TAIWANESE JOURNAL OF MATHEMATICS

Vol. 10, No. 1, pp. 219-231, January 2006

This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON APPROXIMATE ISOMORPHISMS BETWEEN BANACH *-ALGEBRAS OR C^* -ALGEBRAS

Chun-Yen Chou and Jez-Hung Tzeng

Abstract. In this paper, we study some problems about approximate isomorphisms between Banach *-algebras or C^* -algebras.

1. Introduction

The problem of the stability of functional equations has been first studied by Ulam in 1940 (see [7]). He posed the following problem: "Give conditions in order for a linear mapping near an approximately linear mapping to exist".

In 1941, Hyers [3] showed that:

If $\delta > 0$ and $f: E_1 \to E_2$ is a mapping between Banach spaces such that

$$||f(x+y) - f(x) - f(y)|| \le \delta, \ \forall \ x, y \in E_1$$

then there exists a unique $T: E_1 \to E_2$ such that T(x+y) = T(x) + T(y) and $||f(x) - T(x)|| \le \delta$ for all $x, y \in E_1$. In fact, $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$. Furthermore, If for any $x \in E_1$, f(tx) is continuous in scalar variable t, then T is a linear mapping.

In 1978, a generalized solution was given by Rassias [5]:

Let $f: E_1 \to E_2$ be a mapping between two Banach spaces E_1 and E_2 such that for any $x \in E_1$, f(tx) is continuous in scalar variable t. If there exists $\theta \ge 0$ and $p \in [0,1)$ such that $||f(x+y)-f(x)-f(y)|| \le \theta(||x||^p+||y||^p)$ for every $x,y \in E_1$, then there exists a unique mapping $T: E_1 \to E_2$ such that $||f(x)-T(x)|| \le \frac{2\theta}{2-2^p}||x||^p$, $\forall x \in E_1$. Indeed, $T(x) = \lim_{n \to \infty} \frac{f(2^nx)}{2^n}$.

Received April 10, 2005.

Communicated by Ngai-Ching Wong.

2000 Mathematics Subject Classification: 46L99.

Key words and phrases: Approximate isomorphism, C^* -Algebra.

The proof of Rassias [5] is also valid for p < 0.

In 1991, Gajda [1] gave a solution for p > 1:

Let $f: E_1 \to E_2$ be a mapping between two Banach spaces E_1 and E_2 such that for any $x \in E_1$, f(tx) is continuous in scalar variable t. If there exists $\theta \ge 0$ and p > 1 such that $||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p)$ for every $x,y \in E_1$, then there exists a unique mapping $T: E_1 \to E_2$ such that $||f(x) - T(x)|| \le \frac{2\theta}{2^p - 2} ||x||^p$, $\forall x \in E_1$. Indeed, $T(x) = \lim_{n \to \infty} 2^n f(2^{-n}x)$.

For the case p=1, Rassias and Semrl [6] gave an example of a continuous real-valued function $f:\mathbb{R}\to\mathbb{R}$ satisfying $|f(x+y)-f(x)-f(y)|\leq |x|+|y|$, $\forall\; x,y\in\mathbb{R}$ such that $\lim_{x\to 0}\frac{f(x)}{x}=\infty$. Hence the set $\{\frac{|f(x)-T(x)|}{|x|}\;|\;x\neq 0\}$ is unbounded for any linear mapping $T:\mathbb{R}\to\mathbb{R}$. In other words, an analogue of Rassias's result [5] can not be obtained for p=1.

In 1992, Gavruta [2] genelized the result of Rassias as follows:

Let (G,+) be an abelian group and $(X,||\cdot||)$ be a Banach space. $\varphi:G\times G\to [0,\infty)$ is called an admissible control function if $\tilde{\varphi}(x,y):=\frac{1}{2}\sum_{k=0}^{\infty}2^{-k}\varphi(2^kx,2^ky)<\infty$ for all $x,y\in G$. If $f:G\to X$ is a mapping such that $||f(x+y)-f(x)-f(y)||\leq \varphi(x,y)$ for all $x,y\in G$, then there exists a unique mapping $T:G\to X$ such that T(x+y)=T(x)+T(y) and $||f(x)-T(x)||\leq \tilde{\varphi}(x,x)$ for all $x,y\in G$. Indeed, $T(x)=\lim_{n\to\infty}\frac{f(2^nx)}{2^n}$.

In 2003, Park [4] establishes the stability of algebra *-homomorphisms on a Banach *-algebra and the stability of automorphisms on a unital C^* -algebra. His proof actually gave the following two theorems.

