iiduka and Takahashi [10].

Theorem 3.8. Let $\alpha>0$ and let C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C into itself and let $A: C \longrightarrow H$ be an α-inverse-strongly-monotone operator such that $F(T) \cap V I(C, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in C \\
y_{n}=P_{C}\left(I-\lambda_{n} A\right) T x_{n} \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for every $n \in \boldsymbol{N} \cup\{0\}$, where $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,2 \alpha)$ with $a \leq b$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(T) \cap V I(C, A)}\left(x_{0}\right)$.

Proof. If $T_{n}=P_{C}\left(I-\lambda_{n} A\right) T$ and $\varepsilon_{n}=0$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have $F\left(T_{n}\right)=F(T) \cap V I(C, A)$ for every $n \in \mathbf{N} \cup\{0\}$. In fact, $F(T) \cap$ $V I(C, A) \subset F\left(T_{n}\right)$ is trivial. Let $z \in F\left(T_{n}\right)$ and $u \in F(T) \cap V I(C, A)$. We get

$$
\begin{aligned}
\|z-u\|^{2} & =\left\|P_{C}\left(I-\lambda_{n} A\right) T z-u\right\|^{2} \leq\|T z-u\|^{2}-\frac{2 \alpha-\lambda_{n}}{2 \alpha}\left\|T z-P_{C}\left(I-\lambda_{n} A\right) T z\right\|^{2} \\
& \leq\|z-u\|^{2}-\frac{2 \alpha-b}{2 \alpha}\left\|T z-P_{C}\left(I-\lambda_{n} A\right) T z\right\|^{2}
\end{aligned}
$$

from Lemma 2.3. So we obtain $T z=P_{C}\left(I-\lambda_{n} A\right) T z$ which implies $T z=z$. And we have $P_{C}\left(I-\lambda_{n} A\right) z=P_{C}\left(I-\lambda_{n} A\right) T z=z$. Therefore, $F\left(T_{n}\right) \subset$ $F(T) \cap V I(C, A)$. And we get $a_{n}=0$ for each $n \in \mathbf{N} \cup\{0\}$ by nonexpansivity of T and Lemma 2.3. Let $\left\{z_{n}\right\}$ be a bounded sequence in C which satisfies
$\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$ and let $u \in F(T) \cap V I(C, A)$. We obtain

$$
\begin{aligned}
\left\|z_{n}-u\right\|^{2} \leq & \left(\left\|z_{n}-T_{n} z_{n}\right\|+\left\|T_{n} z_{n}-u\right\|\right)^{2} \\
= & \left\|z_{n}-T_{n} z_{n}\right\|^{2}+2\left\|z_{n}-T_{n} z_{n}\right\| \\
& \cdot\left\|P_{C}\left(I-\lambda_{n} A\right) T z_{n}-u\right\|+\left\|P_{C}\left(I-\lambda_{n} A\right) T z_{n}-u\right\|^{2} \\
\leq & \left\|z_{n}-T_{n} z_{n}\right\|^{2}+2\left\|z_{n}-T_{n} z_{n}\right\| \cdot\left\|T z_{n}-u\right\| \\
& +\left\{\left\|T z_{n}-u\right\|^{2}-\frac{2 \alpha-\lambda_{n}}{2 \alpha}\left\|T z_{n}-P_{C}\left(I-\lambda_{n} A\right) T z_{n}\right\|^{2}\right\} \\
\leq & \left\|z_{n}-T_{n} z_{n}\right\|^{2}+2\left\|z_{n}-T_{n} z_{n}\right\| \cdot\left\|z_{n}-u\right\| \\
& +\left\|z_{n}-u\right\|^{2}-\frac{2 \alpha-b}{2 \alpha}\left\|T z_{n}-T_{n} z_{n}\right\|^{2}
\end{aligned}
$$

for all $n \in \mathbf{N}$ from Lemma 2.3. So, we have

$$
\frac{2 \alpha-b}{2 \alpha}\left\|T z_{n}-T_{n} z_{n}\right\|^{2} \leq\left\|z_{n}-T_{n} z_{n}\right\|^{2}+2\left\|z_{n}-T_{n} z_{n}\right\| \cdot\left\|z_{n}-u\right\|
$$

