TAIWANESE JOURNAL OF MATHEMATICS

Vol. 10, No. 1, pp. 233-241, January 2006

This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE BANACH-STONE PROBLEM FOR L^p -SPACES

Chun-Yen Chou, Wu-Lang Day and Jyh-Shyang Jeang

Abstract. The Banach-Stone problem for L^p -spaces is to assert when a linear isometry between L^p -spaces is a weighted composition operator. We shall show that every σ -finite measure space with Sikorski's property solves the Banach-Stone probelm. In addition, we show that if X is a totally ordered and Dedekind complete, then every σ -finite μ -separable measure space (X, \mathcal{B}, μ) has Sikorski's property.

1. Introduction

Let X and Y be locally compact Hausdorff spaces. A classical Banach-Stone Theorem (see, e.g., Behrends [2, p. 138]) states that every isometry T from the Banach space $C_0(X)$ of continuous functions vanishing at infinity *onto* another $C_0(Y)$ is a weighted composition operator $Tf = h \cdot (f \circ \varphi)$, for all f in $C_0(X)$. In this paper, we call such a map T a BS map. We ask similar questions for operators between L^p -spaces. Given two measure spaces (X, \mathcal{B}, μ) and (Y, \mathcal{A}, ν) , is every linear isometry $T: L^p(X) \to L^q(Y)$ a BS map?

In [1] (see also [13, p. 415]), an affirmative answer is given for linear isometries $T:L^p[0,1]\to L^p[0,1]$ ($1\leq p<\infty,\ p\neq 2$). In [10], Lamperti showed that, for (X,\mathcal{B},μ) a σ -finite measure space, every linear isometry $T:L^p(X)\to L^p(X)$ ($1\leq p<\infty,\ p\neq 2$) is given by a still simple form $T\chi_B=h\cdot\chi_{\Phi(B)}$ for all B in \mathcal{B} . We call such a map T a Lamperti map. Note that, in [10], it is not said if T is a BS map or not, and this is still unknown for the time being.

Let (X, \mathcal{B}, μ) and (Y, \mathcal{A}, ν) be measure spaces and $1 \leq p, q \leq \infty$. A map $T: L^p(X) \to L^q(Y)$ is called *disjointness preserving* if $f \cdot g = 0$ a.e. $[\mu]$ implies $Tf \cdot Tg = 0$ a.e. $[\nu]$ for all f, g in $L^p(X)$. We shall see that every (surjective when $p = q = \infty$) linear isometry $T: L^p(X) \to L^q(Y)$ (either $1 \leq p, q < \infty, p \neq \infty$)

Received April 11, 2005.

Communicated by Ngai-Ching Wong.

2000 Mathematics Subject Classification: Primary 46E30, Secondary 46S20, 47A65.

Key words and phrases: Banach-Stone theorem, Disjointness preserving operator.

Partially supported by Taiwan National Science Council under grant: NSC 93-2115-M-145-001.

 $2, q \neq 2$ or $p = q = \infty$, we will call such an pair (p, q) accessible) is disjointness preserving. Therefore, it suffices to study merely bounded disjointness preserving operators.

We shall prove that (i) every σ -finite measure space (X, \mathcal{B}, μ) solves the *Lamperti problem* for L^p -spaces, that is, for an arbitrary measure space (Y, \mathcal{A}, ν) and an accessible (p,q), every (surjective when $p=q=\infty$) bounded disjointness preserving operator $T:L^p(X)\to L^q(Y)$ is a Lamperti map; (ii) every σ -finite measure space (X, \mathcal{B}, μ) with Sikorski's property solves the *Banach-Stone problem* for L^p -spaces, that is, for an arbitrary measure space (Y, \mathcal{A}, ν) and an accessible (p,q), every (surjective when $p=q=\infty$) bounded disjointness preserving operator $T:L^p(X)\to L^q(Y)$ is a BS map. Note that we have included the case $p=q=\infty$ here.

In [11], Lessard used a topological approach with some technical lifting theorems to give the result: Every Lamperti map $T:L^p(X,\mathcal{B},\mu)\to L^p(Y,\mathcal{A},\nu)$ is a BS map, if μ is tight. A finite Baire measure μ on a topological space X is said to be tight if for every $\epsilon>0$, there exists a compact set K in X such that $\mu^*(K)>\mu(X)-\epsilon$, where μ^* denotes the outer measure determined by μ .

