Vol. 10, No. 1, pp. 209-218, January 2006

This paper is available online at http://www.math.nthu.edu.tw/tjm/

ALMOST CONVERGENCE OF SEQUENCES IN BANACH SPACES IN WEAK, STRONG, AND ABSOLUTE SENSES

Yuan-Chuan Li

Abstract. We introduce concepts of σ -lim sup and σ -lim inf for bounded sequences of real numbers and show a Cauchy criterion for sequences of vectors which converge in the sense of $a\sigma$ -limit (i.e., absolute almost convergence). Then a sufficient condition on a bounded sequence $\{\{x_n^{(m)}\}_{n=1}^\infty\}_{m=1}^\infty\subset\ell^\infty(X)$ is given for the following equality to hold:

$$a\sigma$$
- $\lim_{m\to\infty} \sigma$ - $\lim_{n\to\infty} x_n^{(m)} = \sigma$ - $\lim_{n\to\infty} a\sigma$ - $\lim_{m\to\infty} x_n^{(m)}$.

Finally, applying this result we show that σ - $\lim_{n\to\infty} f(\sin(n\theta))$ and σ - $\lim_{n\to\infty} f(\cos(n\theta))$ exist whenever f is a weakly continuous function on [-1,1] with values in a reflexive Banach space.

1. Introduction

Let X be a real or complex normed linear space. Let π_{σ} denote the set of all Banach limits on ℓ^{∞} , the space of all bounded sequences in \mathbb{C} with the sup-norm. Recall that a Banach limit ϕ is a positive linear functional on ℓ^{∞} , which satisfies

$$\phi(\{a_{n+k}\}) = \phi(\{a_n\})$$
 for all $\{a_n\}$ and $k = 1, 2, ...$

and maps convergent sequences to their limits. It is known that π_{σ} is a weakly*-compact set.

In 1948, Lorentz [5] defined the σ -limit for a bounded sequence $\{a_n\} \in \ell^{\infty}$ as

$$\sigma$$
- $\lim a_n := a$

if $\phi(\{a_n\}) = a$ for all $\phi \in \pi_{\sigma}$. Some related researches on σ -limit can be found in [1, 5, 6, 7, 8, 9]. In this paper, for convenience we shall sometimes write $\phi(a_n)$ or

Received April 6, 2005.

Communicated by Sen-Yen Shaw.

2000 Mathematics Subject Classification: Primary 46C05, 46B99.

Key words and phrases: Banach limit, σ -Limit, $\alpha\sigma$ -Limit, Weak almost-convergence, Strong almost-convergence, Absolute almost-convergence.

Research supported in part by the National Science Council of Taiwan.

 $\phi_n(a_n)$ instead of $\phi(\{a_n\})$.

In [4], we generalize the definition of σ -limit from ℓ^∞ to $\ell^\infty(X)$, the space of all bounded sequences in a general normed linear space X, equipped with the sup norm. A bounded sequence $\{x_n\}$ in X is said to have a σ -limit $x \in X$ (cf. [4]) if σ -lim $\langle x_n, x^* \rangle = \langle x, x^* \rangle$ for all $x^* \in X^*$. It was shown [4, Theorem 3.2] that a bounded sequence $\{x_n\}$ in X has a σ -limit $x \in X$ if and only if it is weakly almost-convergent to x, i.e., for every $x^* \in X^*$

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} \langle x_{k+m}, x^* \rangle = \langle x, x^* \rangle$$

uniformly on $m \ge 0$. In the same paper, we showed that if σ - $\lim x_n = x$, then $x \in \overline{co}\{x_n; n \ge 0\}$. $\{x_n\}$ is said to be *strongly almost-convergent to* x (cf. [3]) if

$$s$$
- $\lim_{n\to\infty} \frac{1}{n+1} \sum_{k=0}^{n} x_{k+m} = x$ (convergence in norm)

uniformly on $m \ge 0$. If σ - $\lim ||x_n - x|| = 0$, we will say that $\{x_n\}$ is absolutely almost convergent or $a\sigma$ -convergent to x, and will use the notation $a\sigma$ - $\lim x_n = x$ (Note that in [3] we have used the notation $s\sigma$ - \lim . To distinguish absolute almost-convergence from strong almost-convergence, in this paper we adopt the notation $a\sigma$ - \lim instead of $s\sigma$ - \lim). It is known [3] that