Theorem 1.1. [(4)] Let A and B be two Banach *-algebras. Let $f: A \to B$ be a mapping such that there exists an admissible control function $\varphi: B \times B \to [0, \infty)$ such that

- (i) $||f(\mu x + \mu y) \mu f(x) \mu f(y)|| \le \varphi(x, y)$ for all scalar $|\mu| = 1$ and all $x, y \in A$.
- (ii) $||f(x^*) f(x)^*|| \le \varphi(x, x)$ for all $x \in A$.
- (iii) $||f(zw) f(z)f(w)|| \le \varphi(z, w)$ for all self-adjoint $z, w \in A$.

Then there exists a unique algebra *-homomorphism $T:A\to B$ such that $||f(x)-T(x)||\leq \varphi(x,x)$ for all $x\in A$.

Theorem 1.2. [(4)] Let A and B be two unital C^* -algebra and $\varphi : A \times A \to [0, \infty)$ be an admissible control function. If $f : A \to B$ be a bijective mapping with f(xy) = f(x)f(y), and satisfying condition

- (i) of Theorem 1.1 and
- $(ii') ||f(u^*) f(u)^*|| \le \varphi(u, u)$ for all unitary elements u of A.

Assume that $\lim_{n\to\infty} \frac{f(2^n 1_A)}{2^n}$ is invertible where 1_A is the identity of A. Then f is actually an automorphism.

In this paper, we explore further variations of the above results.

2. Main Results

We use the following notations through out this paper.

- Let A and B denote Banach *-algebras or C^* -algebras.
- Let T denote the unit circle.
- Let 1_A denote the identity of the corresponding algebra if it exists.
- Let A_{sa} denote the set of self-adjoint elements in A.
- Let $\mathcal{U}(A)$ denote the group of unitary elements in A.

We will first apply similar techniques as in [4] to get the following lemma. Then we will use the lemma and other things to have our results.

Lemma 2.1. Let $f: A \to B$ be a mapping between two C^* -algebras A and B. If there exists an admissible control function $\varphi: A \times A \to [0, \infty)$ such that

(i)
$$||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| \le \varphi(x, y), \forall \mu \in \mathbb{T}, x, y \in A$$

$$(ii) ||f(x^*) - f(x)^*|| \le \varphi(x, x), \forall x \in A$$

(iii)
$$||f(\alpha\beta uv) - f(\alpha u)f(\beta v)|| \le \varphi(\alpha u, \beta v), \forall \alpha, \beta \in \mathbb{R}, u, v \in \mathcal{U}(A)$$

then $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ defines the unique *-homomorphism such that

$$||f(x) - T(x)|| \le \tilde{\varphi}(x, x), \ \forall \ x \in A.$$

Proof. Let $\mu=1$ in (i), by Gavruta's result, there exists a unique additive function $T:A\to B$ such that $||f(x)-T(x)||\leq \tilde{\varphi}(x,x),\ \forall\ x\in A.$ Indeed, $T(x)=\lim_{n\to\infty}\frac{f(2^nx)}{2^n}.$

Substitute the x, y in (i) by $2^{n-1}x$, then

$$||f(2^n \mu x) - 2\mu f(2^{n-1}x)|| \le \varphi(2^{n-1}x, 2^{n-1}x), \ \forall \ \mu \in \mathbb{T}, \ x \in A.$$

Therefore,

$$||\mu f(2^n x) - 2\mu f(2^{n-1} x)|| \le |\mu| ||f(2^n x) - 2f(2^{n-1} x)|| \le \varphi(2^{n-1} x, 2^{n-1} x).$$

We have

$$||f(2^{n}\mu x) - \mu f(2^{n}x)|| \le ||f(2^{n}\mu x) - 2\mu f(2^{n-1}x)|| + ||2\mu f(2^{n-1}x) - \mu f(2^{n}x)||$$

$$\le 2\varphi(2^{n-1}x, 2^{n-1}x).$$

Hence

$$2^{-n}||f(2^n\mu x) - \mu f(2^nx)|| \le 2^{-(n-1)}\varphi(2^{n-1}x, 2^{n-1}x) \to 0.$$

Thus we have

$$\forall \ \mu \in \mathbb{T}, x \in A, \ T(\mu x) = \lim_{n \to \infty} \frac{f(2^n \mu x)}{2^n} = \lim_{n \to \infty} \frac{\mu f(2^n x)}{2^n} = \mu T(x).$$