We shall use an order theoretical approach to give a different sufficient condition (see Proposition 8) for a measure space (X,\mathcal{B},μ) solving the *Banach-Stone problem* for L^p -spaces. We note that $(\mathbb{N},2^\mathbb{N},\mu)$ is, in general, not tight and thus Lessard's theorem does not apply. However, Proposition 8 below does help. And as well-known examples, \mathbb{R}^n with Borel measure and Hilbert cube with an appropriate measure, satisfy our conditions and solve the Banach-Stone problem.

2. The Lamperti Problem

Let (X,\mathcal{B},μ) and (Y,\mathcal{A},ν) be arbitrary measure spaces. We first show that every isometry $T: L^p(X) \to L^q(Y)$ is disjointness preserving for $1 \leq p,q < \infty$, $p,q \neq 2$. Indeed, it is easy to see that $\|f+g\|^p + \|f-g\|^p = 2(\|f\|^p + \|g\|^p)$ if and only if $f \cdot g = 0$ a.e. $[\mu]$ (ref. [13, p. 416]). Since T is an isometry, for all f,g in $L^p(X)$

$$\begin{split} f \cdot g &= 0 \text{ a.e. } [\mu] \Leftrightarrow \|f + g\|^p + \|f - g\|^p = 2(\|f\|^p + \|g\|^p) \\ &\Leftrightarrow \|Tf + Tg\|^q + \|Tf - Tg\|^q = 2(\|Tf\|^q + \|Tg\|^q) \\ &\Leftrightarrow Tf \cdot Tg = 0 \text{ a.e. } [\nu]. \end{split}$$

Hence T is disjointness preserving.

Recall that the function space $L^\infty(X)$ is a commutative C^* -algebra with identity, equipped with the natural algebraic structure and the natural involution. By the Gelfand-Naimark theorem (see, e.g., [4, p. 236], $L^\infty(X)$ is isometrically *-isomorphic to $C(\Sigma)$, where Σ is the maximal ideal space of $L^\infty(X)$. Note that Σ is compact.

Let Λ be the Gelfand transform from $L^{\infty}(X)$ onto $C(\Sigma)$. We write \widehat{f} for $\Lambda(f)$ for simplicity of notations. For B in \mathcal{B} , since $\chi_B^2 = \chi_B$, we have $\widehat{\chi_B}^2 = \widehat{\chi_B}$. Then $\widehat{\chi_B}$ is the characteristic function of a closed and open subset U_B of Σ . Conversely, if U is a closed and open subset of Σ , then $\chi_U \in C(\Sigma)$ and $\chi_U = \widehat{f}$ for some f in $L^{\infty}(X)$. Moreover, $\widehat{f^2} = \widehat{f}$ and $f^2 = f$ in $L^{\infty}(X)$. It follows that $f = \chi_B$ for some B in B. Consequently, we have

Lemma 1. Every closed and open subset of Σ is of the form U_B for some B in \mathcal{B} .

Let (X,\mathcal{B},μ) and (Y,\mathcal{A},ν) be measure space, and Σ_1 (resp. Σ_2) the maximal ideal space of $L^\infty(X)$ (resp. $L^\infty(Y)$). For any given map $T:L^\infty(X)\to L^\infty(Y)$, define $\widehat{T}:C(\Sigma_1)\to C(\Sigma_2)$ by $\widehat{T}\widehat{f}=\widehat{Tf}$ for all f in $L^\infty(X)$. It is clear to get the following proposition.

Proposition 1. T is a bounded linear operator if and only if \widehat{T} is (and $||T|| = ||\widehat{T}||$); T is a linear isometry if and only if \widehat{T} is; T is disjointness preserving if and only if \widehat{T} is; and T is invertible if and only if \widehat{T} is (in this case, $\widehat{T}^{-1} = \widehat{T}^{-1}$).

Lemma 2. Every surjective linear isometry $T: L^{\infty}(X) \to L^{\infty}(Y)$ is disjointness preserving.

Proof. It follows Banach-Stone Theorem and the proposition above.