 $\begin{array}{ll} \text{strong convergence} & \Rightarrow & \text{absolute almost-convergence} \\ & \Rightarrow & \text{strong almost-convergence} \\ & \Rightarrow & \text{weak almost-convergence}. \end{array}$

These implications are strict. Related counter-examples can be found in [3] and [4]. It is known [2] that $\{x_n\}$ strongly converges to $x \in X$ if and only if $\{x_n\}$ is strongly almost-convergent to x and $||x_{n+1} - x_n|| \to 0$ as $n \to \infty$. Clearly, strong almost-convergence implies (C,1)-convergence. But there is no relation between (C,1)-convergence and weak almost-convergence.

Let $X_{\sigma}:=\{\{x_n\}\in\ell^{\infty}(X); \sigma\text{-}\lim x_n=x \text{ for some } x\in X\}$, and $X_{a\sigma}:=\{\{x_n\}\in\ell^{\infty}(X); a\sigma\text{-}\lim x_n=x \text{ for some } x\in X\}$. These two spaces are closed linear subspaces of $\ell^{\infty}(X)$. In particular, the space $\mathbb{C}_{a\sigma}$ is a unital Banach subalgebra of ℓ^{∞} and every Banach limit on $\mathbb{C}_{a\sigma}$ is a multiplicative linear functional on $\mathbb{C}_{a\sigma}$ [3, Corollary 2.9].

Now we define notions of \limsup and \liminf in the sense of σ -limit and Cauchy sequence in the sense of $a\sigma$ -limit.

Definition 1.

(a) Let $\{a_n\}$ be a bounded sequence of real numbers. We define σ - $\limsup_{n\to\infty} a_n := \sup_{\phi\in\pi_\sigma} \phi(\{a_n\})$ and σ - $\liminf_{n\to\infty} a_n := \inf_{\phi\in\pi_\sigma} \phi(\{a_n\})$.

(b) A sequence $\{x_n\} \in \ell^{\infty}(X)$ is said to be a $a\sigma$ -Cauchy sequence if

$$\sigma$$
- $\limsup_{n\to\infty} \sigma$ - $\limsup_{m\to\infty} ||x_n - x_m|| = 0$,

which, by (a), is equivalent to

$$\psi_n(\phi_m(||x_n - x_m||)) = 0 \text{ for all } \phi, \psi \in \pi_\sigma.$$

It is clear that $a = \sigma$ - $\lim a_n$ exists if and only if σ - $\lim \lim \sup a_n = \sigma$ - $\lim \lim_{n \to \infty} \inf a_n = a$. In particular, for $a_n \ge 0$, σ - $\lim a_n = 0$ if and only if σ - $\limsup a_n = 0$ $a_n = 0$. Thus, for $\{x_n\} \in \ell^{\infty}(X)$, where X is a real Banach space, $x = \sigma - \lim_{n \to \infty} x_n$ exists if and only if

$$\sigma$$
- $\limsup_{n\to\infty} \langle x_n, x^* \rangle = \sigma$ - $\liminf_{n\to\infty} \langle x_n, x^* \rangle = \langle x, x^* \rangle$

for all $x^* \in X^*$; and $x = a\sigma - \lim x_n$ exists if and only if $\sigma - \lim \sup ||x_n - x|| = 0$, i.e., $\phi(\{\|x_n - x\|\}) = 0$ for all $\phi \in \pi_{\sigma}$.

