TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 2, pp. 339-360, February 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

STRONG CONVERGENCE THEOREMS BY THE HYBRID METHOD FOR FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES

K. Nakajo, K. Shimoji and W. Takahashi

Abstract. Let C be a nonempty closed convex subset of a real Hilbert space and let $\{T_n\}$ be a family of mappings of C into itself such that the set of all common fixed points of $\{T_n\}$ is nonempty. We consider a sequence $\{x_n\}$ generated by the hybrid method in mathematical programming and give the conditions of $\{T_n\}$ under which $\{x_n\}$ converges strongly to a common fixed point of $\{T_n\}$.

1. INTRODUCTION

Throughout this paper, let H be a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$ and let **N** and **R** be the set of all positive integers and the set of all real numbers, respectively. Haugazeau [7] introduced a sequence $\{x_n\}$ generated by the hybrid method, that is, let $\{T_n\}$ be a family of mappings of H into itself with $\bigcap_{n=0}^{\infty} F(T_n) \neq \emptyset$, where $F(T_n)$ is the set of all fixed points of T_n and let $\{x_n\}$ be a sequence generated by

(1)
$$\begin{cases} x_0 = x \in H, \\ y_n = T_n x_n, \\ C_n = \{ z \in H \mid (x_n - y_n, y_n - z) \ge 0 \}, \\ Q_n = \{ z \in H \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for each $n \in \mathbb{N} \cup \{0\}$, where $P_{C_n \cap Q_n}$ is the metric projection onto $C_n \cap Q_n$. He proved a strong convergence theorem when $T_n = P_{n(mod \ m)+1}$ for every $n \in$

2000 Mathematics Subject Classification: 47H05, 47H09, 47H20.

Received October 5, 2004; Accepted April 20, 2005.

Key words and phrases: Strong convergence, Hybrid method, Proximal point algorithm, Nonexpansive, W-mapping, Nonexpansive semigroup, Splitting method, Variational inequality.

 $\mathbf{N} \cup \{0\}$, where P_i is the metric projection onto a nonempty closed convex subset C_i of H for each $i = 1, 2, \dots, m$ and $\bigcap_{i=1}^m C_i \neq \emptyset$. Later, Solodov and Svaiter [21] proved a strong convergence theorem for a maximal monotone operator and Bauschke and Combettes [4] proved the following theorem: Let $\{T_n\}$ be a family of mappings of H into itself with $\bigcap_{n=0}^{\infty} F(T_n) \neq \emptyset$ which satisfies the following conditions: (I) $(x - T_n x, T_n x - z) \geq 0$ for every $n \in \mathbf{N} \cup \{0\}$, $x \in H$ and $z \in F(T_n)$; (II) (coherent) for every bounded sequence $\{z_n\}$ in H, there holds that $\sum_{n=0}^{\infty} ||z_{n+1} - z_n||^2 < \infty$ and $\sum_{n=0}^{\infty} ||z_n - T_n z_n||^2 < \infty$ imply $\omega_w(z_n) \subset \bigcap_{n=0}^{\infty} F(T_n)$, where $\omega_w(z_n)$ is the set of all weak cluster points of $\{z_n\}$. Then, $\{x_n\}$ generated by (1) converges strongly to $z_0 = P_F(x_0)$, where $F = \bigcap_{n=0}^{\infty} F(T_n)$. On the other hand, Nakajo and Takahashi [13] proved the following theorem: Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

(2)
$$\begin{cases} x_0 = x \in C, \\ y_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C \mid \|y_n - z\| \le \|x_n - z\| \}, \\ Q_n = \{ z \in C \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for each $n \in \mathbf{N} \cup \{0\}$, where $\{\alpha_n\} \subset [0, a]$ for some $a \in [0, 1)$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{F(T)}(x_0)$. Later, Nakajo and Takahashi [14], Kikkawa and Takahashi [11], Atsushiba and Takahashi [3], Iiduka, Takahashi and Toyoda [9] and Iiduka and Takahashi [10] studied strong convergence of $\{x_n\}$ generated by type (2). And recently, Nakajo, Shimoji and Takahashi [15] studied strong convergence by type (1) and (2).

Motivated by Bauschke and Combettes [4] and Nakajo, Shimoji and Takahashi [15], in this paper, we consider unification of types of (1) and (2) and prove a strong convergence theorem.

2. Preliminaries and Lemmas

We write $x_n \rightarrow x$ to indicate that a sequence $\{x_n\}$ converges weakly to x. Similarly, $x_n \rightarrow x$ will symbolize strong convergence. We know that H satisfies Opial's condition [16], that is, for any sequence $\{x_n\} \subset H$ with $x_n \rightarrow x$, the inequality $\liminf_{n\to\infty} ||x_n-x|| < \liminf_{n\to\infty} ||x_n-y||$ holds for every $y \in H$ with $y \neq x$. It is known that $||\lambda x + (1-\lambda)y||^2 = \lambda ||x||^2 + (1-\lambda)||y||^2 - \lambda(1-\lambda)||x-y||^2$ for each $x, y \in H$ and $\lambda \in \mathbf{R}$. We also know that the norm is lower semicontinuous, that is, for any sequence $\{x_n\} \subset H$ with $x_n \rightarrow x$, $||x|| \leq \liminf_{n\to\infty} ||x_n||$ holds. Further, it is known that for any sequence $\{x_n\} \subset H$ with $x_n \rightarrow x$ and $||x_n|| \to ||x||, x_n \to x$ holds. Let C be a nonempty closed convex subset of H and let T be a mapping of C into itself. T is said to be firmly nonexpansive if $||Tx - Ty||^2 \le ||x - y||^2 - ||(I - T)x - (I - T)y||^2$ for every $x, y \in C$, where I is the identity mapping. T is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for every $x, y \in C$. If T is firmly nonexpansive, T is nonexpansive. We know that P_C is firmly nonexpansive. It is known that F(T) is closed and convex if T is a nonexpansive mapping of C into itself.

An operator $A: H \longrightarrow 2^H$ is said to be monotone if $(x_1 - x_2, y_1 - y_2) \ge 0$ whenever $y_1 \in Ax_1$ and $y_2 \in Ax_2$. A monotone operator A is said to be maximal if the graph of A is not properly contained in the graph of any other monotone operator. It is known that a monotone operator A is maximal if and only if $R(I + \lambda A) = H$ for every $\lambda > 0$, where $R(I + \lambda A)$ is the range of $I + \lambda A$. It is also known that a monotone operator A is maximal if for $(u, v) \in H \times H, (x-u, y-v) \ge 0$ for every $(x, y) \in A$ implies $v \in Au$. For a maximal monotone operator A, we know that $A^{-1}0 = \{x \in H \mid 0 \in Ax\}$ is closed and convex. If A is monotone, then we can define, for each $\lambda > 0$, a mapping $J_{\lambda} : R(I + \lambda A) \longrightarrow D(A)$ by $J_{\lambda} = (I + \lambda A)^{-1}$, where D(A) is the domain of A. J_{λ} is called the resolvent of A. We also define the Yosida approximation A_{λ} by $A_{\lambda} = (I - J_{\lambda})/\lambda$; see [24, 25] for more details. The following are the fundamental results for resolvents of monotone operators; see [17, 24, 25].

Lemma 2.1. Let $A : H \longrightarrow 2^H$ be a monotone operator and $\lambda > 0$. Then, the following hold:

- (*i*) $F(J_{\lambda}) = A^{-1}0;$
- (ii) $||J_{\lambda}x J_{\lambda}y||^2 \le ||x y||^2 ||(I J_{\lambda})x (I J_{\lambda})y||^2$ for every $x, y \in R(I + \lambda A)$.

Let $\alpha > 0$ and let C be a nonempty closed convex subset of H. An operator $A: C \longrightarrow H$ is said to be α -inverse-strongly-monotone [5, 12, 14] if $(x - y, Ax - Ay) \ge \alpha ||Ax - Ay||^2$ for all $x, y \in C$. We have the following lemma for inverse-strongly-monotone operators; see [14].