It is plain that there exists a linear isometry $T:L^\infty(X)\to L^\infty(Y)$ such that T is not disjointness preserving. (Consider, e.g., $T(x_1,x_2,\ldots,)=(\frac{x_1+x_2}{2},x_1,x_2,\ldots)$ from ℓ^∞ into ℓ^∞ .)

For the Lamperti problem, Lamperti's proof [10, p. 461] can be modified to prove the following theorem.

Theorem 2. If (X, \mathcal{B}, μ) is a σ -finite measure space, (Y, \mathcal{A}, ν) an arbitrary measure space and $T: L^p(X) \to L^q(Y)$ $(1 \le p, q < \infty \text{ and } p, q \ne 2)$ a bounded disjointness preserving linear operator, then T is a Lamperti map.

It remains to prove the case $p=q=\infty$ for Lamperti problem. We need the following theorem.

Theorem 3. ([8]) If X and Y are compact Hausdorff space and $T: C(X) \to C(Y)$ is a surjective disjointness preserving linear operator, then there exists a homeomorphism $\varphi: Y \to X$ and a function h in C(Y) with $h(y) \neq 0$ for all y in Y such that $Tf = h \cdot (f \circ \varphi)$ for all f in C(X).

Theorem 4. Let (X, \mathcal{B}, μ) and (Y, \mathcal{A}, ν) be measure spaces. If $T : L^{\infty}(X) \to L^{\infty}(Y)$ is a bounded surjective disjointness preserving linear operator, then there

exist a proper regular set homomorphism $\Phi: \mathcal{B} \to \mathcal{A}$ with $\Phi(X) = Y$ and a function h in $L^{\infty}(Y)$ with $h \neq 0$ a.e. $[\nu]$ such that $T\xi_B = h \cdot \xi_{\Phi(B)}$ for all B in \mathcal{B} . In other words, T is a Lamperti map.

Proof. Let Σ_1 (resp. Σ_2) be the maximal ideal space of $L^\infty(X)$ (resp. $L^\infty(Y)$). Let $\widehat{T}:C(\Sigma_1)\to C(\Sigma_2)$ be defined by $\widehat{T}\widehat{f}=\widehat{Tf}$ for all f in $L^\infty(X)$ (via the Gelfand transform Λ). By Proposition 1, \widehat{T} is a bounded surjective disjointness preserving linear operator. By Theorem 3, there exist a homeomorphism $\varphi:\Sigma_2\to\Sigma_1$ and a function h in $L^\infty(X)$ with $h\neq 0$ a.e. $[\nu]$ such that $\widehat{T}\widehat{f}=\widehat{h}\cdot(\widehat{f}\circ\varphi)$ for all f in $L^\infty(X)$. Let $\Phi:\mathcal{B}\to\mathcal{A}$ be defined, modulo null sets, by $\Phi(B)=A$ if $U_A=\varphi^{-1}(U_B)$ in the notations of Lemma 1. Φ is a proper regular set homomorphism.

It is easy to see that Φ preserves differences and finite unions, and $\nu(\Phi(B))=0$ if and only if $\mu(B)=0$. By the homeomorphism of φ , Φ is surjective and $\Phi(X)=Y$.

It remains to show that Φ preserves countable union. Suppose that $\{B_n\}_n$ is a sequence of measurable sets in \mathcal{B} , we need to show that $\Phi(\bigcup_{n=1}^\infty B_n) = \bigcup_{n=1}^\infty \Phi(B_n)$, or equivalently, $\varphi^{-1}(U_{\cup B_n}) = \bigcup_{\sigma^{-1}(U_{B_n}) \in \mathbb{R}} (U_{\cup B_n}) = \sup_{\sigma^{-1}(U_{\cup B_n}) \in \mathbb{R}} (U_{\cup B_n})$. Suppose that U_A is anothre upper bound of $\{\varphi^{-1}(U_{B_n})\}_n$. Since Φ is surjective, there is a B in \mathcal{B} such that $\Phi(B) = A$. By assumption, $\varphi^{-1}(U_{B_n}) \subset U_A = \varphi^{-1}(U_B)$, then $U_{B_n} \subset U_B$ for all $n \in \mathbb{N}$. Since $U_{\cup B_n} = \sup_{\sigma^{-1}(U_{B_n}) \in \mathbb{N}} (U_{\cup B_n}) \subset \varphi^{-1}(U_{\cup B_n}) = \sup_{\sigma^{-1}(U_{B_n}) \in \mathbb{N}} (U_{\cup B_n}) = \sup_{\sigma^{-1}(U_{\cup B_n}) \in \mathbb{N}} (U_{\cup B_n}) = \sup_{\sigma^{-1}(U_{\cup B_$