If $\{x_n\}$ is a sequence in X, it is easy to see that $\{x_n\}$ is a Cauchy sequence if and only if

$$\limsup_{n \to \infty} \limsup_{m \to \infty} ||x_n - x_m|| = 0.$$

In Theorem 2.3 we prove an analogous Cauchy criterion in the sense of $a\sigma$ -limit. In Theorem 2.4, we give a sufficient condition on a sequence $\{\{x_n^{(m)}\}_{n=0}^\infty\}_{m=0}^\infty$ in $\ell^{\infty}(X)$ for the following equality to hold

$$a\sigma\text{-}\lim_{m\to\infty}\sigma\text{-}\lim_{n\to\infty}x_n^{(m)}=\sigma\text{-}\lim_{n\to\infty}a\sigma\text{-}\lim_{m\to\infty}x_n^{(m)}.$$

In Section 3, we first give two examples showing the existence of σ - $\lim_{n\to\infty} \sin^m$ $(n\theta)$, σ - $\lim_{n\to\infty}\cos^m(n\theta)$, and σ - $\lim_{n\to\infty}e^{in\theta}$ for all $\theta\in\mathbb{R}$ and $m=0,1,2,\ldots$ Using these facts and applying Theorem 2.4, we show (Theorem 3.3) that for any weakly continuous function $f:[-1,1]\to X$ both $\sigma\text{-}\lim_{n\to\infty}f(\sin(n\theta))$ and $\sigma\text{-}$ $\lim_{n\to\infty} f(\cos(n\theta))$ exists. It is also shown that if a function $f:\Delta\to\mathbb{C}$ is continuous on the closed disc Δ of $\mathbb C$ and is analytic in the interior of Δ , then σ - $\lim_{n\to\infty} f(e^{in\theta})$ exists.

2. Main Result

Recall that the canonical mapping $J: X \to X^{**}$ is defined by $\langle x^*, J_x \rangle :=$ $\langle x, x^* \rangle \equiv x^*(x)$ for all $x \in X$ and $x^* \in X^*$.

Lemma 2.1. Let $\{x_n\}$ and $\{y_n\}$ be two bounded sequences in X. Suppose there is a $\phi \in \pi_{\sigma}$ such that

$$\psi_n(\phi_m(||x_n - y_m||)) = 0 \text{ for all } \psi \in \pi_\sigma.$$

Then $a\sigma\text{-lim }x_n=x$ for some $x\in X$ and $\langle x,x^*\rangle=\phi_m(\langle y_m,x^*\rangle).$

Proof. Define $h(x^*) := \phi_m(\langle y_m, x^* \rangle)$ for $x^* \in X^*$. It is clear that $h \in X^{**}$. Then we have for every $m = 1, 2, \ldots$ and $x^* \in X^*$

$$|\langle x^*, J_{x_n} - h \rangle| = |\langle x_n, x^* \rangle - \phi_m(\langle y_m, x^* \rangle)|$$

$$\leq \phi_m(|\langle x_n - y_m, x^* \rangle|)$$

$$\leq \phi_m(||x_n - y_m||)||x^*||.$$

This implies that $||J_{x_n} - h|| \le \phi_m(||y_m - x_n||)$. By the assumption, we have for every $\psi \in \pi_{\sigma}$

$$\psi_n(||J_{x_n} - h||) \le \psi_n(\phi_m(||y_m - x_n||)) = 0.$$

Therefore we have $a\sigma$ - $\lim J_{x_n} = h$ and hence $\{J_{x_n}\}$ is strongly almost-convergent to h. This shows that $h \in J(X)$. Hence $h = J_x$ for some $x \in X$, which implies that

$$\phi_m(\langle y_m, x^* \rangle) = h(x^*) = \langle x^*, J_x \rangle = \langle x, x^* \rangle.$$

Since $||J_{x_n} - h|| = ||J_{x_n} - J_x|| = ||x_n - x||$ for all $n \ge 1$, we must have

$$\sigma$$
- $\lim ||x_n - x|| = \sigma$ - $\lim ||J_{x_n} - J_x|| = 0$.

This proves that $a\sigma$ - $\lim x_n = x$ and the proof is complete.

If we take $x_n = y_n$ for all n in Lemma 2.1, we obtain the following Cauchy criterion for the existence of the $a\sigma$ -limit.