Now for any $\lambda\in\mathbb{C}$, there exists an $M\in\mathbb{N}$ such that $|\frac{\lambda}{M}|<\frac{1}{3}$. Therefore, there exist $\mu_1,\mu_2,\mu_3\in\mathbb{T}$ such that $\frac{3\lambda}{M}=\mu_1+\mu_2+\mu_3$ (by considering the case $\frac{3\lambda}{M}=r\in[0,1)$ with $\mu_1=1$ and $\overline{\mu_2}=\mu_3$). Also, from additivity, $T(x)=T(3\cdot\frac{1}{3}x)=3T(\frac{1}{3}x)$, we have $T(\frac{1}{3}x)=\frac{1}{3}T(x)$. Hence, by the above,

$$T(\lambda x) = T(\frac{M}{3} \cdot \frac{3}{M} \lambda x)$$

$$= MT(\frac{1}{3} \cdot \frac{3\lambda}{M} x)$$

$$= \frac{M}{3} T(\mu_1 x + \mu_2 x + \mu_3 x)$$

$$= \frac{M}{3} (\mu_1 T(x) + \mu_2 T(x) + \mu_3 T(x))$$

$$= \frac{M}{3} \cdot \frac{3\lambda}{M} T(x)$$

$$= \lambda T(x).$$

That is, T is \mathbb{C} linear.

Similarly, by (ii), $\forall x \in A$, $||f(2^nx^*) - f(2^nx)^*|| \le \varphi(2^nx, 2^nx)$. Therefore, $2^{-n}||f(2^nx^*) - f(2^nx)^*|| \le 2^{-n}\varphi(2^nx, 2^nx)$. Hence,

$$\forall x \in A, \ T(x^*) = \lim_{n \to \infty} \frac{f(2^n x^*)}{2^n} = \lim_{n \to \infty} \frac{f(2^n x)^*}{2^n} = T(x)^*.$$

In (iii), take $\alpha = \beta = 2^n$, we have

$$||f(4^n uv) - f(2^n u)f(2^n v)|| \le \varphi(2^n u, 2^n v).$$

Therefore,

$$||\frac{f(4^nuv)}{4^n} - \frac{f(2^nu)}{2^n}\frac{f(2^nv)}{2^n}|| \le 4^{-n}\varphi(2^nu, 2^nv) \to 0, \text{ as } n \to \infty.$$

Thus

$$T(uv) = \lim_{n \to \infty} \frac{f(4^n uv)}{4^n} = \lim_{n \to \infty} \frac{f(2^n u)}{2^n} \frac{f(2^n u)}{2^n}$$
$$= \lim_{n \to \infty} \frac{f(2^n u)}{2^n} \lim_{n \to \infty} \frac{f(2^n u)}{2^n} = T(u)T(v).$$

Since every element in C^* -algebra A can be expressed as a linear combination of elements in $\mathcal{U}(A), \ \forall \ x,y \in A$, we may assume $x = \sum_{i=1}^n \alpha_i u_i$ and $y = \sum_{j=1}^m \beta_j v_j$ for some $u_i, v_j \in \mathcal{U}(A)$ and $\alpha, \beta \in \mathbb{C}$.

$$T(xy) = T\left(\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} u_{i} v_{j}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} T(u_{i} v_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} T(u_{i}) T(v_{j})$$

$$= T\left(\sum_{i=1}^{n} \alpha_{i} u_{i}\right) T\left(\sum_{j=1}^{m} \beta_{j} v_{j}\right)$$

$$= T(x) T(y).$$

Therefore, T is indeed a *-homomorphism.

Our first result is as follows.

Theorem 2.2. Let $f: A \to B$ be a mapping between two C^* -algebras A, B such that

(i)
$$||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| \le \theta(||x||^p + ||y||^p), \forall \mu \in \mathbb{T}, x, y \in A$$

(ii)
$$||f(x^*) - f(x)^*|| \le \theta(||x||^p + ||y||^p), \ \forall \ x \in A$$

 $(iii') \ ||f(xy) - f(x)f(y)|| \le \theta(||x||^p + ||y||^p), \ \forall \ x,y \in A, \ \textit{where} \ \theta \ge 0 \ \textit{and} \ p \in [0,1)$

then $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ defines the unique *-homomorphism such that

$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p, \ \forall \ x \in A.$$

Moreover, we have

- 1 If A is unital, then $T(1_A)$ is a projection satisfing $T(x) = T(1_A)f(x) = f(x)T(1_A)$, $\forall x \in A$.
- 2 If $\mathcal{U}(B) \subset f(\mathcal{U}(A))$, then $T(1_A)$ is a central projection in B, and T(A) is an ideal of B. In particular, if B is simple then T is a *-epimorphism.
- 3 If the range of T contains an invertible element in B, then f = T.