for every $n \in \mathbf{N}$ and hence $\lim _{n \rightarrow \infty}\left\|T z_{n}-T_{n} z_{n}\right\|=0$. Therefore, $\lim _{n \rightarrow \infty} \| z_{n}-$ $T z_{n} \|=0$ by $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$. From Opial's condition, we get $\omega_{w}\left(z_{n}\right) \subset$ $F(T)$. Further, we obtain

$$
\begin{aligned}
\| z_{n}- & P_{C}\left(I-\lambda_{n} A\right) z_{n} \| \\
\leq & \left\|z_{n}-T z_{n}\right\|+\left\|T z_{n}-P_{C}\left(I-\lambda_{n} A\right) T z_{n}\right\| \\
& \quad+\left\|P_{C}\left(I-\lambda_{n} A\right) T z_{n}-P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\| \\
\leq & 2\left\|z_{n}-T z_{n}\right\|+\left\|T z_{n}-P_{C}\left(I-\lambda_{n} A\right) T z_{n}\right\|
\end{aligned}
$$

for every $n \in \mathbf{N}$ by nonexpansivity of $P_{C}\left(I-\lambda_{n} A\right)$ and hence $\lim _{n \rightarrow \infty} \| z_{n}-P_{C}(I-$ $\left.\lambda_{n} A\right) z_{n} \|=0$. As in the proof of Theorem 3.7, we have $\omega_{w}\left(z_{n}\right) \subset V I(C, A)$. So, $\omega_{w}\left(z_{n}\right) \subset F(T) \cap V I(C, A)$. Therefore, $\left\{x_{n}\right\}$ converges strongly to z_{0} by (ii) or (iii) in Theorem 3.1.

Theorem 3.9. Let $\alpha>0$ and let C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C into itself and let $A: C \longrightarrow H$ be an α-inverse-strongly-monotone operator such that $F(T) \cap V I(C, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in C \\
y_{n}=T P_{C}\left(I-\lambda_{n} A\right) x_{n} \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for every $n \in N \cup\{0\}$, where $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,2 \alpha)$ with $a \leq b$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(T) \cap V I(C, A)}\left(x_{0}\right)$.

Proof. If $T_{n}=T P_{C}\left(I-\lambda_{n} A\right)$ and $\varepsilon_{n}=0$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have $F\left(T_{n}\right)=F(T) \cap V I(C, A)$ for every $n \in \mathbf{N} \cup\{0\}$. In fact, similarly in Theorem 3.8, we get
$\|z-u\|^{2} \leq\left\|P_{C}\left(I-\lambda_{n} A\right) z-u\right\|^{2} \leq\|z-u\|^{2}-\frac{2 \alpha-b}{2 \alpha}\left\|z-P_{C}\left(I-\lambda_{n} A\right) z\right\|^{2}$ for $z \in F\left(T_{n}\right)$ and $u \in F(T) \cap V I(C, A)$. Hence we obtain $z=P_{C}\left(I-\lambda_{n} A\right) z$ and further $z=T z$, too. And we have $a_{n}=0$ for each $n \in \mathbf{N} \cup\{0\}$ by Lemma 2.3. Let $\left\{z_{n}\right\}$ be a bounded sequence in C which satisfies $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$ and let $u \in F(T) \cap V I(C, A)$. Similarly in Theorem 3.8, we get

$$
\begin{aligned}
\left\|z_{n}-u\right\|^{2} \leq & \left\|z_{n}-T_{n} z_{n}\right\|^{2}+2\left\|z_{n}-T_{n} z_{n}\right\| \\
& \cdot\left\|z_{n}-u\right\|+\left\|z_{n}-u\right\|^{2}-\frac{2 \alpha-b}{2 \alpha}\left\|z_{n}-P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|^{2}
\end{aligned}
$$

for all $n \in \mathbf{N}$. So, we obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|=0$ which implies $\omega_{w}\left(z_{n}\right) \subset V I(C, A)$. Further, we have
$\left\|z_{n}-T z_{n}\right\| \leq\left\|z_{n}-T_{n} z_{n}\right\|+\left\|T_{n} z_{n}-T z_{n}\right\| \leq\left\|z_{n}-T_{n} z_{n}\right\|+\left\|P_{C}\left(I-\lambda_{n} A\right) z_{n}-z_{n}\right\|$
for every $n \in \mathbf{N}$. Therefore, $\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=0$. By Opial's condition, we get $\omega_{w}\left(z_{n}\right) \subset F(T)$. So, $\left\{x_{n}\right\}$ converges strongly to z_{0} from (ii) or (iii) in Theorem 3.1.