Corollary 2.2. Let $\{x_n\}$ be a bounded sequence in X. Suppose there is a $\phi \in \pi_{\sigma}$ such that

$$\psi_n(\phi_m(||x_n - x_m||)) = 0 \text{ for all } \psi \in \pi_\sigma.$$

Then $a\sigma\text{-lim }x_n=x \text{ for some }x\in X.$

If the sequence $\{x_n\} \in X_{a\sigma}$ has the $a\sigma$ -limit x, then $\phi(\{\|x_n - x\|\}) = 0$ for all $\phi \in \pi_{\sigma}$, so that σ - $\limsup_{n \to \infty} \|x_n - x\| = 0$. Hence

$$\begin{split} &\sigma\text{-}\limsup_{n\to\infty}\sigma\text{-}\limsup_{m\to\infty}||x_n-x_m||\\ &\leq\sigma\text{-}\limsup_{n\to\infty}\sigma\text{-}\limsup_{m\to\infty}||x_n-x||+\sigma\text{-}\limsup_{n\to\infty}\sigma\text{-}\limsup_{m\to\infty}||x-x_m||\\ &=\sigma\text{-}\limsup_{n\to\infty}||x_n-x||+\sigma\text{-}\limsup_{m\to\infty}||x-x_m||=0. \end{split}$$

So, a $a\sigma$ -convergent sequence $\{x_n\}$ must be a $a\sigma$ -Cauchy sequence. Combining this fact and Corollary 2.2, we have the following theorem.

Theorem 2.3. A sequence $\{x_n\} \in \ell^{\infty}(X)$ is $a\sigma$ -convergent if and only if it is a $a\sigma$ -Cauchy sequence in X.

Suppose X is a Banach space. If $\{\mathbf{w}^{(m)}\}_{m=1}^{\infty}$ $(\mathbf{w}^{(m)}):=$ Theorem 2.4. $\{x_n^{(m)}\}_{n=1}^{\infty} \in X_{\sigma}$) is a sequence in X_{σ} such that

$$a\sigma$$
- $\lim_{m\to\infty} \mathbf{w}^{(m)} = \mathbf{w}$ for some $\mathbf{w} = \{x_n\} \in \ell^{\infty}(X)$.

For each $m \in \mathbb{N}$ let $y_m := \sigma$ - $\lim_{n \to \infty} x_n^{(m)}$. Then $a\sigma$ - $\lim_{m \to \infty} x_n^{(m)} = x_n$ for all $n \in \mathbb{N}$, $\mathbf{w} \in X_{\sigma}$, and $a\sigma$ - $\lim_{m \to \infty} y_m = \sigma$ - $\lim_{n \to \infty} x_n$, that is,

(2.1)
$$a\sigma - \lim_{m \to \infty} \sigma - \lim_{n \to \infty} x_n^{(m)} = \sigma - \lim_{n \to \infty} a\sigma - \lim_{m \to \infty} x_n^{(m)}.$$

In particular, if $\{\mathbf{w}^{(m)}\}_{m=1}^{\infty}$ is a sequence in X_{σ} converging to a bounded sequence $\mathbf{w} = \{x_n\} \in \ell^{\infty}(X)$ in sup-norm, then $\mathbf{w} \in X_{\sigma}$ and

(2.2)
$$s-\lim_{m\to\infty} \sigma-\lim_{n\to\infty} x_n^{(m)} = \sigma-\lim_{n\to\infty} x_n.$$

Proof. Since $||x_n^{(m)} - x_n|| \le ||\mathbf{w}^{(m)} - \mathbf{w}||_{\infty}$ for all $m, k = 1, 2, \ldots$ and $a\sigma$ - $\lim_{m\to\infty}\mathbf{w}^{(m)}=\mathbf{w}$, we have $a\sigma$ - $\lim_{m\to\infty}x_n^{(m)}=x_n$ for all $n=1,2,\ldots$ It follows from the closedness of X_{σ} (cf. [3, Theorem 2.6]) that $\mathbf{w} = a\sigma$ - $\lim_{m \to \infty} \mathbf{w}^{(m)} = \in X_{\sigma}$. Hence $x:=\sigma$ - $\lim_{n\to\infty} x_n$ exists. By Theorem 2.3, $\{\mathbf{w}^{(m)}\}$ is a $a\sigma$ -Cauchy sequence. Therefore we have for all $x^*\in X^*$, $m,n,l=1,2,\ldots$

$$\langle y_m - x, x^* \rangle = \langle y_m - x_n^{(m)}, x^* \rangle + \langle x_n^{(m)} - x_n^{(l)}, x^* \rangle + \langle x_n^{(l)} - x_n, x^* \rangle + \langle x_n - x, x^* \rangle.$$