Proof. Let $\varphi(x,y)=\theta(||x||^p+||y||^p)$, then φ is an admissible control function. Conditions (i) and (ii) are exactly the conditions (i) and (ii) as in Lemma 2.1. $\forall \alpha,\beta\in\mathbb{R},\ u,v\in\mathcal{U}(A),\ \text{let}\ x=\alpha u,\ y=\beta v,\ \text{then}\ (iii')\ \text{becomes}\ (iii)\ \text{as in}$ Lemma 2.1. Therefore, by Lemma 2.1, $T(x)=\lim_{n\to\infty}\frac{f(2^nx)}{2^n}$ defines the unique *-homomorphism such that

$$||f(x) - T(x)|| \le \tilde{\varphi}(x, x) = \frac{2\theta}{2 - 2p} ||x||^p, \ \forall \ x \in A.$$

If A is unital, since $T(1_A^2)=T(1_A)$ and $T(1_A)^*=T(1_A^*)=T(1_A)$, $T(1_A)$ is a projection. By substituting $y=2^n1_A$ in (iii'), since $n\in\mathbb{N},\ p\geq 0$, we have

$$||f(2^nx) - f(x)f(2^n1_A)|| \le \theta(||x||^p + ||2^n1_A||^p) \le \theta(||2^nx||^p + ||2^n1_A||^p).$$

Hence, by the convergence of $\tilde{\varphi}(x,1_A)=\frac{1}{2}\sum_{k=0}^{\infty}2^{-k}\theta(||2^kx||^p+||2^k1_A||^p)$,

$$\left|\left|\frac{f(2^n x)}{2^n} - f(x)\frac{f(2^n 1_A)}{2^n}\right|\right| \le 2^{-n}\theta(\left|\left|2^n x\right|\right|^p + \left|\left|2^n 1_A\right|\right|^p) \to 0, \text{ as } n \to \infty.$$

We have

$$T(x) = f(x)T(1_A), \ \forall \ x \in A.$$

Similarly, we have $T(x) = T(1_A)f(x)$.

For any $y \in B$, y can be written as a linear combination of elements in $\mathcal{U}(B)$,

i.e.,
$$y = \sum_{i=1}^{\kappa} \alpha_i v_i$$
, $\exists \alpha_i \in \mathbb{C}$, $v_i \in \mathcal{U}(B)$. If $\mathcal{U}(B) \subset f(\mathcal{U}(A))$, then $y = \sum_{i=1}^{\kappa} \alpha_i v_i$, $\exists \alpha_i \in \mathbb{C}$, $v_i \in \mathcal{U}(B)$.

$$\sum_{i=1}^{k} \alpha_i f(u_i), \ \exists \ \alpha_i \in \mathbb{C}, \ u_i \in \mathcal{U}(A). \ \text{Therefore,}$$

$$T(1_A)y = T(1_A)\sum_{i=1}^n \alpha_i f(u_i) = \sum_{i=1}^n \alpha_i T(1_A)f(u_i) = \sum_{i=1}^n \alpha_i T(u_i) = T(\sum_{i=1}^n \alpha_i u_i),$$

$$yT(1_A) = \sum_{i=1}^n \alpha_i f(u_i)T(1_A) = \sum_{i=1}^n \alpha_i f(u_i)T(1_A) = \sum_{i=1}^n \alpha_i T(u_i) = T(\sum_{i=1}^n \alpha_i u_i).$$

Hence $T(1_A)$ is central in B and $\forall y \in B$, $T(1_A)y \subset T(A)$ and $yT(1_A) \subset T(A)$. Thus $yT(A) = yT(1_A \cdot A) = yT(1_A)T(A) \subset T(A)T(A) \subset T(A)$. Similarly, $T(A)y \subset T(A)$.

Similarly, by substituting x by $2^n x$ in (iii'), since $n \in \mathbb{N}$, $p \in [0, 1)$, we have

$$||f(2^n xy) - f(2^n x)f(y)|| \le \theta(||2^n x||^p + ||y||^p) \le \theta(||2^n x||^p + ||2^n y||^p)$$

Hence, by the convergence of $\tilde{\varphi}(x,y)=\frac{1}{2}\sum_{k=0}^{\infty}2^{-k}\theta(||2^kx||^p+||2^ky||^p),$

$$||\frac{f(2^n xy)}{2^n} - \frac{f(2^n x)f(y)}{2^n}|| \le 2^{-n}\theta(||2^n x||^p + ||2^n y||^p) \to 0$$
, as $n \to \infty$.

We have

$$T(xy) = T(x)f(y), \ \forall \ x, y \in A.$$

If T(A) contains an invertible element $T(x_0)$ in B, then from $T(x_0)T(x) = T(x_0x) = T(x_0)f(x)$, $\forall x \in A$, we have T(x) = f(x), $\forall x \in A$.

Actually, the argument above can be modified to prove the following lemma.