Finally, observe that, for all B in \mathcal{B} ,

$$\widehat{T\chi_B} = \widehat{T}\widehat{\chi_B} = \widehat{h} \cdot (\widehat{\chi_B} \circ \varphi) = \widehat{h} \cdot (\chi_{U_B} \circ \varphi) = \widehat{h} \cdot \chi_{\varphi^{-1}(U_B)}$$
$$= \widehat{h} \cdot \chi_{U_{\Phi(B)}} = \widehat{h} \cdot \widehat{\chi_{\Phi(B)}} = \widehat{h} \cdot \widehat{\chi_{\Phi(B)}}.$$

Hence, $T\chi_B = h \cdot \chi_{\Phi(B)}$ for all B in \mathcal{B} .

As an immediate consequence of Theorems 2 and 4, we have the following

Theorem 5. Every σ -finite measure space solves the Lamperti problem.

3. The Banach-Stone Problem

In this section, we devote to the Banach-Stone problem. First, let us to see a special case.

Proposition 6. If $1 \le p$, $q \le \infty$, and $T : \ell^p \to \ell^q$ is a bounded disjointness preserving operator, then there exist a map $\varphi : \mathbb{N} \to \mathbb{N}$ and a function h in ℓ^∞ such that,

$$Tx = h \cdot (x \circ \varphi) \text{ for all } x \in \ell^p.$$

Proof. For each m in \mathbb{N} , define $e_m: \mathbb{N} \to \mathbb{N}$ by $e_m(n) = 1$ if m = n, and $e_m(n) = 0$ otherwise. For each n in \mathbb{N} , define δ_n to be the linear functional on ℓ^q sending e_n to 1, and e_m to 0 if $m \neq n$. For each n in \mathbb{N} , define $\Phi(n) = \{m : Te_m(n) \neq 0\}$. Since T is disjoint preserving, $\Phi(n)$ contains at most one element.

Let $\mathbf{N}_0 = \{n : \Phi(n) = \emptyset\}$. It is easy to see that $\{n : \delta_n \circ T = 0\} \subset \mathbf{N}_0$. On the other hand, let $n \in \mathbf{N}_0$. Since the linear span of $\{em : m \in \mathbb{N}\}$ is weak ast-dense in ℓ^p , $\delta_n \circ T = 0$. Hence, $\mathbf{N}_0 = \{n : \delta_n \circ T = 0\}$.

Let n_0 be a fixed natural number. Define $\varphi : \mathbb{N} \to \mathbb{N}$ by $\varphi(n) = m$ where m is the unique element in $\Phi(n)$ if $n \in \mathbb{N} \setminus \mathbf{N}_0$, and $\varphi(n) = n_0$ if $n \in \mathbf{N}_0$.

If $n \in \mathbb{N} \setminus \mathbf{N}_0$, then there is a scalar $\alpha_n \neq 0$ such that $\delta_n \circ T = \alpha_n \cdot \delta_{\varphi(n)}$. To see this, if $n \in \mathbb{N} \setminus \mathbf{N}_0$, then it is easy to see that $\ker (\delta_n \circ T)$ is a nontrivial subspace of ℓ^p . Since $\delta_n \circ T$ and $\delta_{\varphi(n)}$ are linear functionals defined on ℓ^p , it suffices to show that $\ker (\delta_n \circ T) = \ker \delta_{\varphi(n)}$. Let $x \in \ker \delta_{\varphi(n)}$, that is, $x(\varphi(n)) = 0$. Since $Te_{\varphi(n)}(n) \neq 0$ and T is disjointness-preserving, we have Tx(n) = 0, that is, $x \in \ker (\delta_n \circ T)$. That is, $\emptyset \neq \ker \delta_{\varphi(n)} \subset \ker (\delta_n \circ T)$. Notice that $\ker \delta_{\varphi(n)}$ and $\ker (\delta_n \circ T)$ have same codimension. Therefore, $\ker (\delta_n \circ T) = \ker \delta_{\varphi(n)}$. This establishes the claim.