This implies

$$\begin{aligned} &\operatorname{Re}\langle y_m - x, x^* \rangle \\ & \leq \operatorname{Re}\langle y_m - x_n^{(m)}, x^* \rangle + ||x_n^{(m)} - x_n^{(l)}|| \cdot ||x^*|| \\ & + \operatorname{Re}\langle x_n^{(l)} - x_n, x^* \rangle + \operatorname{Re}\langle x_n - x, x^* \rangle \\ & \leq \operatorname{Re}\langle y_m - x_n^{(m)}, x^* \rangle + ||\mathbf{w}^{(m)} - \mathbf{w}^{(l)}||_{\infty} \cdot ||x^*|| \\ & + \operatorname{Re}\langle x_n^{(l)} - x_n, x^* \rangle + \operatorname{Re}\langle x_n - x, x^* \rangle. \end{aligned}$$

Therefore we have for every $\phi, \psi \in \pi_{\sigma}$

(2.3)
$$\operatorname{Re}\langle y_{m} - x, x^{*} \rangle$$

$$\leq \psi_{n}(\operatorname{Re}\langle y_{m} - x_{n}^{(m)}, x^{*} \rangle) + \sigma \cdot \lim_{l \to \infty} ||\mathbf{w}^{(m)} - \mathbf{w}^{(l)}||_{\infty} \cdot ||x^{*}||$$

$$+ \psi_{n}(\operatorname{Re}\phi_{l}(\langle x_{n}^{(l)} - x_{n}, x^{*} \rangle)) + \psi_{n}(\operatorname{Re}\langle x_{n} - x, x^{*} \rangle)$$

$$= \operatorname{Re}\psi_{n}(\langle y_{m} - x_{n}^{(m)}, x^{*} \rangle) + ||\mathbf{w}^{(m)} - \mathbf{w}||_{\infty} \cdot ||x^{*}||$$

$$+ \operatorname{Re}\psi_{n}(\phi_{l}(\langle x_{n}^{(l)} - x_{n}, x^{*} \rangle)) + \operatorname{Re}\psi_{n}(\langle x_{n} - x, x^{*} \rangle)$$

$$= 0 + ||\mathbf{w}^{(m)} - \mathbf{w}||_{\infty} \cdot ||x^{*}|| + 0 + 0.$$

Since $x^* \in X^*$ is arbitrary, it follows from the Hahn-Banach theorem that (2.3) implies

(2.4)
$$||y_m - x|| \le ||\mathbf{w}^{(m)} - \mathbf{w}||_{\infty} \text{ for all } m \ge 1.$$

By the assumption $a\sigma$ - $\lim_{m\to\infty} \mathbf{w}^{(m)} = \mathbf{w}$, we have that

$$\sigma$$
- $\limsup_{m\to\infty} ||y_m - x|| \le \sigma$ - $\limsup_{m\to\infty} ||\mathbf{w}^{(m)} - \mathbf{w}||_{\infty} = 0.$

Therefore $a\sigma$ - $\lim_{m\to\infty}y_m=x$. This proves (2.1). If the sequence $\{\mathbf{w}^{(m)}\}$ converges to $\mathbf{w}=\{x_n\}$ in sup-norm, then s- $\lim_{m\to\infty}x_n^{(m)}=x_n$ and (2.4) implies s- $\lim_{m\to\infty}y_m=x$, i.e., (2.2) holds. This completes the proof.

3. APPLICATIONS

In this section, for a nonempty compact subset Ω of \mathbb{C} , we shall denote by $C(\Omega)$ the Banach space consisting of all continuous complex-valued functions and $C_{\mathbb{R}}(\Omega) := \{ f \in C(\Omega) | f \text{ is real-valued } \}$ equipped with the sup-norm $||\cdot||_{\infty}$.