Lemma 2.2. Let $\alpha > 0$. Let $A : H \longrightarrow H$ be an α -inverse-strongly-monotone operator with D(A) = H and let $B : H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A + B)^{-1}0 \neq \emptyset$. Then the following hold:

- (*i*) A is maximal monotone;
- (ii) A + B is maximal monotone and $(A + B)^{-1}0$ is closed and convex;
- (iii) for every $\lambda \in [0, 2\alpha]$, $I \lambda A : H \longrightarrow H$ is nonexpansive;
- (iv) for every $\lambda \in (0, \infty)$, $T_{\lambda} \equiv J_{\lambda}^{B}(I \lambda A)$ is well defined and $(A+B)^{-1}0 = F(T_{\lambda})$, where $J_{\lambda}^{B} = (I + \lambda B)^{-1}$ and $F(T_{\lambda})$ is the set of all fixed points of T_{λ} ;
- (v) for every $\lambda \in (0, 2\alpha]$, T_{λ} is nonexpansive.

Let C be a nonempty closed convex subset of H and let A be a mapping of C into H. Then, an element x in C is a solution of the variational inequality of A if $(y - x, Ax) \ge 0$ for all $y \in C$. It is known that for $\lambda > 0$, $x \in C$ is a solution of the variational inequality of A if and only if $x = P_C(I - \lambda A)x$. We denote by VI(C, A) the set of all solutions of the variational inequality of A. We know that VI(C, A) is a closed convex subset of C if A is monotone and continuous. We also have the following result for inverse-strongly -monotone operators.

Lemma 2.3. Let $\alpha > 0$ and C be a nonempty closed convex subset of H. Let $A: C \longrightarrow H$ be an α -inverse-strongly-monotone operator with $VI(C, A) \neq \emptyset$. Then, for every $\lambda > 0$, $x \in C$ and $z \in VI(C, A)$, $||P_C(I - \lambda A)x - z||^2 \leq ||x - z||^2 - \frac{2\alpha - \lambda}{2\alpha} ||x - P_C(I - \lambda A)x||^2$.

Proof. Let $\lambda > 0$, $x \in C$ and $z \in VI(C, A)$. We have

$$\begin{split} &|P_{C}(I - \lambda A)x - z||^{2} \\ &\leq \|(I - \lambda A)x - (I - \lambda A)z\|^{2} - \|(I - P_{C})(I - \lambda A)x - (I - P_{C})(I - \lambda A)z\|^{2} \\ &= \|(x - z) - \lambda(Ax - Az)\|^{2} - \|(x - P_{C}(I - \lambda A)x) - \lambda(Ax - Az)\|^{2} \\ &\leq \|x - z\|^{2} - 2\alpha\lambda\|Ax - Az\|^{2} + 2\lambda\|Ax - Az\| \\ &\cdot \|x - P_{C}(I - \lambda A)x\| - \|x - P_{C}(I - \lambda A)x\|^{2} \\ &= \|x - z\|^{2} - 2\alpha\lambda\Big\{\|Ax - Az\| - \frac{1}{2\alpha}\|x - P_{C}(I - \lambda A)x\|\Big\}^{2} \\ &= \|x - z\|^{2} - 2\alpha\lambda\Big\{\|Ax - Az\| - \frac{1}{2\alpha}\|x - P_{C}(I - \lambda A)x\|\Big\}^{2} \\ &\leq \|x - z\|^{2} - \frac{2\alpha - \lambda}{2\alpha}\|x - P_{C}(I - \lambda A)x\|^{2}. \end{split}$$

Let C be a nonempty closed convex subset of H. Let $\{S_n\}$ be a family of mappings of C into itself and let $\{\beta_{n,k} : n, k \in \mathbb{N}, 1 \le k \le n\}$ be a sequence of real numbers such that $0 \le \beta_{i,j} \le 1$ for every $i, j \in \mathbb{N}$ with $i \ge j$. Then, for any $n \in \mathbb{N}$, Takahashi [19, 23, 25] introduced a mapping W_n of C into itself as follows:

$$\begin{array}{rcl} U_{n,n} &=& \beta_{n,n}S_n + (1 - \beta_{n,n})I, \\ U_{n,n-1} &=& \beta_{n,n-1}S_{n-1}U_{n,n} + (1 - \beta_{n,n-1})I \\ &\vdots \\ U_{n,k} &=& \beta_{n,k}S_kU_{n,k+1} + (1 - \beta_{n,k})I, \\ &\vdots \\ U_{n,2} &=& \beta_{n,2}S_2U_{n,3} + (1 - \beta_{n,2})I, \\ W_n = U_{n,1} &=& \beta_{n,1}S_1U_{n,2} + (1 - \beta_{n,1})I. \end{array}$$

Such a mapping W_n is called the *W*-mapping generated by S_n, S_{n-1}, \dots, S_1 and $\beta_{n,n}, \beta_{n,n-1}, \dots, \beta_{n,1}$. The following lemma was proved by Takahashi and Shimoji [26] (see also [25]).

Lemma 2.4. Let C be a nonempty closed convex subset of H. Let S_1, S_2, \dots, S_n be nonexpansive mappings of C into itself with $\bigcap_{i=1}^n F(S_i) \neq \emptyset$ and let $\beta_{n,1}, \beta_{n,2}, \dots, \beta_{n,n}$ be real numbers with $0 < \beta_{n,i} < 1$ for every $i = 2, \dots, n$ and $0 < \beta_{n,1} \leq 1$. Let W_n be the W-mapping generated by S_n, S_{n-1}, \dots, S_1 and $\beta_{n,n}, \beta_{n,n-1}, \dots, \beta_{n,1}$. Then, $F(W_n) = \bigcap_{i=1}^n F(S_i)$.

We have that if $\beta_{n,k} = \beta_k \ (\forall n = k, k + 1, \cdots)$ for every $k \in \mathbb{N}$ such that $0 < \beta_k \le b < 1 \ (\forall k \in \mathbb{N})$ for some $b \in (0, 1)$ and $\{S_n\}$ is a family of nonexpansive mappings of C into itself with $\bigcap_{n=1}^{\infty} F(S_n) \ne \emptyset$, $\lim_{n\to\infty} U_{n,k}x$ exists for every $x \in C$ and $k \in \mathbb{N}$; see [19]. By this, we define a mapping W of C into itself as follows:

$$Wx = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x$$

for every $x \in C$. Such a W is called the W-mapping generated by S_1, S_2, \cdots and β_1, β_2, \cdots . We have that $F(W) = \bigcap_{i=1}^{\infty} F(S_i)$; see [19].

Let C be a nonempty closed convex subset of H. A family $S = \{T(s) \mid 0 \le s < \infty\}$ of mappings of C into itself is called a one-parameter nonexpansive semigroup on C if it satisfies the following conditions:

- (i) T(0)x = x for all $x \in C$;
- (ii) T(s+t) = T(s)T(t) for every $s, t \ge 0$;
- (iii) $||T(s)x T(s)y|| \le ||x y||$ for each $s \ge 0$ and $x, y \in C$;
- (iv) for all $x \in C$, $s \mapsto T(s)x$ is continuous.

We denote by F(S) the set of all common fixed points of S, that is, $F(S) = \bigcap_{0 \le s < \infty} F(T(s))$. It is known that F(S) is closed and convex. The following lemma was proved by Shimizu and Takahashi [18]; see also [2, 6, 20].

Lemma 2.5. Let C be a nonempty bounded closed convex subset of H and let $S = \{T(s) | 0 \le s < \infty\}$ be a one-parameter nonexpansive semigroup on C. Then, for any $h \ge 0$,

$$\lim_{t\to\infty}\sup_{x\in C}\left\|\frac{1}{t}\int_0^t T(s)x\,ds - T(h)\,\left(\frac{1}{t}\int_0^t T(s)x\,ds\,\right)\right\| = 0\,.$$

Let S be a semigroup and let B(S) be the Banach space of all bounded real valued functions on S with supremum norm. Then, for every $s \in S$ and $f \in B(S)$,

we can define $r_s f \in B(S)$ and $l_s f \in B(S)$ by $(r_s f)(t) = f(ts)$ and $(l_s f)(t) = f(st)$ for each $t \in S$, respectively. We also denote by r_s^* and l_s^* the conjugate operators of r_s and l_s , respectively. Let D be a subspace of B(S) containing constants and let μ be an element of D^* . A linear functional μ is called a mean on D if $\|\mu\| = \mu(1) = 1$. Let C be a nonempty closed convex subset of H. A family $S = \{T(s) \mid s \in S\}$ of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

- (i) T(st) = T(s)T(t) for all $s, t \in S$;
- (ii) $||T(s)x T(s)y|| \le ||x y||$ for every $s \in S$ and $x, y \in C$.