Now, let $h: \mathbb{N} \to \mathbb{K}$ be defined by $h(n) = \alpha_n$ if $n \in \mathbb{N} \setminus \mathbf{N}_0$, and h(n) = 0 otherwise. Then $\delta_n \circ T = h(n) \cdot \delta_{\varphi(n)}$ and thus $(Tx)(n) = h(n) \cdot x(\varphi(n))$ for all x in ℓ^p and all natural numbers n. Also, $|h(n)| = |h(n) \cdot e_{\varphi(n)}(\varphi(n))| = |Te_{\varphi(n)}(n)| \le ||Te_{\varphi(n)}||_q \le ||T||$ for all natural numbers n. Thus $||h||_{\infty} = ||T||$ and this completes the proof.

Now, we consider the Banach-Stone problem in the general case. Observe that the gap between Lamperti map and BS map is the extent to which whether regular set homomorphism can be induced by a point map. To be more precise, we introduce the following notion.

For a measure space (X, \mathcal{B}, μ) a member B of \mathcal{B} is an atom of μ if $\mu(C) = \mu(B)$ or $\mu(C) = 0$ for all C in \mathcal{B} with $C \subset B$. We call (X, \mathcal{B}, μ) an atom-free measure space if μ posseses no atom. We call a measure subspace X' of X a maximal atom free subspace if X' is atom-free and $X \setminus X'$ is a disjoint union of atoms of μ .

We say that an atom-free measure space (X,\mathcal{B},μ) has $\mathit{Sikorski's property}$ if, for an arbitrary measure space (Y,\mathcal{A},ν) , every regular set homomorphism $\Phi:\mathcal{B}\to\mathcal{A}$ with $\Phi(X)=Y$ is induced by a measurable point map φ , that is, $\Phi(B)=\varphi^{-1}(B)$ for any B in \mathcal{B} .

Remark. It is known (cf., [13, p. 397]) that ([0,1], $\mathcal{B}_{[0,1]}, \mu$) has Sikorski's property, where $\mathcal{B}_{[0,1]}$ is the Borel σ -algebra and μ is any σ -finite regular measure on $\mathcal{B}_{[0,1]}$.

Theorem 7. Every σ -finite measure space (X, \mathcal{B}, μ) which has Sikorski's

property solves the Banach-Stone problem.

Proof. Let $\{a_i\}_{i\in I}$ be an arbitrary maximal set of atoms of μ . Since μ is σ -finite, I is at most countable. Let $X_1=\bigcup_{i\in I}a_i$, then X_1 works exactly as a subset of \mathbb{N} . (For the Banach-Stone problem on \mathbb{N} , see Proposition 6.) Thus, without loss of generality, we may assume μ is atom-free. For an arbitrary measure space (Y,\mathcal{A},ν) , let $T:L^p(X)\to L^q(Y)$ be a (surjective when $p=q=\infty$) bounded disjointness preserving operator. It demands to show that T is a BS map. By Theorem 5, there exist a regular set homomorphism $\Phi:\mathcal{B}\to\mathcal{A}$ and a $h\in L^q(Y)$ such that $T\chi_B=h\cdot\chi_{\Phi(B)}$ for all B in \mathcal{B} with $\mu(B)<\infty$.

There exists a measurable mapping $\varphi: Y \to X$ such that $\Phi(B) = \varphi^{-1}(B)$ for all B in \mathcal{B} with $\mu(B) < \infty$. Consequently, $T\chi_B = h \cdot (\chi_B \circ \varphi)$.

In case of $p=q=\infty$, it is known that $\Phi(X)=Y$ by Theorem 4. By the Sikorski's property, the claim is done.