Example 1. (a) If $\theta \in 2\pi\mathbb{Z}$, then $e^{in\theta} = 1$ for all $n \in \mathbb{Z}$, so σ - $\lim_{n \to \infty} e^{in\theta} = 1$. (b) If $\theta \notin 2\pi\mathbb{Z}$, then $e^{i\theta} \neq 1$ and we have for every $\phi \in \pi_{\sigma}$

$$e^{i\theta}\phi_n(e^{in\theta}) = \phi_n(e^{i(n+1)\theta}) = \phi_n(e^{in\theta}).$$

This implies $\phi_n(e^{in\theta})=0$ for $\phi\in\pi_\sigma$ and hence $\sigma\text{-}\lim_{n\to\infty}e^{in\theta}=0$.

Example 2. For every $m=0,1,2,\ldots$ and for every $\theta\in\mathbb{R}$, both σ - $\lim_{n\to\infty}\sin^m(n\theta)$ and σ - $\lim_{n\to\infty}\cos^m(n\theta)$ exist.

It is obvious for the case m=0. So, we may assume $m=1,2,\ldots$ By Example 1, we obtain that

$$\sigma - \lim_{n \to \infty} \sin^{m}(n\theta)$$

$$= \sigma - \lim_{n \to \infty} \left(\frac{e^{in\theta} - e^{-in\theta}}{2i}\right)^{m}$$

$$= \sigma - \lim_{n \to \infty} \frac{1}{(2i)^{m}} \sum_{j=0}^{m} {m \choose j} (-1)^{m+j} e^{inj\theta} e^{-in(m-j)\theta}$$

$$= \sigma - \lim_{n \to \infty} \frac{1}{(2i)^{m}} \sum_{j=0}^{m} {m \choose j} (-1)^{m+j} e^{in(2j-m)\theta}$$

$$= \frac{1}{(2i)^{m}} \sum_{j=0}^{m} {m \choose j} (-1)^{m+j} \sigma - \lim_{n \to \infty} e^{in(2j-m)\theta}$$

exists. Similarly,

$$\sigma\text{-}\lim_{n\to\infty}\cos^m(n\theta) = \frac{1}{2^m} \sum_{j=0}^m \binom{m}{j} \sigma\text{-}\lim_{n\to\infty} e^{in(2j-m)\theta}$$

exists.

Now, we consider the case that $\theta \in \mathbb{R}$ is such that $k\theta \notin 2\pi\mathbb{Z}$ for every nonzero integer k. If m is a positive odd integer, then

$$\sigma - \lim_{n \to \infty} \sin^{m}(n\theta) = \frac{1}{(2i)^{m}} \sum_{j=0}^{m} {m \choose j} (-1)^{m+j} \sigma - \lim_{n \to \infty} e^{in(2j-m)\theta} = 0;$$

if m is a nonnegative even integer and m = 2k, then

$$\sigma\text{-}\lim_{n\to\infty}\sin^m(n\theta) = \frac{1}{2^{2k}(-1)^k}\binom{2k}{k}(-1)^k = \frac{1}{2^{2k}}\binom{2k}{k}.$$

Similarly, we have

$$\sigma\text{-}\lim_{n\to\infty}\cos^m(n\theta) = \begin{array}{cc} 0 & \text{if } m \text{ is a positive odd integer} \\ \frac{1}{2^{2k}}\binom{2k}{k} & \text{if } m=2k \text{ is a nonnegative even integer.} \end{array}$$

Theorem 3.1. For every $\theta \in \mathbb{R}$, both σ - $\lim_{n \to \infty} f(\sin(n\theta))$ and σ - $\lim_{n \to \infty} f(\cos(n\theta))$ exist for all $f \in C[-1,1]$. In particular, σ - $\lim_{n \to \infty} |\sin(n\theta)|$ and σ - $\lim_{n \to \infty} |\cos(n\theta)|$ exist.