It is known that F(S) is closed and convex. Takahashi [22] proved the following; see also [8].

Lemma 2.6. Let S be a semigroup. Let C be a nonempty closed convex subset of H and let $S = \{T(s) | s \in S\}$ be a nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Let D be a subspace of B(S) such that D contains constants and $(T(\cdot)x, y) \in D$ for every $x \in C$ and $y \in H$. Then, for any mean μ on D and $x \in C$, there exists a unique element $T_{\mu}x$ in C such that $(T_{\mu}x, z) = \mu_s(T(s)x, z)$ for all $z \in H$. And T_{μ} is a nonexpansive mapping of C into itself.

Further, Atsushiba and Takahashi [1] proved the following.

Lemma 2.7. Let C be a nonempty bounded closed convex subset of H and let S be a semigroup. Let $S = \{T(s) | s \in S\}$ be a nonexpansive semigroup on C and let D be a subspace of B(S) containing constants and invariant under l_s for all $s \in S$. Suppose that for every $x \in C$ and $z \in H$, the function $t \mapsto (T(t)x, z)$ is in D. Let $\{\mu_n\}$ be a sequence of means on D such that $\lim_{n\to\infty} \|\mu_n - l_s^*\mu_n\| = 0$ for each $s \in S$. Then, $\lim_{n\to\infty} \sup_{x\in C} \|T_{\mu_n}x - T(t)T_{\mu_n}x\| = 0$ for all $t \in S$.

3. Strong Convergence Theorems

Let C be a nonempty closed convex subset of H and let $\{T_n\}$ be a family of mappings of C into itself with $\bigcap_{n=0}^{\infty} F(T_n) \neq \emptyset$ which satisfies the following condition: There exists $\{a_n\} \subset (-1, \infty)$ such that

(3)
$$||T_n x - z||^2 \le ||x - z||^2 - a_n ||(I - T_n)x||^2$$

for every $n \in \mathbb{N} \cup \{0\}$, $x \in C$ and $z \in F(T_n)$. Then, we know that $\bigcap_{n=0}^{\infty} F(T_n)$ is closed (see [15]). We also have that $\bigcap_{n=0}^{\infty} F(T_n)$ is convex. In fact, let $n \in \mathbb{N} \cup \{0\}$ and let $z_1, z_2 \in F(T_n)$, $0 \leq \alpha \leq 1$ and $x = \alpha z_1 + (1 - \alpha) z_2$. Suppose that $x \neq T_n x$. For some $\beta \in (0, 1)$ with $a_n > -\beta$, we get

$$\begin{aligned} \|\beta x + (1-\beta)T_n x - z_1\|^2 &= \beta \|x - z_1\|^2 + (1-\beta)\|T_n x - z_1\|^2 - \beta(1-\beta)\|x - T_n x\|^2 \\ &\leq \beta \|x - z_1\|^2 + (1-\beta)\{\|x - z_1\|^2 - a_n\|x - T_n x\|^2\} \\ &-\beta(1-\beta)\|x - T_n x\|^2 \\ &= \|x - z_1\|^2 - (1-\beta)(a_n + \beta)\|x - T_n x\|^2 < \|x - z_1\|^2. \end{aligned}$$

Similarly, $\|\beta x + (1-\beta)T_nx - z_2\| < \|x - z_2\|$ holds. So, we obtain

$$\begin{aligned} \|z_1 - z_2\| &\leq \left\| z_1 - \{\beta x + (1 - \beta)T_n x\} \right\| + \left\| \{\beta x + (1 - \beta)T_n x\} - z_2 \right\| \\ &< \|x - z_1\| + \|x - z_2\| = (1 - \alpha)\|z_1 - z_2\| + \alpha\|z_1 - z_2\| = \|z_1 - z_2\|. \end{aligned}$$

This is a contradiction. Therefore, $F(T_n)$ is convex. Let us define a sequence $\{x_n\}$ as follows:

(4)
$$\begin{cases} x_0 = x \in C, \\ y_n = T_n P_C(x_n + \varepsilon_n), \\ C_n = \{z \in C \mid \|y_n - z\|^2 \le \|x_n + \varepsilon_n - z\|^2 - a_n \|P_C(x_n + \varepsilon_n) - y_n\|^2\}, \\ Q_n = \{z \in C \mid (x_n - z, x_0 - x_n) \ge 0\}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for each $n \in \mathbb{N} \cup \{0\}$, where $\{\varepsilon_n\} \subset H$ and $\liminf_{n \to \infty} a_n > -1$. Now, we get the following.

Theorem 3.1. The followings hold:

- (i) A sequence $\{x_n\}$ generated by (4) is well defined and $\{x_n\} \subset C$;
- (ii) assume that $\sum_{n=0}^{\infty} \|\varepsilon_n\|^2 < \infty$ and for every bounded sequence $\{z_n\}$ in C, there holds that $\sum_{n=0}^{\infty} \|z_{n+1} - z_n\|^2 < \infty$ and $\sum_{n=0}^{\infty} \|z_n - T_n z_n\|^2 < \infty$ imply $\omega_w(z_n) \subset \bigcap_{n=0}^{\infty} F(T_n)$. Then, $\{x_n\}$ converges strongly to $z_0 = P_F(x_0)$, where $F = \bigcap_{n=0}^{\infty} F(T_n)$;
- (iii) assume that $\lim_{n\to\infty} \|\varepsilon_n\| = 0$ and for every bounded sequence $\{z_n\}$ in C, there holds that $\lim_{n\to\infty} \|z_n - T_n z_n\| = 0$ implies $\omega_w(z_n) \subset \bigcap_{n=0}^{\infty} F(T_n)$. Then, $\{x_n\}$ converges strongly to $z_0 = P_F(x_0)$.

Proof. As in the proof of [15, Theorem 4.2], we get that $\{x_n\}$ is well defined, $\{x_n\} \subset C$ and $F \subset C_n \cap Q_n$ for each $n \in \mathbb{N} \cup \{0\}$. So, the proof of (i) is complete. We have, for $z_0 = P_F(x_0)$,

(5)
$$||x_{n+1} - x_0|| \le ||z_0 - x_0||$$

and

$$\begin{aligned} \|x_{n+1} - x_n\|^2 &= \|(x_{n+1} - x_0) + (x_0 - x_n)\|^2 \\ &= \|x_{n+1} - x_0\|^2 + 2(x_{n+1} - x_0, x_0 - x_n) + \|x_0 - x_n\|^2 \\ &= \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 + 2(x_{n+1} - x_n, x_0 - x_n) \\ &\leq \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 \end{aligned}$$

for every $n \in \mathbb{N} \cup \{0\}$ by $(x_0 - x_n, x_{n+1} - x_n) \leq 0$. So, we obtain that $\{x_n\}$ is bounded and the limit

$$\lim_{n \to \infty} \|x_n - x_0\|$$

exists. We get

(7)
$$\sum_{n=0}^{\infty} \|x_{n+1} - x_n\|^2 < \infty.$$

From $\liminf_{n\to\infty} a_n > -1$, there exists $a \in (0,1)$ such that $a_n \ge -a$ for all $n \in \mathbb{N} \cup \{0\}$. Let $\beta \in (0, \frac{1-a}{a})$ and $\alpha = \frac{1-a(1+\beta)}{a}(>0)$. We have

$$\begin{aligned} \|P_C(x_n + \varepsilon_n) - y_n\|^2 \\ &\leq \|x_n + \varepsilon_n - y_n\|^2 \leq (\|x_n + \varepsilon_n - x_{n+1}\| + \|x_{n+1} - y_n\|)^2 \\ &\leq \left(1 + \frac{1}{\alpha}\right) \|x_n + \varepsilon_n - x_{n+1}\|^2 + (1 + \alpha) \|x_{n+1} - y_n\|^2 \\ &\leq \left(1 + \frac{1}{\alpha}\right) \|x_n + \varepsilon_n - x_{n+1}\|^2 + (1 + \alpha) \|x_n + \varepsilon_n - x_{n+1}\|^2 \\ &- (1 + \alpha) a_n \|P_C(x_n + \varepsilon_n) - y_n\|^2 \end{aligned}$$

which implies

$$a\beta \|P_C(x_n + \varepsilon_n) - y_n\|^2 = \{1 - (1 + \alpha)a\} \|P_C(x_n + \varepsilon_n) - y_n\|^2$$
$$\leq \{1 + (1 + \alpha)a_n\} \|P_C(x_n + \varepsilon_n) - y_n\|^2$$
$$\leq \left(2 + \alpha + \frac{1}{\alpha}\right) \|x_n + \varepsilon_n - x_{n+1}\|^2$$

for each $n \in \mathbf{N} \cup \{0\}$. So, we get

(8)
$$||P_C(x_n + \varepsilon_n) - y_n||^2 \le \frac{2(2 + \alpha + \frac{1}{\alpha})}{a\beta} (||x_n - x_{n+1}||^2 + ||\varepsilon_n||^2)$$

for every $n \in \mathbf{N} \cup \{0\}$.