The following theorem contains the result proved by Kikkawa and Takahashi [11].

Theorem 3.10. Let C be a nonempty closed convex subset of H. Let $\left\{S_{n}\right\}$ be a family of nonexpansive mappings of C into itself with $\cap{ }_{i=1}^{\infty} F\left(S_{i}\right) \neq \emptyset$ and let $\left\{\beta_{n, k}: n, k \in N, 1 \leq k \leq n\right\} \subset(0,1)$ be a sequence of real numbers such that (i) $\beta_{n, k}=\beta_{k}(\forall n=k, k+1, \cdots)$ for every $k \in \boldsymbol{N}$ such that $0<\beta_{k} \leq b<1(\forall k \in \boldsymbol{N})$ for some $b \in(0,1)$ or (ii) $a \leq \beta_{i, j} \leq b$ for every $i, j \in \boldsymbol{N}(i \geq j)$ for some $a, b \in(0,1)$ with $a \leq b$. Let $W_{n}(n=1,2, \cdots)$ be the W-mapping generated by $S_{n}, S_{n-1}, \cdots, S_{1}$ and $\beta_{n, n}, \beta_{n, n-1}, \cdots, \beta_{n, 1}$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{1}=x \in C \\
y_{n}=W_{n} x_{n} \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{1}-x_{n}\right) \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{1}\right)
\end{array}\right.
$$

for each $n \in \boldsymbol{N}$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{\cap_{i=1}^{\infty} F\left(S_{i}\right)}\left(x_{1}\right)$.
Proof. If $T_{n}=W_{n}$ and $\varepsilon_{n}=0$ for all $n \in \mathbf{N}$ in Theorem 3.1, we have $\cap_{n=1}^{\infty} F\left(T_{n}\right)=\cap_{n=1}^{\infty} F\left(W_{n}\right)=\cap_{i=1}^{\infty} F\left(S_{i}\right)$ and $a_{n}=0$ for every $n \in \mathbf{N}$ by Lemma 2.4 and nonexpansivity of W_{n}. Let $\left\{z_{n}\right\}$ be a bounded sequence in C which satisfies $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$.
(i) Let W be the W-mapping generated by S_{1}, S_{2}, \cdots and $\beta_{1}, \beta_{2}, \cdots$. Assume that $z_{n} \rightharpoonup w$. As in the proof of [11, Theorem 3.1], if we suppose that $w \neq W w$,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left\|z_{n}-w\right\| & <\liminf _{n \rightarrow \infty}\left\|z_{n}-W w\right\| \\
& \leq \liminf _{n \rightarrow \infty}\left(\left\|z_{n}-W_{n} z_{n}\right\|+\left\|W_{n} z_{n}-W_{n} w\right\|+\left\|W_{n} w-W w\right\|\right) \\
& \leq \liminf _{n \rightarrow \infty}\left(\left\|z_{n}-W_{n} z_{n}\right\|+\left\|z_{n}-w\right\|+\left\|W_{n} w-W w\right\|\right) \\
& =\liminf _{n \rightarrow \infty}\left\|z_{n}-w\right\|
\end{aligned}
$$

by Opial's condition. This is a contradiction. So, we get $\omega_{w}\left(z_{n}\right) \subset F(W)=$ $\cap_{n=1}^{\infty} F\left(S_{n}\right)$.
(ii) We get $\lim _{n \rightarrow \infty}\left\|z_{n}-S_{1} U_{n, 2} z_{n}\right\|=0$ from $0<a \leq \beta_{n, 1}$. Let $z \in \cap_{n=1}^{\infty} F\left(S_{n}\right)$. We obtain