Since the σ -limit is linear, we may assume that f is a real-valued function. Define $h(\theta) := \sin(\theta)$ or $\cos(\theta)$ for $\theta \in \mathbb{R}$. Let $E := \{ f \in C_{\mathbb{R}}[-1,1] | \sigma$ $\lim_{n\to\infty} f(h(n\theta))$ exists $\}$. By last two examples, E contains all polynomials and E

is a linear subspace of $C_{\rm I\!R}[-1,1]$. Since the set of all polynomials is dense in $C_{\rm I\!R}[-1,1]$ by the famous Weierstrass theorem, it suffices to show that E is closed. Let $\{f_m\}$ be a sequence in E convergent to some element $f \in C_{\rm I\!R}[-1,1]$. Then $\{f_m(h(n\theta))\}_{n=1}^\infty$, $m=1,2,\ldots$, is a sequence in \mathbb{R}_σ convergent to $\{f(h(n\theta))\}$ in sup-norm. It follows from Theorem 2.4 that $\{f(h(n\theta))\}\in\mathbb{R}_\sigma$ and

$$\lim_{m\to\infty}\sigma\text{-}\lim_{n\to\infty}f_m(h(n\theta))=\sigma\text{-}\lim_{n\to\infty}\lim_{m\to\infty}f_m(h(n\theta))=\sigma\text{-}\lim_{n\to\infty}f(h(n\theta)).$$

This completes the proof.

Theorem 3.2. Let Δ be the closed disc $\{\lambda \in \mathbb{C}; |\lambda| \leq 1\}$ and let $A(\Delta)$ be the algebra of all continuous functions $f: \Delta \to \mathbb{C}$ that can be approximated uniformly by polynomials on Δ (cf. [10, p. 410]). Then σ - $\lim_{n\to\infty} f(e^{in\theta})$ exists for all $\theta \in \mathbb{R}$. Furthermore, if, in addition, $k\theta \notin 2\pi\mathbb{Z}$ for every nonzero integer k, then σ - $\lim_{n\to\infty} f(e^{in\theta}) = f(0)$.

Proof. Let $\theta \in \mathbb{R}$ be arbitrary. If f is a polynomial, it follows from Example 1 that σ - $\lim_{n \to \infty} f(e^{in\theta})$ exists. Suppose f is continuous on Δ and is analytic in the interior of Δ . Then there is a sequence $\{f_m\}$ of polynomials such that $f_m \to f$ uniformly on Δ . Therefore for every $m \geq 1$ $\{f_m(e^{in\theta})\}_{n=1}^{\infty} \in \mathbb{C}_{\sigma}$ and $\{f_m(e^{in\theta})\}_{n=1}^{\infty}$ converges to $\{f(e^{in\theta})\}_{n=1}^{\infty}$ uniformly as $m \to \infty$. Since \mathbb{C}_{σ} is a Banach space, this implies $\{f(e^{in\theta})\}_{n=1}^{\infty} \in \mathbb{C}_{\sigma}$. Therefore σ - $\lim_{n \to \infty} f(e^{in\theta})$ exists. Now, we suppose $k\theta \notin 2\pi\mathbb{Z}$ for every nonzero integer k. By Example 1, we have we have σ - $\lim_{n \to \infty} f_m(e^{in\theta}) = f_m(0)$ for all $m \geq 1$. It follows from Theorem 2.4 that

$$\sigma - \lim_{n \to \infty} f(e^{in\theta}) = \sigma - \lim_{n \to \infty} \lim_{m \to \infty} f_m(e^{in\theta})$$
$$= \lim_{m \to \infty} \sigma - \lim_{n \to \infty} f_m(e^{in\theta})$$
$$= \lim_{m \to \infty} f_m(0) = f(0).$$

This completes the proof.

Remark. Indeed, $A(\Delta) \equiv \{f: \Delta \to \mathbb{C} | f \text{ is continuous on } \Delta \text{ and is analytic in the interior of } \Delta \}$. For, if $f: \Delta \to \mathbb{C}$ is continuous on Δ and is analytic in the interior of Δ , and if 0 < r < 1, then the function $f_r(z) := f(rz)$ is analytic on $\{z \in \mathbb{C}; |z| < \frac{1}{r}\}$. Therefore f_r can be approximated (uniformly on Δ) by a sequence of polynomials. Since $f_r \to f$ uniformly on Δ as $r \nearrow 1$, we must have that f can be approximated by a sequence of polynomials uniformly on Δ . In Theorems 3.1 and 3.2, we have $|\sigma - \lim_{n \to \infty} f(h(n\theta))| \le ||f||_{\infty}$, the sup-norm of f (see [4, Theorem 3.2]). This fact is used in the proof of the next theorem.