346

(ii) Assume that $\sum_{n=0}^{\infty} \|\varepsilon_n\|^2 < \infty$. If $z_n = P_C(x_n + \varepsilon_n)$, we have that $\{z_n\}$ is bounded and

$$\sum_{n=0}^{\infty} \|z_n - T_n z_n\|^2 = \sum_{n=0}^{\infty} \|P_C(x_n + \varepsilon_n) - y_n\|^2 < \infty$$

from (7) and (8). Further we obtain

$$||z_n - z_{n+1}||^2 \le ||(x_n + \varepsilon_n) - (x_{n+1} + \varepsilon_{n+1})||^2 \le 3||x_n - x_{n+1}||^2 + 3||\varepsilon_n||^2 + 3||\varepsilon_{n+1}||^2$$

for all $n \in \mathbf{N} \cup \{0\}$ which implies $\sum_{n=0}^{\infty} ||z_n - z_{n+1}||^2 < \infty$. Therefore, we have $\omega_w(z_n) \subset F$. As $\lim_{n\to\infty} ||x_n - z_n|| = 0$ from $||x_n - z_n|| \leq ||\varepsilon_n||$ for every $n \in \mathbf{N} \cup \{0\}$, we get $\omega_w(x_n) \subset F$. So, assume that a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges weakly to $w_1 \in F$. We have

$$||x_0 - z_0|| \le ||x_0 - w_1|| \le \lim_{i \to \infty} ||x_0 - x_{n_i}|| \le ||x_0 - z_0||$$

by the lower semicontinuity of the norm, (5) and (6). Thus, we obtain $\lim_{i\to\infty} ||x_{n_i} - x_0|| = ||x_0 - w_1|| = ||x_0 - z_0||$. This implies

$$x_{n_i} \to w_1 = z_0$$

Therefore, we have $x_n \to z_0$. So, the proof of (ii) is complete. (iii) Assume $\lim_{n\to\infty} \|\varepsilon_n\| = 0$. If $z_n = P_C(x_n + \varepsilon_n)$, we get that $\{z_n\}$ is bounded, $\lim_{n\to\infty} \|x_n - z_n\| = 0$ and $\lim_{n\to\infty} \|z_n - T_n z_n\| = 0$ by (7) and (8). Therefore, we obtain $\omega_w(x_n) \subset F$. As in the proof of (ii), we have $x_n \to z_0$. So, the proof of (iii) is complete.

The following is the result proved by Bauschke and Combettes [4].

Theorem 3.2. Let $\{T_n\}$ be a family of mappings of H into itself with $\bigcap_{n=0}^{\infty} F(T_n) \neq \emptyset$ which satisfies the following conditions: (I) $(x - T_n x, T_n x - z) \ge 0$ for every $n \in \mathbb{N} \cup \{0\}$, $x \in H$ and $z \in F(T_n)$; (II) (coherent) for every bounded sequence $\{z_n\}$ in H, there holds that $\sum_{n=0}^{\infty} ||z_{n+1} - z_n||^2 < \infty$ and $\sum_{n=0}^{\infty} ||z_n - T_n z_n||^2 < \infty$ imply $\omega_w(z_n) \subset \bigcap_{n=0}^{\infty} F(T_n)$. Then, $\{x_n\}$ generated by (1) converges strongly to $z_0 = P_F(x_0)$, where $F = \bigcap_{n=0}^{\infty} F(T_n)$.

Proof. If C = H, $a_n = 1$ and $\varepsilon_n = 0$ for every $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we have

$$||T_n x - z||^2 \le ||x - z||^2 - ||x - T_n x||^2 \iff (x - T_n x, T_n x - z) \ge 0$$

for each $n \in \mathbb{N} \cup \{0\}$, $x \in H$ and $z \in F(T_n)$ and $C_n = \{z \in H \mid (x_n - y_n, y_n - z) \ge 0\}$ for all $n \in \mathbb{N} \cup \{0\}$. Further, $\sum_{n=0}^{\infty} \|\varepsilon_n\|^2 < \infty$. Therefore, $\{x_n\}$ converges strongly to $z_0 = P_F(x_0)$ from (ii) in Theorem 3.1.

The following is a generalization of the result proved by Solodov and Svaiter [21].

Theorem 3.3. Let $A : H \longrightarrow 2^H$ be a maximal monotone operator such that $A^{-1}0 \neq \emptyset$ and let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in H, \\ y_n = J_{\lambda_n}(x_n + \varepsilon_n), \\ C_n = \{ z \in H \mid (x_n - y_n + \varepsilon_n, y_n - z) \ge 0 \}, \\ Q_n = \{ z \in H \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\lambda_n\} \subset (0,\infty)$ and $J_{\lambda_n} = (I + \lambda_n A)^{-1}$ for each $n \in \mathbb{N} \cup \{0\}$. If (i) $\liminf_{n \to \infty} \lambda_n > 0$ and $\lim_{n \to \infty} \|\varepsilon_n\| = 0$ or (ii) $\sum_{n=0}^{\infty} \lambda_n^2 = \infty$ and $\sum_{n=0}^{\infty} \|\varepsilon_n\|^2 < \infty$, then, $\{x_n\}$ converges strongly to $z_0 = P_{A^{-1}0}(x_0)$.

Proof. If C = H and $T_n = J_{\lambda_n}$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we have $F(T_n) = A^{-1}0$ and $a_n = 1$ for every $n \in \mathbb{N} \cup \{0\}$ by (i) and (ii) in Lemma 2.1. So we get $C_n = \{z \in H \mid (x_n - y_n + \varepsilon_n, y_n - z) \ge 0\}$ for each $n \in \mathbb{N} \cup \{0\}$. (i) Assume that $\liminf_{n \to \infty} \lambda_n > 0$ and $\lim_{n \to \infty} \|\varepsilon_n\| = 0$. There exists $\lambda > 0$ with $\lambda_n \ge \lambda$ for each $n \in \mathbb{N} \cup \{0\}$. Let $\{z_n\}$ be a bounded sequence in H which satisfies $\lim_{n \to \infty} \|z_n - J_{\lambda_n} z_n\| = 0$. And suppose that $z_n \rightharpoonup w$. For all $(u, v) \in A$, we obtain

$$\left(J_{\lambda_n} z_n - u, \frac{z_n - J_{\lambda_n} z_n}{\lambda_n} - v\right) \ge 0$$

which implies

(9)

$$(J_{\lambda_n} z_n - u, -v) \ge \frac{1}{\lambda_n} (J_{\lambda_n} z_n - u, J_{\lambda_n} z_n - z_n)$$

$$\ge -\frac{1}{\lambda_n} \|J_{\lambda_n} z_n - u\| \cdot \|J_{\lambda_n} z_n - z_n\|$$

for every $n \in \mathbf{N} \cup \{0\}$. As a sequence $\{\frac{1}{\lambda_n} \| J_{\lambda_n} z_n - u \|\}$ is bounded, we have $(w - u, -v) \ge 0$ for each $(u, v) \in A$. Therefore, $w \in A^{-1}0$ from maximality of A. By (iii) in Theorem 3.1, $\{x_n\}$ converges strongly to z_0 .

(ii) Assume that $\sum_{n=0}^{\infty} \lambda_n^2 = \infty$ and $\sum_{n=0}^{\infty} \|\varepsilon_n\|^2 < \infty$. Let $\{z_n\}$ be a bounded sequence in H which satisfies $\sum_{n=0}^{\infty} \|z_{n+1} - z_n\|^2 < \infty$ and $\sum_{n=0}^{\infty} \|z_n - J_{\lambda_n} z_n\|^2 < \infty$. And suppose that $z_n \rightharpoonup w$. We get $\lim_{n\to\infty} \|z_n - J_{\lambda_n} z_n\| = \liminf_{n\to\infty} \frac{1}{\lambda_n} \|z_n - J_{\lambda_n} z_n\| = 0$ by $\sum_{n=0}^{\infty} \lambda_n^2 (\frac{1}{\lambda_n} \|z_n - J_{\lambda_n} z_n\|)^2 < \infty$. From (9), we obtain

$$(w-u,-v) \ge -\liminf_{n \to \infty} \frac{1}{\lambda_n} \|J_{\lambda_n} z_n - z_n\| \cdot \|J_{\lambda_n} z_n - u\| = 0$$

348

for all $(u, v) \in A$. So, we have $w \in A^{-1}0$. By (ii) in Theorem 3.1, $\{x_n\}$ converges strongly to z_0 .

The following is a genaralization of the result proved by Nakajo and Takahashi [13].

Theorem 3.4. Let $A : H \longrightarrow 2^H$ be a maximal monotone operator such that $A^{-1}0 \neq \emptyset$ and let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in H, \\ y_n = J_{\lambda_n}(x_n + \varepsilon_n), \\ C_n = \{ z \in H \mid ||y_n - z|| \le ||x_n + \varepsilon_n - z|| \}, \\ Q_n = \{ z \in H \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\lambda_n\} \subset (0,\infty)$ and $J_{\lambda_n} = (I + \lambda_n A)^{-1}$ for each $n \in \mathbb{N} \cup \{0\}$. If (i) $\liminf_{n \to \infty} \lambda_n > 0$ and $\lim_{n \to \infty} \|\varepsilon_n\| = 0$ or (ii) $\sum_{n=0}^{\infty} \lambda_n^2 = \infty$ and $\sum_{n=0}^{\infty} \|\varepsilon_n\|^2 < \infty$, then, $\{x_n\}$ converges strongly to $z_0 = P_{A^{-1}0}(x_0)$.

Proof. If C = H and $T_n = J_{\lambda_n}$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we can select $a_n = 0$ for every $n \in \mathbb{N} \cup \{0\}$. As in the proof of Theorem 3.3, $\{x_n\}$ converges strongly to z_0 .

The following is the result proved by Nakajo and Takahashi [13].

Theorem 3.5. Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ y_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C \mid ||y_n - z|| \le ||x_n - z|| \}, \\ Q_n = \{ z \in C \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for each $n \in \mathbb{N} \cup \{0\}$, where $\{\alpha_n\} \subset [0, a]$ for some $a \in [0, 1)$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{F(T)}(x_0)$.

Proof. If $T_n = \alpha_n I + (1 - \alpha_n)T$ and $\varepsilon_n = 0$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we have that $F(T_n) = F(T)$ and $a_n = 0$ for every $n \in \mathbb{N} \cup \{0\}$. Let $\{z_n\}$ be a bounded sequence in C which satisfies $\lim_{n\to\infty} ||z_n - T_n z_n|| = 0$. We obtain

 $\lim_{n\to\infty} ||z_n - Tz_n|| = 0$. So, by Opial's condition, we get $\omega_w(z_n) \subset F(T)$. Therefore, $\{x_n\}$ converges strongly to z_0 from (ii) or (iii) in Theorem 3.1.

The following is a generalization of the result proved by Nakajo and Takahashi [14].

Theorem 3.6. Let $\alpha > 0$. Let $A : H \longrightarrow H$ be an α -inverse-stronglymonotone operator with D(A) = H and let $B : H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A + B)^{-1}0 \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$x_0 = x \in H , y_n = J^B_{\lambda_n} (I - \lambda_n A) x_n , C_n = \{ z \in H \mid ||y_n - z|| \le ||x_n - z|| \} , Q_n = \{ z \in H \mid (x_n - z, x_0 - x_n) \ge 0 \} , x_{n+1} = P_{C_n \cap Q_n} (x_0)$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\lambda_n\} \subset (0, 2\alpha]$ with $\sum_{n=0}^{\infty} \lambda_n^2 = \infty$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{(A+B)^{-1}0}(x_0)$.

Proof. If C = H, $T_n = J_{\lambda_n}^B (I - \lambda_n A)$ and $\varepsilon_n = 0$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we have $F(T_n) = (A+B)^{-1}0$ and $a_n = 0$ for every $n \in \mathbb{N} \cup \{0\}$ by (iv) and (v) in Lemma 2.2. Let $\{z_n\}$ be a bounded sequence in H which satisfies $\sum_{n=0}^{\infty} ||z_{n+1} - z_n||^2 < \infty$ and $\sum_{n=0}^{\infty} ||z_n - J_{\lambda_n}^B (I - \lambda_n A) z_n||^2 < \infty$. We obtain $\lim_{n\to\infty} ||z_n - J_{\lambda_n}^B (I - \lambda_n A) z_n|| = 0$ and $\lim_{n\to\infty} \frac{1}{\lambda_n} ||z_n - J_{\lambda_n}^B (I - \lambda_n A) z_n|| = 0$ from $\sum_{n=0}^{\infty} \lambda_n^2 \{\frac{1}{\lambda_n} ||z_n - J_{\lambda_n}^B (I - \lambda_n A) z_n||\}^2 < \infty$. Assume that $z_n \rightharpoonup w$. As in the proof of [14, Theorem 3.1], we get

$$\left(u_n - u, \frac{z_n - u_n}{\lambda_n} - Az_n - (v - Au)\right) \ge 0$$

for every $(u, v) \in A + B$ and $n \in \mathbb{N} \cup \{0\}$, where $u_n = J^B_{\lambda_n}(I - \lambda_n A)z_n$ for all $n \in \mathbb{N} \cup \{0\}$. So, we have

$$(u_n - u, -v) \ge \left(u_n - u, \frac{u_n - z_n}{\lambda_n} + (Az_n - Au)\right)$$
$$= \frac{1}{\lambda_n}(u_n - u, (I - \lambda_n A)u_n - (I - \lambda_n A)z_n) + (u_n - u, Au_n - Au)$$
$$\ge -\frac{1}{\lambda_n} \|u_n - u\| \cdot \|(I - \lambda_n A)u_n - (I - \lambda_n A)z_n\|$$
$$\ge -\frac{1}{\lambda_n} \|u_n - u\| \cdot \|u_n - z_n\|$$

350

by (iii) in Lemma 2.2 which implies

$$(w-u,-v) \ge -\liminf_{n \to \infty} \frac{1}{\lambda_n} \|u_n - u\| \cdot \|u_n - z_n\| = 0$$

for every $(u, v) \in A + B$ since a sequence $\{u_n - u\}$ is bounded. Therefore, $w \in (A+B)^{-1}0$ as A+B is maximal monotone from (ii) in Lemma 2.2. Therefore, $\{x_n\}$ converges strongly to z_0 by (ii) in Theorem 3.1.

The following is a generalization of the result proved by Iiduka, Takahashi and Toyoda [9].

Theorem 3.7. Let $\alpha > 0$ and let C be a nonempty closed convex subset of H. Let $A : C \longrightarrow H$ be an α -inverse-strongly-monotone operator such that $VI(C, A) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ y_n = P_C(I - \lambda_n A) x_n, \\ C_n = \{ z \in C \mid ||y_n - z|| \le ||x_n - z|| \}, \\ Q_n = \{ z \in C \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\lambda_n\} \subset (0, 2\alpha]$ with $\sum_{n=0}^{\infty} \lambda_n^2 = \infty$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{VI(C,A)}(x_0)$.

Proof. If $T_n = P_C(I - \lambda_n A)$ and $\varepsilon_n = 0$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we have $F(T_n) = VI(C, A)$ for every $n \in \mathbb{N} \cup \{0\}$. Further, we get $a_n = 0$ for each $n \in \mathbb{N} \cup \{0\}$ from Lemma 2.3. Let $\{z_n\}$ be a bounded sequence in C which satisfies $\sum_{n=0}^{\infty} ||z_{n+1} - z_n||^2 < \infty$ and $\sum_{n=0}^{\infty} ||z_n - v_n||^2 < \infty$, where $v_n = P_C(I - \lambda_n A)z_n$ for all $n \in \mathbb{N} \cup \{0\}$. We get $\lim_{n \to \infty} ||z_n - v_n|| = 0$ and $\lim_{n \to \infty} \inf_{\lambda_n} ||z_n - v_n|| = 0$ from $\sum_{n=0}^{\infty} \lambda_n^2 \{\frac{1}{\lambda_n} ||z_n - v_n||\}^2 < \infty$. Assume that $z_n \to w$. For every $u \in C$, we have

$$(z_n - \lambda_n A z_n - v_n, v_n - u) \ge 0$$

which implies

$$(Au, u - v_n) \ge (Av_n - Au, v_n - u) + \frac{1}{\lambda_n} ((I - \lambda_n A)v_n - (I - \lambda_n A)z_n, v_n - u)$$
$$\ge -\frac{1}{\lambda_n} \|v_n - u\| \cdot \|(I - \lambda_n A)v_n - (I - \lambda_n A)z_n\|$$

for all $n \in \mathbf{N} \cup \{0\}$ since A is monotone. And we obtain

$$\|(I - \lambda_n A)v_n - (I - \lambda_n A)z_n\|^2 \le \|v_n - z_n\|^2 + \lambda_n(\lambda_n - 2\alpha)\|Av_n - Az_n\|^2 \le \|v_n - z_n\|^2$$

and hence

$$(Au, u - v_n) \ge -\frac{1}{\lambda_n} \|v_n - u\| \cdot \|v_n - z_n\|$$

for every $u \in C$ and $n \in \mathbb{N} \cup \{0\}$. So, we get $(Au, u - w) \ge 0$ for each $u \in C$ as a sequence $\{v_n - u\}$ is bounded. Since A is continuous, we obtain $(u - w, Aw) \ge 0$ for all $u \in C$, that is, $w \in VI(C, A)$. Therefore, $\{x_n\}$ converges strongly to z_0 by (ii) in Theorem 3.1.

The following are the results by Iiduka and Takahashi [10].

Theorem 3.8. Let $\alpha > 0$ and let C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C into itself and let $A : C \longrightarrow H$ be an α -inverse-strongly-monotone operator such that $F(T) \cap VI(C, A) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ y_n = P_C(I - \lambda_n A)Tx_n, \\ C_n = \{z \in C \mid ||y_n - z|| \leq ||x_n - z||\}, \\ Q_n = \{z \in C \mid (x_n - z, x_0 - x_n) \geq 0\}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\lambda_n\} \subset [a, b]$ for some $a, b \in (0, 2\alpha)$ with $a \leq b$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{F(T) \cap VI(C,A)}(x_0)$.

Proof. If $T_n = P_C(I - \lambda_n A)T$ and $\varepsilon_n = 0$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we have $F(T_n) = F(T) \cap VI(C, A)$ for every $n \in \mathbb{N} \cup \{0\}$. In fact, $F(T) \cap VI(C, A) \subset F(T_n)$ is trivial. Let $z \in F(T_n)$ and $u \in F(T) \cap VI(C, A)$. We get

$$||z-u||^{2} = ||P_{C}(I-\lambda_{n}A)Tz-u||^{2} \le ||Tz-u||^{2} - \frac{2\alpha - \lambda_{n}}{2\alpha}||Tz-P_{C}(I-\lambda_{n}A)Tz||^{2}$$

$$\le ||z-u||^{2} - \frac{2\alpha - b}{2\alpha}||Tz-P_{C}(I-\lambda_{n}A)Tz||^{2}$$

from Lemma 2.3. So we obtain $Tz = P_C(I - \lambda_n A)Tz$ which implies Tz = z. And we have $P_C(I - \lambda_n A)z = P_C(I - \lambda_n A)Tz = z$. Therefore, $F(T_n) \subset F(T) \cap VI(C, A)$. And we get $a_n = 0$ for each $n \in \mathbb{N} \cup \{0\}$ by nonexpansivity of T and Lemma 2.3. Let $\{z_n\}$ be a bounded sequence in C which satisfies $\lim_{n\to\infty} ||z_n - T_n z_n|| = 0$ and let $u \in F(T) \cap VI(C, A)$. We obtain

$$\begin{aligned} \|z_n - u\|^2 &\leq (\|z_n - T_n z_n\| + \|T_n z_n - u\|)^2 \\ &= \|z_n - T_n z_n\|^2 + 2\|z_n - T_n z_n\| \\ &\cdot \|P_C(I - \lambda_n A)Tz_n - u\| + \|P_C(I - \lambda_n A)Tz_n - u\|^2 \\ &\leq \|z_n - T_n z_n\|^2 + 2\|z_n - T_n z_n\| \cdot \|Tz_n - u\| \\ &+ \left\{ \|Tz_n - u\|^2 - \frac{2\alpha - \lambda_n}{2\alpha} \|Tz_n - P_C(I - \lambda_n A)Tz_n\|^2 \right\} \\ &\leq \|z_n - T_n z_n\|^2 + 2\|z_n - T_n z_n\| \cdot \|z_n - u\| \\ &+ \|z_n - u\|^2 - \frac{2\alpha - b}{2\alpha} \|Tz_n - T_n z_n\|^2 \end{aligned}$$

for all $n \in \mathbf{N}$ from Lemma 2.3. So, we have

$$\frac{2\alpha - b}{2\alpha} \|Tz_n - T_n z_n\|^2 \le \|z_n - T_n z_n\|^2 + 2\|z_n - T_n z_n\| \cdot \|z_n - u\|$$

for every $n \in \mathbb{N}$ and hence $\lim_{n\to\infty} ||Tz_n - T_nz_n|| = 0$. Therefore, $\lim_{n\to\infty} ||z_n - Tz_n|| = 0$ by $\lim_{n\to\infty} ||z_n - T_nz_n|| = 0$. From Opial's condition, we get $\omega_w(z_n) \subset F(T)$. Further, we obtain

$$\begin{aligned} \|z_n - P_C(I - \lambda_n A) z_n\| \\ &\leq \|z_n - Tz_n\| + \|Tz_n - P_C(I - \lambda_n A)Tz_n\| \\ &+ \|P_C(I - \lambda_n A)Tz_n - P_C(I - \lambda_n A)z_n\| \\ &\leq 2\|z_n - Tz_n\| + \|Tz_n - P_C(I - \lambda_n A)Tz_n\| \end{aligned}$$

for every $n \in \mathbf{N}$ by nonexpansivity of $P_C(I - \lambda_n A)$ and hence $\lim_{n \to \infty} ||z_n - P_C(I - \lambda_n A)z_n|| = 0$. As in the proof of Theorem 3.7, we have $\omega_w(z_n) \subset VI(C, A)$. So, $\omega_w(z_n) \subset F(T) \cap VI(C, A)$. Therefore, $\{x_n\}$ converges strongly to z_0 by (ii) or (iii) in Theorem 3.1.

Theorem 3.9. Let $\alpha > 0$ and let C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C into itself and let $A : C \longrightarrow H$ be an α -inverse-strongly-monotone operator such that $F(T) \cap VI(C, A) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ y_n = TP_C(I - \lambda_n A)x_n, \\ C_n = \{z \in C \mid ||y_n - z|| \le ||x_n - z||\}, \\ Q_n = \{z \in C \mid (x_n - z, x_0 - x_n) \ge 0\}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\lambda_n\} \subset [a, b]$ for some $a, b \in (0, 2\alpha)$ with $a \leq b$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{F(T) \cap VI(C,A)}(x_0)$.

Proof. If $T_n = TP_C(I - \lambda_n A)$ and $\varepsilon_n = 0$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we have $F(T_n) = F(T) \cap VI(C, A)$ for every $n \in \mathbb{N} \cup \{0\}$. In fact, similarly in Theorem 3.8, we get

$$||z - u||^2 \leq ||P_C(I - \lambda_n A)z - u||^2 \leq ||z - u||^2 - \frac{2\alpha - b}{2\alpha} ||z - P_C(I - \lambda_n A)z||^2$$

for $z \in F(T_n)$ and $u \in F(T) \cap VI(C, A)$. Hence we obtain $z = P_C(I - \lambda_n A)z$ and further z = Tz, too. And we have $a_n = 0$ for each $n \in \mathbb{N} \cup \{0\}$ by Lemma 2.3. Let $\{z_n\}$ be a bounded sequence in C which satisfies $\lim_{n\to\infty} ||z_n - T_n z_n|| = 0$ and let $u \in F(T) \cap VI(C, A)$. Similarly in Theorem 3.8, we get

$$||z_n - u||^2 \le ||z_n - T_n z_n||^2 + 2||z_n - T_n z_n||$$

$$\cdot ||z_n - u|| + ||z_n - u||^2 - \frac{2\alpha - b}{2\alpha} ||z_n - P_C(I - \lambda_n A) z_n||^2$$

for all $n \in \mathbf{N}$. So, we obtain $\lim_{n\to\infty} ||z_n - P_C(I - \lambda_n A)z_n|| = 0$ which implies $\omega_w(z_n) \subset VI(C, A)$. Further, we have

$$||z_n - Tz_n|| \leq ||z_n - T_n z_n|| + ||T_n z_n - Tz_n|| \leq ||z_n - T_n z_n|| + ||P_C (I - \lambda_n A) z_n - z_n||$$

for every $n \in \mathbf{N}$. Therefore, $\lim_{n\to\infty} ||z_n - Tz_n|| = 0$. By Opial's condition, we get $\omega_w(z_n) \subset F(T)$. So, $\{x_n\}$ converges strongly to z_0 from (ii) or (iii) in Theorem 3.1.