For the case, $1 \leq p, q < \infty$ and $p, q \neq 2$, it is not necessarily true that $\Phi(X) = Y$. Let $Y_0 = \Phi(X)$ be a measurable set. Let $\mathcal{A}_0 = \{Y_0 \cap A : A \in \mathcal{A}\}$ and $\nu_0 = \nu|_{\mathcal{A}_0}$. Define $\Phi: \mathcal{B} \to \mathcal{A}_0$ by $\Phi_0(B) = Y_0 \cap \Phi(B)$ for all B in \mathcal{B} . It is easy to see that Φ_0 is a regual set homomorphism satisfying $\Phi_0(X) = Y_0$. By assumption, there exists a measurable mapping $\varphi_0: Y_0 \to X$ such that $\Phi(B) = \varphi_0^{-1}(B)$ for all B in \mathcal{B} . It follows that, for all B in B with $\mu(B) < \infty$, $(T\chi_B)|_{Y_0} = (h \cdot \chi_{\Phi(B)})|_{Y_0} = h|_{Y_0} \cdot \chi_{\Phi_0(B)} = h_0 \cdot \chi_{\varphi^{-1}(B)} = h_0 \cdot (\chi_B \circ \varphi_0)$ where $h_0 = h|_{Y_0}: Y_0 \to \mathbb{K}$. Since the support of $(T\chi_X)$ is contained in $\Phi(X) = Y_0$, we can redefine $h: Y \to \mathbb{K}$ by $h(y) = h_0(y)$ on Y_0 and h(y) = 0 otherwise. We can also extend φ_0 to $\varphi: Y \to X$ by $\varphi(y) = \varphi_0(y)$ on Y_0 and $\varphi(y) = x_0$ otherwise for some fixed x_0 in X. Then both h and φ are measurable and $T\chi_B = h \cdot (\chi_B \circ \varphi)$. This establishes the claim.

Now, if s is any simple function which vanishes outside a set of finite measure, we have $Ts = h \cdot (s \circ \varphi)$ by the linearity of T. Let f be in $L^p(X)$. By passing to a sequence of simple functions which approximate f, we have $Tf = h \cdot (f \circ \varphi)$. Hence, T is a BS map.

In the following, we shall give a σ -finite measure space which has Sikorski's property.

Definition 3.1. A totally ordered space (X, \leq) is said to be *Dedekind complete* if every bounded below nonempty subset has an infimum in X. A σ -algebra $\mathcal B$ is called *the order* σ -algebra of X if it is generated by all order intervals $(a,b)=\{x\in X: a< x< b\}$. A *totally ordered measure space* is a totally ordered space with the order σ -algebra. A measure space $(X,\mathcal B,\mu)$ is said to be μ -separable if $(X,\mathcal B,\mu)$ is totally ordered and contains a countable subset D of X such that $(a,b)\cap D\neq\emptyset$ for all a,b in X with $\mu((a,b))\neq 0$. In this case, D is called an order- μ -dense subset of X.

Proposition 8. Let (X, \leq) be totally ordered and Dedekind complete. If

 (X, \mathcal{B}, μ) is a σ -finite μ -separable measure space, then (X, \mathcal{B}, μ) has Sikorski's property.

Proof. Let $\{a_i\}_{i\in I}$ be an arbitrary maximal set of atoms of μ . Since μ is σ -finite, I is at most countable. Let $X' = X \setminus \bigcup_{i \in I} a_i$. X' is a maximal atom-free measure subspace of X. It suffices to show that X' has Sikorski's property. Without loss of generality, we may assume X is atom-free.

Given a measure space (Y,\mathcal{A},ν) and a regular set homomorphism $\Phi:\mathcal{B}\to\mathcal{A}$ with $\Phi(X)=Y$. Let D be a countable order- μ -dense subset of X. Since X is an atom-free, $\bigcap_{\alpha\in D}(-\infty,\alpha)$ is a null set and $\bigcup_{\alpha\in D}(-\infty,\alpha)=X$. For each α in D, define $B_{\alpha}=\Phi(-\infty,\alpha)$. Then $B_{\alpha}\subset B_{\beta},\ \alpha\leq\beta$, and $\bigcap_{\alpha\in D}B_{\alpha}=\emptyset$, $\bigcup_{\alpha\in D}B_{\alpha}=Y$. Let $\varphi:Y\to X$ be defined by $\varphi(y)=\inf\{\alpha\in D:y\in B_{\alpha}\}$ for all y in Y. Since X is (Dedekind) complete, φ is well-defined.

For all x in X (we may assume $(-\infty, x) \neq \emptyset$), it is easy to see that $\{y \in Y : \varphi(y) < x\} = \bigcup_{\gamma < x, \ \gamma \in D} B_{\gamma}$. Since D is order- μ -dense in X, the set $(-\infty, x) \setminus \bigcup_{\gamma < x, \ \gamma \in D} (-\infty, \gamma)$ is at most a null set in X.

By the facts $\bigcup_{\gamma < x, \ \gamma \in D} (-\infty, \gamma) \subset (-\infty, x)$ and Φ is regular set homomorphism, we have that $\bigcup_{\gamma < x, \ \gamma \in D} B_{\gamma} = \Phi(\bigcup_{\gamma < x, \ \gamma \in D} (-\infty, \gamma)) = \Phi(-\infty, x)$. Then $\Phi(-\infty, x) = \{y \in Y : \varphi(y) < x\} = \varphi^{-1}(-\infty, x)$. Therefore, the family $\mathcal{B}' = \{B \subset X : \Phi(B) = \varphi^{-1}(B)\}$ contains all order intervals in X. However \mathcal{B}' is a σ -algebra. It follows that $\mathcal{B} \subseteq \mathcal{B}'$, i.e., $\Phi(B) = \varphi^{-1}(B)$ for all B in \mathcal{B} . And then φ is measurable. This complete the proof.

By Theorem 7 and Proposition 8, we get a generalization of Banach's result.

Theorem 9. Every σ -finite μ -separable measure space (X, \mathcal{B}, μ) , that (X, \leq) is totally ordered and Dedeking complete, solves the Banach-Stone problem. To end this paper, we give some examples.

Example 10. Let \mathbb{R}^n be equipped with usual norm $\|\cdot\|$ and μ which is Lebesgue measure restricted to the Borel σ -algebra. Define "<" such that $\mathbf{a}=(a_1,a_2,\ldots,a_n)<(b_1,b_2,\ldots,b_n)=\mathbf{b}$ if and only if $\|\mathbf{a}\|<\|\mathbf{b}\|$ or, otherwise, there exists an i such that $a_j=b_j$ for all j< i and $a_i< b_i$. Then \mathbb{R}^n becomes to be totally ordered and Dedekind complete. Moreover, the σ -algebra \mathcal{B} generated by all the order intervals induced by < is exactly the usual Borel σ -algebra for \mathbb{R}^n . Let D be the set $\{(d_1,d_2,\ldots,d_n)|d_i\in\mathbb{Q} \text{ for all }i\}$. Then D is countable and order- μ -dense in X. Thus X is μ -separable. Hence (X,\mathcal{B},μ) solves the Banach-Stone problem.

Example 11. For the Hilbert cube (that is, $\{x \in l^2 : |x_n| \leq \frac{1}{n}\}$ in norm topology) with usual norm $\|\cdot\|$, define "<" s.t. $\mathbf{a} = (a_1, a_2, \ldots) < (b_1, b_2, \ldots) = \mathbf{b}$ if and only if $\|\mathbf{a}\| < \|\mathbf{b}\|$ or, otherwise, there exists an i such that $a_j = b_j$ for all

j < i and $a_i < b_i$. Then the Hilbert cube becomes a Dedekind complete totally ordered space and the σ -algebra $\mathcal B$ generated by all the order intervals induced by < is exactly the usual Borel σ -algebra for Hilbert cube. Let μ be any σ -finite measure such that $\mu(S_r) = 0$ when S_r is a maximal atom-free part of the intersection of $\{x \in l^2 : \|x\|_2 = r\}$ and the Hilber cube. Let D be the set $\{(d_1, d_2, \dots) | d_i \in \mathbb Q \text{ for all } i\}$ together with all atoms. Then D is countable and order- μ -dense in X. Thus X is μ -separable. Hence solves the Banach-Stone problem.

Let (X, \mathcal{B}, μ) be a measure space. In case p=2, even though (X, \mathcal{B}, μ) has Sikorski's property, not every (surjective) linear isometry $T: L^2(X) \to L^2(X)$ is a BS map. It may also happen that T is not disjointness preserving and not even a Lamperti map.