Lemma 2.3. Let $f: A \to B$ be a mapping between two Banach *-algebras A and B. If there exists an admissible control function $\varphi: A \times A \to [0, \infty)$ such that

(i)
$$||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| < \varphi(x, y), \forall \mu \in \mathbb{T}, x, y \in A$$

(ii)
$$||f(x^*) - f(x)^*|| < \varphi(x, x), \forall x \in A$$

$$(iii') ||f(xy) - f(x)f(y)|| < \varphi(xy, xy), \forall x, y \in A$$

then $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ defines the unique *-homomorphism such that

$$||f(x) - T(x)|| \le \tilde{\varphi}(x, x), \ \forall \ x \in A.$$

Proof. Since conditions (i) and (ii) are exactly the conditions (i) and (ii) as in Lemma 2.1, the proof there shows that $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ defines the unique additive *-preserving function such that $||f(x) - T(x)|| \le \tilde{\varphi}(x,x)$, $\forall \ x \in A$. We only have to prove that T is also multiplicative.

Substituting x, y in (iii'') by $2^n x$, $2^n y$, we have

$$||f(4^n xy) - f(2^n x)f(2^n y)|| \le \varphi(4^n xy, 4^n xy), \forall x, y \in A.$$

Then, $\forall \ x,y \in A$, by the convergence of $\tilde{\varphi}(xy,xy)=\frac{1}{2}\sum_{k=0}^{\infty}2^{-k}\varphi(2^kxy,2^kxy)$, we have

$$||\frac{f(4^n xy)}{4^n} - \frac{f(2^n x)}{2^n} \frac{f(2^n y)}{2^n}|| \le 4^{-n} \varphi(4^n xy, 4^n xy) \to 0, \text{ as } n \to \infty.$$

Therefore, $T(xy) = T(x)T(y), \forall x, y \in A$.

Example 2.4. Let $A = \mathbb{C} \times \mathbb{C} = B$ with norm ||(a,b)|| = |a| + |b|, involution $(a,b)^* = (\overline{a},\overline{b})$, and multiplication (a,b)(c,d) = (ac,bd), then A,B are both Banach *-algebras. Let $f:A \to B$ be $f(a,b) = (a,1-e^{|b|})$. Let $\varphi:A \times A \to [0,\infty), \ \varphi(x,y) \equiv c$. Then the corresponding

$$\tilde{\varphi} = \frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi(x, y) = \frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} c \equiv c.$$

If $c \ge 3$, then we have as in the above lemma

$$\begin{split} (i) \ \forall \ x &= (a,b), y = (c,d) \in A, \ \mu \in \mathbb{T}, \\ & ||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| \\ &= ||f(\mu a + \mu c, \mu b + \mu d) - \mu f(a,b) - \mu f(c,d)|| \\ &= ||(\mu a + \mu c, 1 - e^{-|\mu b + \mu d|}) - \mu (a, 1 - e^{-|b|}) - \mu (c, 1 - e^{-|d|})|| \\ &= ||(0, 1 - e^{-|\mu b + \mu d|} - 2\mu + \mu e^{-|b|} + \mu^{-|d|})|| \\ &\leq |1 - e^{-|\mu b + \mu d|}| + |2 - e^{-|b|} - e^{-|d|}| \\ &\leq 3 \leq c = \varphi(x,y) \end{split}$$

$$(ii) \ \forall \ x = (a, b) \in A,$$

$$\begin{split} ||f(x^*) - f(x)^*|| &= ||f(\overline{a}, \overline{b}) - (\overline{a}, 1 - e^{-|b|})|| \\ &= ||(\overline{a}, 1 - e^{-|\overline{b}|}) - (\overline{a}, 1 - e^{-|b|})|| \\ &= 1 \leq c = \varphi(x, x) \end{split}$$

$$\begin{split} (iii''') \ \forall \ x &= (a,b), y = (c,d) \in A, \\ ||f(xy) - f(x)f(y)|| \\ &= ||f(ac,bd) - f(a,b)f(c,d)|| \\ &= ||(ac,1-e^{-|bd|}) - (a,1-e^{-|b|})(c,1-e^{-|d|})|| \\ &= ||(ac,1-e^{-|bd|}) - (ac,1-e^{-|b|} - e^{-|d|} + e^{-|b|-|d|})|| \end{split}$$

$$= |e^{-|b|} + e^{-|d|} - e^{-|bd|} - e^{-|b|-|d|}|$$

$$\leq 2 \leq c = \varphi(xy, xy)$$

Therefore, $\forall x = (a, b) \in A$,

$$T(x) = T(a,b) = \lim_{n \to \infty} \frac{f(2^n a, 2^n b)}{2^n} = \lim_{n \to \infty} (a, \frac{1 - e^{-|2^n b|}}{2^n}) = (a,0)$$

is the unique *-homomorphism such that $\forall x = (a, b) \in A$,

$$||f(x) - T(x)|| = ||(a, 1 - e^{-|b|}) - (a, 0)|| = |1 - e^{-|b|}| \le 1 \le \tilde{\varphi}(x, x).$$

Similarly, we can get sufficient conditions when the *-homomorphism is actually an inner automorphism.