Theorem 3.3. Suppose X is a reflexive Banach space and $\theta \in \mathbb{R}$.

- (i) If $f: [-1,1] \to X$ is weakly continuous, then both $\sigma\text{-}\lim_{n \to \infty} f(\sin(n\theta))$ and σ - $\lim_{n\to\infty} f(\cos(n\theta))$ exist.
- (ii) If $f: \Delta \to X$ is weakly continuous on Δ and f is analytic in the interior of

$$\sigma$$
- $\lim_{n\to\infty} f(e^{in\theta})$ exists.

Furthermore, if, in addition, $k\theta \notin 2\pi \mathbb{Z}$ for every nonzero integer k, then σ - $\lim_{n\to\infty} f(e^{in\theta}) = f(0).$

Proof. Fix a $\theta \in \mathbb{R}$. Suppose a function f is as mentioned in part (i) (resp. (ii)) and suppose $h(t) := \sin(t)$ or $\cos(t)$ (resp. $h(t) := e^{it}$), $t \in \mathbb{R}$. For every $x^* \in X^*$, we define

$$F(x^*) := \sigma - \lim_{n \to \infty} \langle f(h(n\theta)), x^* \rangle.$$

By Theorems 3.1 and 3.2, F is well-defined. Since the σ -limit is linear, so is F. On the other hand, we have

$$|F(x^*)| = |\sigma\text{-}\lim_{n \to \infty} \langle f(h(n\theta)), x^* \rangle| \leq ||f||_{\infty} \cdot ||x^*||$$

for all $x^* \in X^*$. Since X is reflexive, this implies that $F = J_x$ for some $x \in X$. Therefore we have for every $x^* \in X^*$

$$\sigma$$
- $\lim_{n\to\infty} \langle f(h(n\theta)), x^* \rangle = \langle x^*, J_x \rangle = \langle x, x^* \rangle.$

This proves that

$$\sigma$$
- $\lim_{n\to\infty} f(h(n\theta)) = x$.

Now, we suppose $k\theta \notin 2\pi\mathbb{Z}$ for every nonzero integer k. It follows from Theorem 3.2 that for every $x^* \in X^*$

$$\sigma$$
- $\lim_{n\to\infty} \langle f(e^{in\theta}), x^* \rangle = \langle f(0), x^* \rangle.$

Therefore σ - $\lim_{n\to\infty} f(h(n\theta)) = f(0)$. This completes the proof.

ACKNOWLEDGEMENT

The author would like to thank the referee for his valuable suggestions.

REFERENCES

1. Z. U. Ahmad and Mursaleen, An application of Banach limits, Proc. Amer. Math. Soc., 103(1) (1988), 244-246.

- 2. M. K. Kuo, Characterization of w-almost convergent double sequences and their related properties, Ph.D. Dissertation, National Tsung Hua University, Taiwan, 2004.
- 3. S. Li, C. Li, and Y.-C. Li, On σ -limit and $a\sigma$ -limit in Banach spaces, *Taiwanese J*. Math., 9(3), (2005), to appear.
- 4. Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean ergodic theorem, Studia Math., 121 (1996), 207-219.
- 5. G. G. Lorentz, A contribution to the theory of divergent sequence, Acta Math., 80 (1948), 167-190.
- 6. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford (2), 34 (1983), 77-86.
- 7. R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963), 81-94.
- 8. P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110.
- 9. P. Schaefer, Mappings of positive integers and subspaces of m, Port. Math., 38 (1979), 29-38.
- 10. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed, New York Wiley, 1980.

Yuan-Chuan Li Department of Applied Mathematics, National Chung-Hsing University, Taichung 40227, Taiwan.

E-mail: ycli@amath.nchu.edu.tw