The following theorem contains the result proved by Kikkawa and Takahashi [11].

Theorem 3.10. Let C be a nonempty closed convex subset of H. Let $\{S_n\}$ be a family of nonexpansive mappings of C into itself with $\bigcap_{i=1}^{\infty} F(S_i) \neq \emptyset$ and let $\{\beta_{n,k} : n, k \in \mathbb{N}, 1 \le k \le n\} \subset (0, 1)$ be a sequence of real numbers such that (i) $\beta_{n,k} = \beta_k \ (\forall n = k, k+1, \cdots)$ for every $k \in \mathbb{N}$ such that $0 < \beta_k \le b < 1 \ (\forall k \in \mathbb{N})$ for some $b \in (0, 1)$ or (ii) $a \le \beta_{i,j} \le b$ for every $i, j \in \mathbb{N}$ ($i \ge j$) for some $a, b \in (0, 1)$ with $a \le b$. Let $W_n \ (n = 1, 2, \cdots)$ be the W-mapping generated by $S_n, S_{n-1}, \cdots, S_1$ and $\beta_{n,n}, \beta_{n,n-1}, \cdots, \beta_{n,1}$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_1 = x \in C, \\ y_n = W_n x_n, \\ C_n = \{ z \in C \mid ||y_n - z|| \le ||x_n - z|| \}, \\ Q_n = \{ z \in C \mid (x_n - z, x_1 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_1) \end{cases}$$

for each $n \in \mathbb{N}$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{\bigcap_{i=1}^{\infty} F(S_i)}(x_1)$.

Proof. If $T_n = W_n$ and $\varepsilon_n = 0$ for all $n \in \mathbb{N}$ in Theorem 3.1, we have $\bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{n=1}^{\infty} F(W_n) = \bigcap_{i=1}^{\infty} F(S_i)$ and $a_n = 0$ for every $n \in \mathbb{N}$ by Lemma 2.4 and nonexpansivity of W_n . Let $\{z_n\}$ be a bounded sequence in C which satisfies $\lim_{n\to\infty} \|z_n - T_n z_n\| = 0$.

(i) Let W be the W-mapping generated by S_1, S_2, \cdots and β_1, β_2, \cdots . Assume that $z_n \rightharpoonup w$. As in the proof of [11, Theorem 3.1], if we suppose that $w \neq Ww$,

$$\begin{split} \liminf_{n \to \infty} \|z_n - w\| &< \liminf_{n \to \infty} \|z_n - Ww\| \\ &\leq \liminf_{n \to \infty} (\|z_n - W_n z_n\| + \|W_n z_n - W_n w\| + \|W_n w - Ww\|) \\ &\leq \liminf_{n \to \infty} (\|z_n - W_n z_n\| + \|z_n - w\| + \|W_n w - Ww\|) \\ &= \liminf_{n \to \infty} \|z_n - w\| \end{split}$$

by Opial's condition. This is a contradiction. So, we get $\omega_w(z_n) \subset F(W) = \bigcap_{n=1}^{\infty} F(S_n)$.

(ii) We get $\lim_{n\to\infty} ||z_n - S_1 U_{n,2} z_n|| = 0$ from $0 < a \le \beta_{n,1}$. Let $z \in \bigcap_{n=1}^{\infty} F(S_n)$. We obtain

$$\begin{aligned} \|z_n - z\|^2 &\leq (\|z_n - S_1 U_{n,2} z_n\| + \|S_1 U_{n,2} z_n - z\|)^2 \\ &= \|z_n - S_1 U_{n,2} z_n\| (\|z_n - S_1 U_{n,2} z_n\| \\ &+ 2\|S_1 U_{n,2} z_n - z\|) + \|S_1 U_{n,2} z_n - z\|^2 \\ &\leq M \|z_n - S_1 U_{n,2} z_n\| + \|U_{n,2} z_n - z\|^2 \\ &= M \|z_n - S_1 U_{n,2} z_n\| + \beta_{n,2} \|S_2 U_{n,3} z_n - z\|^2 \\ &+ (1 - \beta_{n,2}) \|z_n - z\|^2 - \beta_{n,2} (1 - \beta_{n,2}) \|S_2 U_{n,3} z_n - z_n\|^2 \\ &\leq M \|z_n - S_1 U_{n,2} z_n\| + \|z_n - z\|^2 - \beta_{n,2} (1 - \beta_{n,2}) \|S_2 U_{n,3} z_n - z_n\|^2 \end{aligned}$$

for each $n \in \mathbf{N}$, where $M = \sup_{n \in \mathbf{N}} \{ \|z_n - S_1 U_{n,2} z_n\| + 2 \|S_1 U_{n,2} z_n - z\| \}$. So, we obtain $\lim_{n\to\infty} \|S_2 U_{n,3} z_n - z_n\| = 0$. By induction, we have

$$\lim_{n \to \infty} \|S_m U_{n,m+1} z_n - z_n\| = 0$$

for all $m \in \mathbf{N}$. Since

$$\begin{aligned} \|z_n - S_m z_n\| &\leq \|z_n - S_m U_{n,m+1} z_n\| + \|S_m U_{n,m+1} z_n - S_m z_n\| \\ &\leq \|z_n - S_m U_{n,m+1} z_n\| + \|U_{n,m+1} z_n - z_n\| \\ &= \|z_n - S_m U_{n,m+1} z_n\| + \beta_{n,m+1} \|S_{m+1} U_{n,m+2} z_n - z_n\| \\ &\leq \|z_n - S_m U_{n,m+1} z_n\| + b \|S_{m+1} U_{n,m+2} z_n - z_n\| \end{aligned}$$

for every $n \in \mathbf{N}$, we get $\lim_{n\to\infty} ||z_n - S_m z_n|| = 0$ for all $m \in \mathbf{N}$. By Opial's condition, $\omega_w(z_n) \subset F(S_m)$ for each $m \in \mathbf{N}$ which implies $\omega_w(z_n) \subset \bigcap_{n=1}^{\infty} F(T_n)$. Therefore, $\{x_n\}$ converges strongly to z_0 from (ii) or (iii) in Theorem 3.1.

The following is the result proved by Nakajo and Takahashi [13].

Theorem 3.11. Let C be a nonempty closed convex subset of H and let $S = \{T(s) \mid 0 \le s < \infty\}$ be a one-parameter nonexpansive semigroup on C such that $F(S) \ne \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ y_n = \alpha_n x_n + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) x_n \, ds, \\ C_n = \{ z \in C \mid ||y_n - z|| \le ||x_n - z|| \}, \\ Q_n = \{ z \in C \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\alpha_n\} \subset [0, a]$ for some $a \in [0, 1)$ and $\{t_n\}$ is a positive real divergent sequence. Then, $\{x_n\}$ converges strongly to $z_0 = P_{F(S)}(x_0)$.

Proof. If $T_n x = \alpha_n x + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) x \, ds \ (\forall x \in C)$ and $\varepsilon_n = 0$ for all $n \in \mathbf{N} \cup \{0\}$ in Theorem 3.1, we have that $T_n : C \longrightarrow C$ for every $n \in \mathbf{N} \cup \{0\}$, $\bigcap_{n=0}^{\infty} F(T_n) = F(S)$ and $a_n = 0$ for each $n \in \mathbf{N} \cup \{0\}$. Let $\{z_n\}$ be a bounded sequence in C which satisfies $\lim_{n\to\infty} ||z_n - T_n z_n|| = 0$. At first, we have

$$(1-a) \left\| z_n - \frac{1}{t_n} \int_0^{t_n} T(s) z_n \, ds \right\| \le (1-\alpha_n) \left\| z_n - \frac{1}{t_n} \int_0^{t_n} T(s) z_n \, ds \right\| = \|z_n - T_n z_n\|$$

for all $n \in \mathbf{N}$ which implies

$$\lim_{n \to \infty} \left\| z_n - \frac{1}{t_n} \int_0^{t_n} T(s) z_n \, ds \right\| = 0.$$

And as in the proof of [13, Theorem 4.1], we have, for every $h \ge 0$,

$$\begin{aligned} \|z_n - T(h)z_n\| &\leq \left\| z_n - \frac{1}{t_n} \int_0^{t_n} T(s)z_n \, ds \right\| \\ &+ \left\| \frac{1}{t_n} \int_0^{t_n} T(s)z_n \, ds - T(h) \Big(\frac{1}{t_n} \int_0^{t_n} T(s)z_n \, ds \Big) \right\| \\ &+ \left\| T(h)z_n - T(h) \Big(\frac{1}{t_n} \int_0^{t_n} T(s)z_n \, ds \Big) \right\| \\ &\leq 2 \left\| z_n - \frac{1}{t_n} \int_0^{t_n} T(s)z_n \, ds \right\| \end{aligned}$$

$$+ \left\| \frac{1}{t_n} \int_0^{t_n} T(s) z_n \, ds - T(h) \left(\frac{1}{t_n} \int_0^{t_n} T(s) z_n \, ds \right) \right\|$$

for each $n \in \mathbf{N}$. So, we get

$$\lim_{n \to \infty} \|z_n - T(h)z_n\| = 0$$

for all $h \ge 0$ by Lemma 2.5. By Opial's condition, we obtain $\omega_w(z_n) \subset F(S)$. Therefore, $\{x_n\}$ converges strongly to z_0 from (ii) or (iii) in Theorem 3.1.

The following is the result proved by Atsushiba and Takahashi [3].

Theorem 3.12. Let C be a nonempty closed convex subset of H and let S be a commutative semigroup. Let $S = \{T(t) \mid t \in S\}$ be a nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Let D be a subspace of B(S) such that D contains constants, D is invariant under r_s for every $s \in S$ and $t \mapsto (T(t)x, y)$ is in D for each $x \in C$ and $y \in H$. Let $\{\mu_n\}$ be a sequence of means on D such that $\lim_{n\to\infty} \|\mu_n - r_s^*\mu_n\| = 0$ for all $s \in S$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ y_n = \alpha_n x_n + (1 - \alpha_n) T_{\mu_n} x_n, \\ C_n = \{ z \in C \mid \|y_n - z\| \le \|x_n - z\|\}, \\ Q_n = \{ z \in C \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\alpha_n\} \subset [0, a]$ for some $a \in (0, 1)$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{F(S)}(x_0)$.

Proof. If $T_n = \alpha_n I + (1 - \alpha_n) T_{\mu_n}$ and $\varepsilon_n = 0$ for all $n \in \mathbb{N} \cup \{0\}$ in Theorem 3.1, we have $T_n : C \longrightarrow C$, $a_n = 0$ for every $n \in \mathbb{N} \cup \{0\}$ and $\bigcap_{n=0}^{\infty} F(T_n) = F(S)$ from Lemmas 2.6 and 2.7. Let $\{z_n\}$ be a bounded sequence in C which satisfies $\lim_{n\to\infty} ||z_n - T_n z_n|| = 0$. At first, we get

$$(1-a)||z_n - T_{\mu_n} z_n|| \le (1-\alpha_n)||z_n - T_{\mu_n} z_n|| = ||z_n - T_n z_n||$$

for each $n \in \mathbf{N}$ which implies

$$\lim_{n \to \infty} \|z_n - T_{\mu_n} z_n\| = 0.$$

And for all $t \in S$,

$$\begin{aligned} \|z_n - T(t)z_n\| &\leq \|z_n - T_{\mu_n} z_n\| + \|T_{\mu_n} z_n - T(t)T_{\mu_n} z_n\| \\ &+ \|T(t)T_{\mu_n} z_n - T(t)z_n\| \\ &\leq 2\|z_n - T_{\mu_n} z_n\| + \|T_{\mu_n} z_n - T(t)T_{\mu_n} z_n\|. \end{aligned}$$

So, we obtain $\lim_{n\to\infty} ||z_n - T(t)z_n|| = 0$ for every $t \in S$ by Lemma 2.7. By Opial's condition, we get $\omega_w(z_n) \subset F(S)$. Therefore, $\{x_n\}$ converges strongly to z_0 by (ii) or (iii) in Theorem 3.1.

REFERENCES

- S. Atsushiba and W. Takahashi, Approximating common fixed points of nonexpansive semigroups by the Mann iteration process, *Ann. Univ. Mariae Curie-Sklodowska*, 51 (1997), 1-16.
- S. Atsushiba and W. Takahashi, A weak convergence theorem for nonexpansive semigroups by the Mann iteration process in Banach spaces, in Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka, Eds.), World Scientific, Singapore, 102-109, 1999.
- 3. S. Atsushiba and W. Takahashi, Strong convergence theorems for nonexpansive semigroups by a hybrid method, *J. Nonlinear Convex Anal.*, **3** (2002), 231-242.
- 4. H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for fejér-monotone methods in Hilbert spaces, *Math. Oper. Res.*, **26** (2001), 248-264.
- 5. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228.
- 6. R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, *Israel J. Math.*, **38** (1981), 304-314.
- 7. Y. Haugazeau, Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes, Thèse, Université de Paris, Paris, France, 1968.
- N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, *Nonlinear Analysis*, 12 (1988), 1269-1281.
- 9. H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, *Panamerican Math. J.*, **14** (2004), 49-61.
- H. Iiduka and W. Takahashi, Strong convergence theorems by a hybrid method for nonexpansive mappings and inverse-strongly-monotone mappings, in Fixed Point Theory and Applications (J. G. Falset, E. L. Fuster and B. Sims, Eds.), Yokohama Publishers, Yokohama, 81-94, 2004.
- 11. M. Kikkawa and W. Takahashi, Approximating fixed points of infinite nonexpansive mappings by the hybrid method, *J. Optim. Theory Appl.*, **117** (2003), 93-101.
- 12. F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, *Set-Valued Anal.*, **6** (1998), 313-344.
- 13. K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372-379.
- 14. K. Nakajo and W. Takahashi, Strong and weak convergence theorems by an improved splitting method, *Comm. Appl. Nonlinear Anal.*, **9** (2002), 99-107.

- 15. K. Nakajo, K. Shimoji and W. Takahashi, Weak and strong convergence theorems by Mann's type iteration and the hybrid method in Hilbert spaces, *J. Nonlinear Convex Anal.*, **4** (2003), 463-478.
- 16. Z. Opial, Weak convergence of the sequence of successive approximations for non-expansive mappings, *Bull. Amer. Math. Soc.*, **73** (1967), 591-597.
- 17. R. T. Rockafellar, Monotone operators and the proximal point algorithm, *SIAM J. Control Optim.*, **14** (1976), 877-898.
- 18. T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, *J. Math. Anal. Appl.*, **211** (1997), 71-83.
- 19. K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, *Taiwanese J. Math.*, **5** (2001), 387-404.
- 20. N. Shioji and W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, *Math. Japonica*, **50** (1999), 57-66.
- 21. M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, *Math. Programming Ser. A*, **87** (2000), 189-202.
- 22. W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, *Proc. Amer. Math. Soc.*, **81** (1981), 253-256.
- 23. W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, *Ann. Univ. Mariae Curie-Sklodowska Sect. A*, **51** (1997), 277-292.
- 24. W. Takahashi, *Nonlinear Functional Analysis*, Yokohama Publishers, Yokohama, 2000.
- 25. W. Takahashi, *Convex Analysis and Approximation of Fixed Points*, Yokohama Publishers, Yokohama, 2000(Japanese).
- 26. W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, *Math. Comput. Modelling*, *32* (2000), 1463-1471.

K. Nakajo Faculty of Engineering, Tamagawa University, Tamagawa-gakuen, Machida-shi, Tokyo, 194-8610, Japan E-mail: nakajo@eng.Tamagawa.ac.jp

K. Shimoji Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan E-mail: shimoji@math.u-ryukyu.ac.jp W. Takahashi Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan E-mail: wataru@is.titech.ac.jp

360