Theorem 2.5. Let $f:A\to A$ be a mapping on a Banach *-algebra A. Suppose there is an invertible element $f(x_0)$ in A. If there exists an admissible control function $\varphi:A\times A\to [0,\infty)$ such that

(i)
$$||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| \le \varphi(x, y), \forall \mu \in \mathbb{T}, x, y \in A$$

(ii)
$$||f(x^*) - f(x)^*|| < \varphi(x, x), \forall x \in A$$

(iii)
$$||f(x) - f(x_0)xf(x_0)^{-1}|| \le \varphi(x, x), \forall x \in A$$

then $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n} = f(x_0)xf(x_0)^{-1}$ defines the unique *-homomorphism such that

$$||f(x) - T(x)|| \le \tilde{\varphi}(x, x), \ \forall \ x \in A.$$

Proof. From conditions (i) and (ii), we know $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ defines the unique additive *-preserving function such that $||f(x) - T(x)|| \le \tilde{\varphi}(x,x)$, $\forall \ x \in A$. We only have to prove that $T(x) = f(x_0)xf(x_0)^{-1}$, $\forall \ x \in A$. That is T is an inner automorphism. Thus T is multiplicative since inner automorphisms must be multiplicative. (To see this, $T(xy) = f(x_0)xyf(x_0)^{-1} = f(x_0)xf(x_0)^{-1}f(x_0)yf(x_0)^{-1} = T(x)T(y)$.)

Now, by substituting x by $2^n x$ in (iii'''), we have

$$||f(2^nx - f(x_0)2^nxf(x_0)^{-1}|| \le \varphi(2^nx, 2^nx), \ \forall \ x \in A.$$

Therefore, $\forall x \in A$, by the convergence of $\tilde{\varphi}(x,x) = \frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x, 2^k x)$, we

have

$$\left|\left|\frac{f(2^n x)}{2^n} - f(x_0)xf(x_0)^{-1}\right|\right| \le 2^{-n}\varphi(2^n x, 2^n x) \to 0, \text{ as } n \to \infty.$$

Hence
$$T(x) = f(x_0)xf(x_0)^{-1}, \forall x \in A$$
.

Example 2.6. Let $A=\mathbb{C}, \ f:A\to A, \ f(x)=x+1.$ Let $\varphi:A\times A\to [0,\infty), \ \varphi(x,y)\equiv c, \ \text{a constant}>1.$ Then the corresponding $\tilde{\varphi}(x,y)\equiv c, \ \text{and} \ f(1)=2$ is invertible. Then, as in the above theorem,

(i) $\forall x, y \in A, \mu \in \mathbb{T}$,

$$|f(\mu x + \mu y) - \mu f(x) - \mu f(y)| = |(\mu x + \mu y + 1) - \mu x - 1 - \mu y - 1| = 1 \le c = \varphi(x,y).$$

 $(ii) \ \forall \ x \in A,$

$$|f(x^*) - f(x)^*| = |\overline{x} + 1 - \overline{(x+1)}| = |x+1-x-1| = 0 \le c = \varphi(x,x).$$

(iii) Fix f(1) = 2. $\forall x \in A$,

$$|f(x) - 2x2^{-1}| = |x + 1 - x| = 1 < c = \varphi(x, x)$$

Therefore, $\forall x = (a, b) \in A$,

$$T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n} = \lim_{n \to \infty} \frac{2^n x + 1}{2^n} = x = 2x2^{-1}$$

is the unique *-homomorphism such that $\forall x \in A$,

$$|f(x) - T(x)| = |x + 1 - x| = 1 < c = \tilde{\varphi}(x, x).$$

On the other hand, we may relax the condition (iii) in Lemma 2.1 a little bit and consider further consider some sufficient condition for isometry and *-automorphism as in the following theorem.