Example 12. Consider $X=[-\pi,\pi]$. Let $e_1(x)=\frac{1}{\sqrt{2\pi}}$ and $e_{2n}(x)=\frac{\cos nx}{\sqrt{\pi}}$, $e_{2n+1}(x)=\frac{\sin nx}{\sqrt{\pi}}$ for $n=1,2,\ldots$. Let $\{p_1(x),p_2(x),p_3(x),\ldots\}$ be the collection of Legendre polynomials (they can be easily computed by the Gram-Schmidt precess that, for example, $p_1(x)=\frac{1}{\sqrt{2\pi}}$, $p_2(x)=\sqrt{\frac{3}{2\pi^3}}x$ and $p_3(x)=\frac{1}{\ell}(x^2-\frac{2\pi^3}{3})$, where $\ell=\sqrt{\frac{2\pi^5}{5}-\frac{8\pi^6}{9}+\frac{4\pi^7}{9}}$). Then the two families of functions $\{e_1(x),e_2(x),e_3(x),\ldots\}$ and $\{p_1(x),p_2(x),p_3(x),\ldots\}$ are both orthonormal bases of $L^2[-\pi,\pi]$. Let $T:L^2[-\pi,\pi]\to L^2[-\pi,\pi]$ be the surjective linear isometry such that $Tp_n=e_n$ for all $n=1,2,\ldots$

REFERENCES

- 1. S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932.
- 2. E. Behrends, *M-structure and the Banach-Stone Theorem*, Lecture Notes in Math., Vol. 736, Berlin-Heidelberg-New York, Springer, 1979.
- 3. M. Cambern, On L¹ isomorphisms, *Proc. Amer. Math. Soc.*, **78** (1980), 227-228.
- 4. J. B. Conway, *A Course in Functional Analysis*, 2nd ed., Graduate Texts in Math., Vol. 96, Berlin-Heidelberg-New York, Springer, 1990.
- 5. T. W. Gamlin, *Uniform algebras*, Englewood Cliffs, N. J., Prentice-Hall, 1969.
- 6. P. R. Halmos, *Measure theory*, Graduate Texts in Math., Vol. 18, Berlin-Heidelberg-New York, Springer, 1974.
- 7. W. Holsztynski, Continuous mappings induced by isometries of spaces of continuous function, *Studia Math.*, **26** (1966), 133-136.
- 8. K. Jarosz, Automatic continuity of separating linear isomorphisms, *Canad. Math. Bull.*, **33** (1990), 139-144.
- 9. J.-S. Jeang and N.-C. Wong, Weighted composition operators of $C_0(X)$'s, J. Math. Anal. Appl., **201** (1996), 981-993.

- J. Lamperti, On the isometries of certain function-spaces, *Pacific J. Math.*, 8 (1958), 459-466.
- 11. F. Lessard, Linear operators induced by point transformations, *Ann. Sci. Math. Québec*, **18**(1) (1994), 79-93.
- 12. W. A. J. Luxemburg and A. C. Zaanen, *Riesz Spaces I*, Amsterdam, North Holland, 1971.
- 13. H. L. Royden, Real Analysis, 3rd ed., New York, Macmillan, 1988.
- 14. R. Schneider, Unit preserving isometries are homomorphisms in certain L^p , Can. J. Math., 27 (1975), 133-137.
- 15. A. R. Sourour, The isometries of $L^p(\Omega, X)$, J. Funct. Anal., 30 (1978), 276-285.

Chun-Yen Chou Department of Mathematics Education, National Hualian University of Education, Hualian 970, Taiwan, R.O.C. E-mail: choucy@mail.nhlue.edu.tw

Wu-Lang Day National I-Lan Senior High School, Yilan City, Yilan 260, Taiwan, R.O.C. E-mail: yta@mail.itsh.ilc.edu.tw

Jyh-Shyang Jeang
Department of Management Sciences,
1, Wei-Wu Road,
Military Academy,
Fengshan, Kaohsiung 830, Taiwan, R.O.C.
E-mail: jeangjs@cc.cma.edu.tw