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2} \leq & \left(\left\|z_{n}-S_{1} U_{n, 2} z_{n}\right\|+\left\|S_{1} U_{n, 2} z_{n}-z\right\|\right)^{2} \\
= & \left\|z_{n}-S_{1} U_{n, 2} z_{n}\right\|\left(\left\|z_{n}-S_{1} U_{n, 2} z_{n}\right\|\right. \\
& \left.+2\left\|S_{1} U_{n, 2} z_{n}-z\right\|\right)+\left\|S_{1} U_{n, 2} z_{n}-z\right\|^{2} \\
\leq & M\left\|z_{n}-S_{1} U_{n, 2} z_{n}\right\|+\left\|U_{n, 2} z_{n}-z\right\|^{2} \\
= & M\left\|z_{n}-S_{1} U_{n, 2} z_{n}\right\|+\beta_{n, 2}\left\|S_{2} U_{n, 3} z_{n}-z\right\|^{2} \\
& +\left(1-\beta_{n, 2}\right)\left\|z_{n}-z\right\|^{2}-\beta_{n, 2}\left(1-\beta_{n, 2}\right)\left\|S_{2} U_{n, 3} z_{n}-z_{n}\right\|^{2} \\
\leq & M\left\|z_{n}-S_{1} U_{n, 2} z_{n}\right\|+\left\|z_{n}-z\right\|^{2}-\beta_{n, 2}\left(1-\beta_{n, 2}\right)\left\|S_{2} U_{n, 3} z_{n}-z_{n}\right\|^{2}
\end{aligned}
$$

for each $n \in \mathbf{N}$, where $M=\sup _{n \in \mathbf{N}}\left\{\left\|z_{n}-S_{1} U_{n, 2} z_{n}\right\|+2\left\|S_{1} U_{n, 2} z_{n}-z\right\|\right\}$. So, we obtain $\lim _{n \rightarrow \infty}\left\|S_{2} U_{n, 3} z_{n}-z_{n}\right\|=0$. By induction, we have

$$
\lim _{n \rightarrow \infty}\left\|S_{m} U_{n, m+1} z_{n}-z_{n}\right\|=0
$$

for all $m \in \mathbf{N}$. Since

$$
\begin{aligned}
\left\|z_{n}-S_{m} z_{n}\right\| & \leq\left\|z_{n}-S_{m} U_{n, m+1} z_{n}\right\|+\left\|S_{m} U_{n, m+1} z_{n}-S_{m} z_{n}\right\| \\
& \leq\left\|z_{n}-S_{m} U_{n, m+1} z_{n}\right\|+\left\|U_{n, m+1} z_{n}-z_{n}\right\| \\
& =\left\|z_{n}-S_{m} U_{n, m+1} z_{n}\right\|+\beta_{n, m+1}\left\|S_{m+1} U_{n, m+2} z_{n}-z_{n}\right\| \\
& \leq\left\|z_{n}-S_{m} U_{n, m+1} z_{n}\right\|+b\left\|S_{m+1} U_{n, m+2} z_{n}-z_{n}\right\|
\end{aligned}
$$

for every $n \in \mathbf{N}$, we get $\lim _{n \rightarrow \infty}\left\|z_{n}-S_{m} z_{n}\right\|=0$ for all $m \in \mathbf{N}$. By Opial's condition, $\omega_{w}\left(z_{n}\right) \subset F\left(S_{m}\right)$ for each $m \in \mathbf{N}$ which implies $\omega_{w}\left(z_{n}\right) \subset \cap_{n=1}^{\infty} F\left(T_{n}\right)$. Therefore, $\left\{x_{n}\right\}$ converges strongly to z_{0} from (ii) or (iii) in Theorem 3.1.

The following is the result proved by Nakajo and Takahashi [13].
Theorem 3.11. Let C be a nonempty closed convex subset of H and let $\mathcal{S}=\{T(s) \mid 0 \leq s<\infty\}$ be a one-parameter nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in C \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) \frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for every $n \in N \cup\{0\}$, where $\left\{\alpha_{n}\right\} \subset[0, a]$ for some $a \in[0,1)$ and $\left\{t_{n}\right\}$ is a positive real divergent sequence. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(\mathcal{S})}\left(x_{0}\right)$.

Proof. If $T_{n} x=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x d s(\forall x \in C)$ and $\varepsilon_{n}=0$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have that $T_{n}: C \longrightarrow C$ for every $n \in \mathbf{N} \cup\{0\}$, $\cap_{n=0}^{\infty} F\left(T_{n}\right)=F(\mathcal{S})$ and $a_{n}=0$ for each $n \in \mathbf{N} \cup\{0\}$. Let $\left\{z_{n}\right\}$ be a bounded sequence in C which satisfies $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$. At first, we have
$(1-a)\left\|z_{n}-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s\right\| \leq\left(1-\alpha_{n}\right)\left\|z_{n}-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s\right\|=\left\|z_{n}-T_{n} z_{n}\right\|$
for all $n \in \mathbf{N}$ which implies

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s\right\|=0
$$

And as in the proof of [13, Theorem 4.1], we have, for every $h \geq 0$,

$$
\begin{aligned}
\left\|z_{n}-T(h) z_{n}\right\| \leq & \left\|z_{n}-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s\right\| \\
& +\left\|\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s-T(h)\left(\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s\right)\right\| \\
& +\left\|T(h) z_{n}-T(h)\left(\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s\right)\right\| \\
\leq & 2\left\|z_{n}-\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s\right\|
\end{aligned}
$$

$$
+\left\|\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s-T(h)\left(\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) z_{n} d s\right)\right\|
$$

for each $n \in \mathbf{N}$. So, we get

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-T(h) z_{n}\right\|=0
$$

for all $h \geq 0$ by Lemma 2.5. By Opial's condition, we obtain $\omega_{w}\left(z_{n}\right) \subset F(\mathcal{S})$. Therefore, $\left\{x_{n}\right\}$ converges strongly to z_{0} from (ii) or (iii) in Theorem 3.1.

The following is the result proved by Atsushiba and Takahashi [3].
Theorem 3.12. Let C be a nonempty closed convex subset of H and let S be a commutative semigroup. Let $\mathcal{S}=\{T(t) \mid t \in S\}$ be a nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$. Let D be a subspace of $B(S)$ such that D contains constants, D is invariant under r_{s} for every $s \in S$ and $t \mapsto(T(t) x, y)$ is in D for each $x \in C$ and $y \in H$. Let $\left\{\mu_{n}\right\}$ be a sequence of means on D such that $\lim _{n \rightarrow \infty}\left\|\mu_{n}-r_{s}^{*} \mu_{n}\right\|=0$ for all $s \in S$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0}=x \in C \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{\mu_{n}} x_{n} \\
C_{n}=\left\{z \in C \mid\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
Q_{n}=\left\{z \in C \mid\left(x_{n}-z, x_{0}-x_{n}\right) \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}}\left(x_{0}\right)
\end{array}\right.
$$

for every $n \in \boldsymbol{N} \cup\{0\}$, where $\left\{\alpha_{n}\right\} \subset[0, a]$ for some $a \in(0,1)$. Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(\mathcal{S})}\left(x_{0}\right)$.

Proof. If $T_{n}=\alpha_{n} I+\left(1-\alpha_{n}\right) T_{\mu_{n}}$ and $\varepsilon_{n}=0$ for all $n \in \mathbf{N} \cup\{0\}$ in Theorem 3.1, we have $T_{n}: C \longrightarrow C, a_{n}=0$ for every $n \in \mathbf{N} \cup\{0\}$ and $\cap_{n=0}^{\infty} F\left(T_{n}\right)=F(\mathcal{S})$ from Lemmas 2.6 and 2.7. Let $\left\{z_{n}\right\}$ be a bounded sequence in C which satisfies $\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$. At first, we get

$$
(1-a)\left\|z_{n}-T_{\mu_{n}} z_{n}\right\| \leq\left(1-\alpha_{n}\right)\left\|z_{n}-T_{\mu_{n}} z_{n}\right\|=\left\|z_{n}-T_{n} z_{n}\right\|
$$

for each $n \in \mathbf{N}$ which implies

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-T_{\mu_{n}} z_{n}\right\|=0
$$

And for all $t \in S$,

$$
\begin{aligned}
\left\|z_{n}-T(t) z_{n}\right\| \leq & \left\|z_{n}-T_{\mu_{n}} z_{n}\right\|+\left\|T_{\mu_{n}} z_{n}-T(t) T_{\mu_{n}} z_{n}\right\| \\
& +\left\|T(t) T_{\mu_{n}} z_{n}-T(t) z_{n}\right\| \\
\leq & 2\left\|z_{n}-T_{\mu_{n}} z_{n}\right\|+\left\|T_{\mu_{n}} z_{n}-T(t) T_{\mu_{n}} z_{n}\right\| .
\end{aligned}
$$

So, we obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-T(t) z_{n}\right\|=0$ for every $t \in S$ by Lemma 2.7. By Opial's condition, we get $\omega_{w}\left(z_{n}\right) \subset F(\mathcal{S})$. Therefore, $\left\{x_{n}\right\}$ converges strongly to z_{0} by (ii) or (iii) in Theorem 3.1.

References

1. S. Atsushiba and W. Takahashi, Approximating common fixed points of nonexpansive semigroups by the Mann iteration process, Ann. Univ. Mariae Curie-Sklodowska, 51 (1997), 1-16.
2. S. Atsushiba and W. Takahashi, A weak convergence theorem for nonexpansive semigroups by the Mann iteration process in Banach spaces, in Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka, Eds.), World Scientific, Singapore, 102-109, 1999.
3. S. Atsushiba and W. Takahashi, Strong convergence theorems for nonexpansive semigroups by a hybrid method, J. Nonlinear Convex Anal., 3 (2002), 231-242.
4. H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for fejér-monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), 248-264.
5. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228.
6. R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304-314.
7. Y. Haugazeau, Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes, Thèse, Université de Paris, Paris, France, 1968.
8. N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Analysis, 12 (1988), 1269-1281.
9. H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Panamerican Math. J., 14 (2004), 49-61.
10. H. Iiduka and W. Takahashi, Strong convergence theorems by a hybrid method for nonexpansive mappings and inverse-strongly-monotone mappings, in Fixed Point Theory and Applications (J. G. Falset, E. L. Fuster and B. Sims, Eds.), Yokohama Publishers, Yokohama, 81-94, 2004.
11. M. Kikkawa and W. Takahashi, Approximating fixed points of infinite nonexpansive mappings by the hybrid method, J. Optim. Theory Appl., 117 (2003), 93-101.
12. F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal., 6 (1998), 313-344.
13. K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372-379.
14. K. Nakajo and W. Takahashi, Strong and weak convergence theorems by an improved splitting method, Comm. Appl. Nonlinear Anal., 9 (2002), 99-107.
15. K. Nakajo, K. Shimoji and W. Takahashi, Weak and strong convergence theorems by Mann's type iteration and the hybrid method in Hilbert spaces, J. Nonlinear Convex Anal., 4 (2003), 463-478.
16. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.
17. R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.
18. T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., 211 (1997), 71-83.
19. K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5 (2001), 387-404.
20. N. Shioji and W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica, 50 (1999), 57-66.
21. M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programming Ser. A, 87 (2000), 189-202.
22. W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81 (1981), 253-256.
23. W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 51 (1997), 277-292.
24. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
25. W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000(Japanese).
26. W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling, 32 (2000), 1463-1471.
K. Nakajo

Faculty of Engineering,
Tamagawa University,
Tamagawa-gakuen, Machida-shi,
Tokyo, 194-8610, Japan
E-mail: nakajo@eng.Tamagawa.ac.jp
K. Shimoji

Department of Mathematical Sciences,
Faculty of Science,
University of the Ryukyus,
Nishihara-cho, Okinawa 903-0213, Japan
E-mail: shimoji@math.u-ryukyu.ac.jp

W. Takahashi

Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology,
Oh-okayama, Meguro-ku,
Tokyo, 152-8552, Japan
E-mail: wataru@is.titech.ac.jp

[^0]: Received October 5, 2004; Accepted April 20, 2005.
 2000 Mathematics Subject Classification: 47H05, 47H09, 47H20.
 Key words and phrases: Strong convergence, Hybrid method, Proximal point algorithm, Nonexpansive, W-mapping, Nonexpansive semigroup, Splitting method, Variational inequality.