Theorem 2.7. Let $f: A \to B$ be a mapping between two C^* -algebras A and B. Let $\varepsilon: A \to B$ be a function such that $\forall x \in A, 2^{-n}||\varepsilon(2^nx)|| \to 0$ as $n \to \infty$. If there exists an admissible control function $\varphi: A \times A \to [0, \infty)$ such that

(i)
$$||f(\mu x + \mu y) - \mu f(x) - \mu f(y)|| \le \varphi(x, y), \forall \mu \in \mathbb{T}, x, y \in A$$

(ii)
$$||f(x^*) - f(x)^*|| < \varphi(x, x), \forall x \in A$$

(iii)
$$||f(\alpha\beta uv) - [f(\alpha u) + \varepsilon(\alpha u)][f(\beta v) + \varepsilon(\beta v)]|| \le \varphi(\alpha u, \beta v), \ \forall \ \alpha, \beta \in \mathbb{R}, u, v \in \mathcal{U}(A)$$

then $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ defines the unique *-homomorphism such that

$$||f(x) - T(x)|| \le \tilde{\varphi}(x, x), \ \forall \ x \in A.$$

Furthermore, we have

- 1. If $||f(x)-f(y)||-||x-y|| | \leq \varphi(x,y), \forall x,y \in A$, then T is an isometry.
- 2. If, in addition, A = B and $\forall v \in \mathcal{U}(A)$, $\exists u \in \mathcal{U}(A)$ such that $||f(2^n u) 2^n v|| \leq \varphi(2^n u, 2^n v)$, $\forall n \in \mathbb{N}$, then T is an automorphism.

Proof. From conditions (i) and (ii), we know $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ defines the unique additive *-preserving function such that $||f(x) - T(x)|| \le \tilde{\varphi}(x, x)$, $\forall \ x \in A$. To prove T is multiplicative, substituting $\alpha = 2^n = \beta$, we have

$$||f(4^n uv) - [f(2^n u) + \varepsilon(2^n u)][f(2^n v) + \varepsilon(2^n v)]|| \le \varphi(2^n u, 2^n v), \ \forall \ u, v \in \mathcal{U}(A).$$

Then, $\forall \ u,v \in \mathcal{U}(A)$, by the convergence of $\tilde{\varphi}(u,v)=\frac{1}{2}\sum_{k=0}^{\infty}2^{-k}\varphi(2^ku,2^kv)$, we have

$$||\frac{f(4^n u v)}{4^n} - \frac{f(2^n u) + \varepsilon(2^n u)}{2^n} \frac{f(2^n v) + \varepsilon(2^n v)}{2^n}|| \le 4^{-n} \varphi(2^n u, 2^n v) \to 0, \text{ as } n \to \infty.$$

Since $2^{-n}||\varepsilon(2^nu)|| \to 0$ as $n \to \infty$, and $2^{-n}||\varepsilon(2^nv)|| \to 0$ as $n \to \infty$, it follows that $T(uv) = T(u)T(v), \forall u,v \in \mathcal{U}(A)$. Since every element in C^* -algebra A can be expressed as a linear combination of elements in $\mathcal{U}(A)$, as in the proof of Lemma 2.1, T is multiplicative. Hence T is a *-homomorphism.

If $||f(x)-f(y)||-||x-y||| \le \varphi(x,y), \forall x,y \in A$, then substitute x,y by $2^nx,2^ny$, we have

$$|||f(2^nx) - f(2^ny)|| - ||2^nx - 2^ny||| \le \varphi(2^nx, 2^ny).$$

Therefore, $\forall x, y \in A$, by the convergence of $\tilde{\varphi}(x,y) = \frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x, 2^k y)$, we have

$$\left| \left| \left| \frac{f(2^n x)}{2^n} - \frac{f(2^n y)}{2^n} \right| \right| - \left| \left| x - y \right| \right| \le 2^{-n} \varphi(2^n x, 2^n y) \to 0, \text{ as } n \to \infty.$$

Hence, ||T(x) - T(y)|| = ||x - y||, $\forall x, y \in A$. That is, T is an isometry.

If, in addition, A=B and $\forall \ v\in \mathcal{U}(A), \exists \ u\in \mathcal{U}(A) \text{ such that } ||f(2^nu)-2^nv||\leq \varphi(2^nu,2^nv), \ \forall \ n\in\mathbb{N}, \text{ then by the convergence of } \tilde{\varphi}(u,v)=\frac{1}{2}\sum_{k=0}^{\infty}2^{-k}\varphi(2^ku,2^kv),$

we have

$$\left|\left|\frac{f(2^n u)}{2^n} - v\right|\right| \le 2^{-n} \varphi(2^n u) \to$$
, as $n \to \infty$.

Therefore, T(u) = v. That is, $\mathcal{U}(A) \subset T(\mathcal{U}(A))$. Since every element in C^* -algebra A can be expressed as a linear combination of elements in $\mathcal{U}(A)$. We have T is onto, hence a *-automorphism.

Example 2.8. Let $A = \mathbb{C} = B$, $f: A \to B$, $f(x) = x - |x|e^{-|x|}$. Let $\varphi: A \times A \to [0, \infty)$, $\varphi(x, y) \equiv c$. Then the corresponding

$$\tilde{\varphi} = \frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} \varphi(x, y) = \frac{1}{2} \sum_{k=0}^{\infty} 2^{-k} c \equiv c.$$

Let $\varepsilon:A\to A$, $\varepsilon(x)=|x|e^{-|x|}$, then $\forall~a\in A$, we have $2^{-n}|\varepsilon(2^na)|\to 0$ as $n\to\infty$. From calculus, $|te^{-t}|\le e^{-1}$, $\forall~t\in[0,\infty)$. If $c\ge 3e^{-1}$, then as in the above theorem,

(i)
$$\forall x, y \in A, \ \mu \in \mathbb{T},$$

 $|f(\mu x + \mu y) - \mu f(x) - \mu f(y)|$
 $= |\mu x + \mu y - |\mu x + \mu y|e^{-|\mu x + \mu y|} - \mu x + |\mu x|e^{-|\mu x|} - \mu y + |\mu y|e^{-|\mu y|}|$
 $= |-|x + y|e^{-|x + y|} + |x|e^{-|x|} + |y|e^{-|y|}|$
 $= |x + y|e^{-|x + y|} + |x|e^{-|x|} + |y|e^{-|y|} \le 3e^{-1} \le c = \varphi(x, y)$

 $(ii) \ \forall \ x \in A,$

$$|f(x^*) - f(x)^*| = |f(\overline{x}) - \overline{(x - |x|e^{-|x|})}|$$

$$= |(\overline{x} - |\overline{x}|e^{-|\overline{x}|}) - \overline{x} + |x|e^{-|x|}|$$

$$= 0 \le c = \varphi(x, x)$$

$$\begin{split} (iii''') \ \forall \ \alpha, \beta \in \mathbb{R}, \ \forall \ u, v \in \mathcal{U}(A), \\ & | f(\alpha u \beta v) - [f(\alpha u) - \varepsilon(\alpha u)][f(\beta v) - \varepsilon(\beta v)]| \\ & = \left| (\alpha u \beta v - |\alpha u \beta v| e^{-|\alpha u \beta v|}) \right. \\ & - \left. [(\alpha u - |\alpha u| e^{-|\alpha u|}) - |\alpha u| e^{-|\alpha u|}][(\beta v - |\beta v| e^{-|\beta v|}) - |\beta v| e^{-|\beta v|}] \right| \\ & = \left| (\alpha u \beta v - |\alpha u \beta v| e^{-|\alpha u \beta v|}) - \alpha u \beta v \right| \\ & = |\alpha u \beta v| e^{-|\alpha u \beta v|} \le e^{-1} \le c = \varphi(\alpha u, \beta v). \end{split}$$

Therefore, $\forall x \in A$,

$$T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n} = \lim_{n \to \infty} \frac{2^n x - |2^n x| e^{-|2^n x|}}{2^n} = x$$

is the unique *-homomorphism such that $\forall x \in A$,

$$|f(x) - T(x)| = \left| (x - |x|e^{-|x|}) - x \right| = |x|e^{-|x|} \le e^{-1} \le c \le \tilde{\varphi}(x, x).$$

Moreover, T is an isometry, and we check $\forall x, y \in A$,

$$\begin{split} ||f(x) - f(y)| - |x - y|| &= ||(x - |x|e^{-|x|}) - (y - |y|e^{-|y|})| - |x - y|| \\ &= ||(x - y) - (|x|e^{-|x|} + |y|e^{-|y|})| - |(x - y)|| \\ &\leq |x|e^{-|x|} + |y|e^{-|y|} \leq 2e^{-1} \leq c = \varphi(x, y). \end{split}$$

Finally, T is automorphism. We check A=B and $\forall v \in \mathcal{U}(B)=\mathbb{T}=\mathcal{U}(A)$, let u=v, then $|f(2^nu)-2^nv|=0 \le c=\varphi(2^nu,2^nv), \ \forall \ n\in\mathbb{N}$.

REFERENCES

- 1. Z. Gajda, On stability of additive mappings, *Internat. J. Math. Sci.*, **14** (1991), 431-434.
- 2. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, *J. Math. Anal. Appl.*, **184** (1994), 431-436.
- 3. D. H. Hyers, On the stability of the linear functional equation, *Proc. Natl. Acad. Sci. U.S.A.*, **27** (1941), 222-224.
- 4. Chun-Gil Park, On an approximate automorphism on a C^* -algebra, Proc. Amer. Math. Soc., 132 (2004), 1739-1745.
- 5. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.*, **72** (1978), 297-300.
- 6. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, *Proc. Amer. Math. Soc.*, **173** (1993), 325-338.
- 7. S. M. Ulam, Problems in modern mathematics, Chap. VI, Wiley, New York, 1960.

Chun-Yen Chou Department of Mathematics Education, National Hualien University of Education, Hualien 970, Taiwan

Jez-Hung Tzeng Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan