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CENTRAL SEQUENCE ALGEBRAS OF VON NEUMANN ALGEBRAS

Junsheng Fang, Liming Ge and Weihua Li

Abstract. We prove that the ultrapower and the central sequence algebra of the
hyperfinite II1 factor are prime factors which implies that the central sequence
algebra of the tensor product of two factors may not be the tensor product of the
central sequence algebras of the factors respectively. This answers negatively
a question of D. McDuff. Isomorphisms of ultrapowers of factors are also
studied.

1. INTRODUCTION

F. J. Murray and J. von Neumann [9-13] introduced and studied certain algebras
of Hilbert space operators. Those algebras are now called “Von Neumann Algebras.”
They are strong-operator closed self-adjoint subalgebras of the algebra of all bounded
linear transformations on a Hilbert space. Factors are von Neumann algebras whose
centers consist of scalar multiples of the identity. Every von Neumann algebra is a
direct sum (or “direct integral”) of factors. Thus factors are the building blocks for
all von Neumann algebras.

Murray and von Neumann [9] classified factors by means of a relative dimen-
sion function. Finite factors are those for which this dimension function has a finite
range. For finite factors, this dimension function gives rise to a (unique, when nor-
malized) tracial state. In general, a von Neumann algebra admitting a faithful normal
trace is said to be finite. Finite-dimensional “finite factors” are full matrix algebras
Mn(C), n = 1, 2, . . .. Infinite-dimensional “finite factors” are called factors of type
II1. They are “continuous” matrix algebras. In [10], Murray and von Neumann
showed that there are two non-isomorphic factors of type II1 using ideas of central
sequences. Central sequences in a factor form an algebra. Many people (see [2,
5, 8, 16]) used the algebraic properties of central sequences in factors of type II1
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to study factors themselves. Dixmier [4] showed that the central sequence algebra
of a type II1 factor is either trivial (i.e., one-dimensional) or non-atomic (and thus,
infinite-dimensional). In this paper, we show that a similar result holds for an irre-
ducible inclusion of type II1 factors. Using the language of ultrapowers, our result
states that the relative commutant of any irreducible subfactor of a type II1 factor
in the ultrapower of the factor is either trivial or non-atomic.

The central sequence algebra for a finite von Neumann algebra can be viewed as
the relative commutant of the algebra in the ultrapower of the algebra constructed
from a given free ultrafilter on natural numbers N. Ultrapowers for finite von
Neumann algebras were first introduced and studied by D. McDuff [8]. She proved
a remarkable result which says that if the central sequence algebra of a type II1 factor
is noncommutative, then the original factor is isomorphic to the tensor product of
the hyperfinite II1 factor with itself. Thus the structure of the ultrapower of a factor
encodes rich structural properties of the factor itself. McDuff asked three questions
in [8]. The first one, answered positively by Ge and Hadwin [6], asks whether the
ultrapowers of a factor on two different free ultrafilters are isomorphic to each other.
The second question asks if the central sequence algebra of the tensor product of
two factors splits as the tensor product of respective central sequence algebras of
the factors. The third question asks whether the central sequence algebra of the
hyperfinite factor of type II1 is again hyperfinite. In this paper, we shall answer
both the second and the third negatively. Moreover, we shall show that both the
ultrapower and the central sequence algebra of the hyperfinite factor of type II1
are (non-separable) prime factors and also the ultrapower can be embedded into the
central sequence algebra as a subfactor.

Recently, especially after the introduction of free entropy by Voiculescu in his
probability theory (see [17]), there is a growing interest in Connes’s approximate
embedding problem [3], which asks if every factor of type II1 with a separable
predual can be embedded into the ultrapower of the hyperfinite II1 factor. Connes’s
problem is equivalent to the non-emptiness of a set used to define free entropy.
We shall also study some embedding problems of factors into the ultrapower of the
hyperfinite one. For example, we show that any embedding of a factor with a separable
predual into the ultrapower of the hyperfinite II1 has a big relative commutant.

The isomorphism problem of two ultrapowers from two non-isomorphic factors
seems to be an interesting one. In this direction, we show that the ultrapower of a
property Γ factor will have the same property. Also, if the ultrapower of a factor is
isomorphic to the ultrapower of the hyperfinite II1 factor, then the factor must be a
McDuff factor.

The paper is organized as follows. In Section 2, we shall review the construction
of ultrapowers of finite von Neumann algebras as well as some technical results.
Section 3 contains results on relative property Γ for irreducible inclusions. We show
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that the relative commutant of any irreducible subfactor of a type II1 factor in the
ultrapower of the factor is either trivial or non-atomic. In Section 4, we show that
the ultrapower and the central sequence algebra of the hyperfinite II1 factor are
prime. We also consider the central sequence algebras of certain tensor products.
The isomorphism problem of ultrapowers is studied in Section 5. In Section 6, we
shall prove that the central sequence algebra of the hyperfinite II1 factor does not
contain a Cartan subalgebra and also it contains the ultrapower of the factor as a
subfactor.

2. PRELIMINARIES

There are two main classes of examples of von Neumann algebras constructed
by Murray and von Neumann [10,11]. One is obtained from the “group-measure
space construction;” the other is based on regular representations of a (discrete)
group G (with unit e). The second basic construction is more related to the topics
discussed in this paper. We shall give more details. The Hilbert space H is l 2(G)
(with its usual inner product). We assume that G is countable so that H is separable.
For each g in G, let Lg denote the left translation of functions in l2(G) by g−1.
Then g → Lg is a faithful unitary representation of G on H. Let LG be the von
Neumann algebra generated by {Lg : g ∈ G} (or the strong-operator closure of the
linear span). Similarly, let Rg be the right translation by g on l2(G) and RG be the
von Neumann algebra generated by {Rg : g ∈ G}. Then the commutant L′

G of LG

is equal to RG and R′
G = LG. The function ug that is 1 at the group element g

and 0 elsewhere is a cyclic trace vector for LG (and for RG). In general, LG and
RG are finite von Neumann algebras. The vector state given by any ug is a trace.
They are factors (of type II1) precisely when each conjugacy class in G (other than
that of e) is infinite. In this case we say that G is an infinite conjugacy class (i.c.c.)
group.

Specific examples of such II1 factors result from choosing for G any of the
free groups Fn on n generators (n ≥ 2), or the permutation group Π of integers
Z (consisting of those permutations that leave fixed all but a finite subset of Z).
Murray and von Neumann [11] proved that LFn and LΠ are not * isomorphic to
each other using ideas of central sequences.

Suppose M is a factor of type II1 with the unique (normalized) trace τ . We
shall use ‖X‖2 = τ(X∗X)1/2, X ∈ M, to denote the trace norm induced by τ .
A uniform bounded sequence {An} in a factor M is called central if ‖AnX −
XAn‖2 → 0 for any X in M as n tends to infinity. A central sequence {An} in
a type II1 factor M is non-trivial when it is central and An’s are away from the
scalars, i.e., ‖An − τ(An)I‖2 has no limit or a non-zero limit. Murray and von
Neumann referred to factors of type II1 with a non-trivial sequence as property Γ
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factors. A factor is hyperfinite if it is the ultraweak closure of the ascending union
of a family of finite-dimensional self-adjoint subalgebras. In fact, LΠ is the unique
hyperfinite factor of type II1 and it has non-trivial central sequences (see [11]).
While Murray and von Neumann showed that the free group factor LFn , n ≥ 2, has
no non-trivial sequences-a deep result.

Now, suppose that each Mn is a finite von Neumann algebra with a faithful
normal tracial state τn. Let

∏
n∈NN Mn be the l∞-product of the Mn’s. Then∏

n Mn is a von Neumann algebra (with pointwise multiplication). Let ω be a free
ultrafilter on N (ω may be viewed as an element in βN \N, where βN is the Stone-
Céch compactification of N). If {Xn} and {Yn} are two elements in

∏
n Mn, then

we define {Xn} ∼ {Yn} when limn→ω ‖Xn − Yn‖2 = 0. Then the ultraproduct,
denoted by

∏ω Mn, of Mn (with respect to the free ultrafilter ω) is the quotient
von Neumann algebra of

∏
n Mn modulo the equivalence relation ∼ and the limit

of τn at ω gives rise to a tracial state on
∏ω Mn. We shall use τ again to denote

the tracial state on
∏ω Mn. When Mn = M for all n, then

∏ω Mn is called
the ultrapower of M, denoted by Mω. The initial algebra M is embedded in
Mω as constant sequences given by elements in M. Sakai [15] showed that an
ultrapower of a finite von Neumann algebra with respect to a faithful normal trace
is again a von Neumann algebra. Central sequences in M give rise to elements in
Mω which commute with all constant sequences (along ω). Therefore the relative
commutant of M in Mω is called the central sequence algebra of M and denote
by Mω (= M′ ∩ Mω). Dixmier [4] proved that if Mω is non-trivial, then it is
non-atomic. In the following section we show that if N ⊂ M is an irreducible
inclusion, then N ′ ∩ Mω is either trivial or non-atomic. Throughout this paper,
ω will be an arbitrarily given free ultrafilter on N. Our initial factors are always
assumed to have separable preduals although their resulting ultrapowers have non-
separable preduals [6]. For basics on operator algebras we refer to [7]. For basic
results and techniques on ultrapowers and ultraproducts we refer to [6].

3. RELATIVE CENTRAL SEQUENCE ALGEBRAS

In [1], D. Bisch studied central sequences of inclusions N ⊂ M. He considered
sequences from N being central with respect to M. In this section, we shall discuss
a different relative central sequence algebra of an inclusion N ⊂ M, i.e., the
sequences in the bigger factor M which are central with respect to the subfactor.
For simplicity, we shall consider only irreducible inclusions since elements in the
relative commutant give rise to “trivial” central sequences. Suppose N ⊂ M is an
irreducible inclusion of factors of type II1. Sequences in M that are central with
respect to N give rise to elements in N ′∩Mω. Thus we shall call the von Neumann
algebra N ′ ∩ Mω the central sequence algebra of N in M. In the following we
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shall show that N ′ ∩ Mω is either one-dimensional or non-atomic. We need few
lemmas before proving the result.

Lemma 3.1. Let N ⊂ M be an irreducible inclusion of factors of type II 1.
Suppose P is a projection of trace r, 0 < r < 1, in M. Then, for any ε > 0, there
is a unitary operator U in N such that ‖PU − UP‖ 2 ≥ √

r − r2 − ε.

Proof. Assume on the contrary that there is a positive ε0 such that, for any
unitary U in N , ‖PU − UP‖2 <

√
r − r2 − ε0, i.e.,

‖U∗PU − P‖2 <
√

r − r2 − ε0.

Let co{U ∗PU : U ∈ N} be the minimal convex set containing all U∗PU with
U a unitary element in N . For any Y in co{U∗PU : U ∈ N}, write Y =∑n

j=1 λjU
∗
j PUj for unitary Uj in N and positive constant λj with

∑
j λj = 1.

Then we have

‖Y − P‖2 = ‖
n∑

j=1

λjU
∗
j PUj − P‖2 ≤

n∑

j=1

λj‖U∗
j PUj − P‖2 ≤

√
r − r2 − ε0.

Since N ′ ∩M = CI , τ(P )I lies in the weak-operator closure of co{U∗PU : U ∈
N}. Then √

r − r2 = ‖rI − P‖2 ≤
√

r − r2 − ε0.

This shows that our initial assumption is false. Thus our lemma follows.
The following corollary follows immediately from the above lemma and the

definition of ultrapowers.

Corollary 3.2. Let N ⊂ M be an irreducible inclusion of factors of type II 1.
Suppose P is a projection of trace r, 0 < r < 1, in Mω for some free ultrafilter
ω. Then there is a unitary operator U in N ω such that ‖PU −UP‖2 ≥ √

r − r2.

Before we state and prove our main theorem (Theorem 3.5) in this section, we
need two more lemmas.

Lemma 3.3. Let N ⊂ M be an irreducible inclusion of factors of type II 1.
Suppose P = {Pn} is a projection of trace r, 0 < r < 1, in N ′ ∩ Mω for some
free ultrafilter ω. Then, for any projection Q in M with trace s and any positive
ε, there is a Pn0 in {Pn} such that ‖Pn0Q‖2

2 ≥ rs − ε.

Proof. Without loss of generality, we may assume that Pn are projections in
M with τ(Pn) = r. From the proof of Lemma 3.1, we know that for any ε > 0,
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there are unitary elements U1, . . . , Un in N and positive numbers λ1, . . . , λn with∑n
j=1 λj = 1 so that

‖
n∑

j=1

λjU
∗
j QUj − τ(Q)I‖2 <

ε

2
.

From our assumption that P commutes with Uj ’s, there is an n0 such that ‖Pn0Uj−
UjPn0‖2 < ε

2 , for j = 1, . . . , n. Thus we have

‖∑n
j=1 λjU

∗
j Pn0QUj − τ(Q)Pn0‖2

≤ ‖∑n
j=1 λjU

∗
j Pn0QUj −

∑n
j=1 λjPn0U

∗
j QUj‖2 + ‖Pn0(

∑n
j=1 λjU

∗
j QUj − τ(Q)I)‖2

≤ ∑n
j=1 λj‖(U∗

j Pn0 − Pn0U
∗
j )‖2‖QUj‖ + ‖∑n

j=1 λjU
∗
j QUj − τ(Q)I‖2

< ε
2 + ε

2 = ε.

Since τ(U∗
j Pn0QUj) = τ(Pn0Q), we have |τ(Pn0Q) − rs| < ε. This shows that

‖Pn0Q‖2
2 = τ(Pn0QPn0) > rs − ε.

The following lemma is an easy exercise. We omit its proof.

Lemma 3.4. Suppose M is a finite von Neumann algebra with trace τ and
P, Q are projections in M. If ‖P (I − Q)‖2 ≥ ε > 0, then ‖P ∨ Q − Q‖2 ≥ ε.

Lemma 3.5. Let N ⊂ M be an irreducible inclusion of factors of type II 1.
Suppose N ′ ∩Mω is non-trivial. Then N ′ ∩Mω is non-atomic.

Proof. It is clear that N ′ ∩ Mω is a finite von Neumann algebra. Suppose
on the contrary that there is a minimal projection P in N ′ ∩ Mω and P �= 0, I .
Let Q in N ′ ∩ Mω be the central carrier of P . Then there is a k such that
Q(N ′ ∩Mω)Q ∼= Mk(C). Denote τ(P ) = r for some 0 < r < 1. Let P be the
manifold of all minimal projections in Q(N ′ ∩ Mω)Q with respect to the metric
given by ‖ ‖2. Then P is a separable space and let E1, E2, . . . be a countable
dense sequence in P . Let P = {Pn} such that {Pn} is central with respect to N
and τ(Pn) = r for all n. Thus any subsequence of {Pn} gives rise to an element
in N ′ ∩ Mω with trace r. Similarly, we choose projections Qn and E

(j)
n such

that Q = {Qn} and Ej = {E(j)
n } for j = 1, 2, . . .. Here we may assume that

τ(Qn) = kr and τ(E(j)
n ) = r, for all n and j.

From Corollary 3.2, for each j, there is a unitary element Uj = {U (j)
n } in N ω

such that
‖EjUj − UjEj‖2 ≥

√
r − r2.
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For any given n and with Qn in M, from Lemma 3.3 we have that there is an
mn ∈ N and Pmn in {Pl}l∈NN such that

(∗) ‖PmnQn‖2
2 ≥ kr2 − 1

n
.

Since P is central with respect to N , with U
(l)
k in N , we can also assume that

(∗∗) ‖PmnU
(l)
k − U

(l)
k Pmn‖2 <

1
n

,

for all 1 ≤ k, l ≤ n. Now we define an element F = {Pmn}n in Mω. Clearly
F ∈ N ′ ∩ Mω and τ(F ) = r. Moreover, from (∗) we have ‖FQ‖22 ≥ kr2

and thus FQ �= 0. Since Q belongs to the center of N ′ ∩ Mω, FQ must be a
minimal projection and thus FQ = F . This shows that F ∈ P . From (∗∗), we get
FUj = UjF for all j. By our choice of Uj , we have, for all j,

√
r − r2 ≤ ‖EjUj − UjEj‖2

= ‖(Ej − F )Uj − Uj(Ej − F )‖2 ≤ 2‖Ej − F‖2.

This contradicts to the assumption that {Ej}j is a dense subset of P . And thus
there is no minimal projection in N ′ ∩Mω.

4. PRIMENESS OF ULTRAPOWERS AND CENTRAL SEQUENCE ALGEBRAS

Suppose R is the hyperfinite II1 factor. In [14], Popa showed that Rω does not
contain a Cartan subalgebra (i.e., a maximal abelian subalgebra whose normalizer
generates the algebra). In this section, we show that both Rω and Rω are prime
factors. By techniques similar to Popa’s, one can also show that Rω does not
contain any Cartan subalgebras.

The following lemma is an easy consequence of the polar decomposition of
operators in factors of type II1.

Lemma 4.1. Let M be a factor of type II1 with a tracial state τ . Sup-
pose E1, . . . , Em and F1, . . . , Fm are projections in M such that

∑m
j=1 Ej = I ,∑m

j=1 Fj = I , τ(Ej) = τ(Fj) = 1
m . Then there is a unitary element U in M

such that U ∗EjU = Fj for 1 ≤ j ≤ m. Moreover if ‖Ej − Fj‖2 < δ for each
1 ≤ j ≤ m, then we may choose U so that ‖I − U‖2 < 4

√
mδ.

Proof. For each j, let Vj be the partial isometry in M obtained from the polar
decomposition of FjEj (= Vj|FjEj|) so that V ∗

j Vj = E ′
j ≤ Ej and VjV

∗
j = F ′

j ≤
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Fj . From ‖Ej − Fj‖2 < δ, one easily shows that

‖Ej − Vj‖2 ≤ ‖Ej − FjEj‖2 + ‖FjEj − Vj‖2

= ‖(Ej − Fj)Ej‖2 + ‖Vj|FjEj| − VjEj‖2

≤ δ + ‖(|FjEj| + Ej)(|FjEj| − Ej)‖2

= δ + ‖EjFjEj − Ej‖2 < 2δ.

Let V ′
j be a partial isometry so that V ′

j
∗V ′

j = Ej − E ′
j and V ′

j V
′
j
∗ = Fj − F ′

j and
Uj = Vj + V ′

j . Then U∗
j Uj = Ej and UjU

∗
j = Fj . From Vj(Ej − E ′

j) = 0,
we have ‖Ej − E ′

j‖2 = ‖(Ej − Vj)(Ej − E ′
j)‖2 ≤ ‖Ej − Vj‖2 < 2δ. Therefore,

‖Ej − Uj‖2 ≤ ‖Ej − Vj‖2 + ‖V ′
j‖2 < 4δ.

Let U =
∑m

j=1 Uj . Then U is a unitary element and ‖I −U‖2
2 = ‖∑m

j=1 Ej −∑m
j=1 Uj‖2

2 = τ(
∑m

j,k=1(Ek−U∗
k )(Ej−Uj)) =

∑m
j=1 ‖Ej−Uj‖2

2 < 16mδ2. Thus
‖I − U‖2 < 4

√
mδ.

The following two lemmas are the key to our main results.

Lemma 4.2. Suppose ω is a free ultrafilter on N and M a factor of type
II1. Let Mω be the ultrapower of M and A1, A2 be two non-atomic abelian von
Neumann subalgebras of Mω with separable preduals. Then there is a unitary
element U in Mω such that U ∗A1U = A2.

Proof. From our assumption that A1,A2 are non-atomic abelian von Neumann
algebras with separable preduals, they are isomorphic to L∞[0, 1]. Suppose A1

and A2 are generated by Haar unitary elements U1 and U2 respectively. We write
U1 = {U (n)

1 }n and U2 = {U (n)
2 }n for U

(n)
1 and U

(n)
2 in M. We may assume that

U
(n)
j lies in a finite dimensional abelian subalgebra of M (otherwise, we replace

U
(n)
j by such an element close to it in trace norm). Since U1 and U2 are Haar

unitary elements, we may assume that U
(n)
1 and U

(n)
2 have the same distribution and

U
(n)
1 =

∑sn
j=1 λjE

(n)
j , U

(n)
2 =

∑sn
j=1 λjF

(n)
j for E

(n)
1 , . . . , E

(n)
sn and F

(n)
1 , . . . , F

(n)
sn

in M such that τ(E (n)
j ) = τ(F (n)

j ),
∑sn

j=1 E
(n)
j =

∑sn
j=1 F

(n)
j = I . From Lemma

4.1, there is a unitary element U (n) in M such that (U (n))∗E(n)
j U (n) = F

(n)
j for

all j = 1, . . . , sn. Then (U (n))∗U (n)
1 U (n) = U

(n)
2 . Let U = {U (n)}n in Mω. Then

it is easy to see that U∗U1U = U2 and thus U ∗A1U = A2.

Lemma 4.3. Suppose ω is a free ultrafilter on N and R ω is the central sequence
algebra of R, the hyperfinite II1 factor. Let A1 and A2 be two non-atomic abelian
von Neumann subalgebras of Rω with separable preduals. Then there is a unitary
element U in Rω such that U ∗A1U = A2.
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Proof. The proof of this lemma is similar to the above one. The only difference
is that the resulting unitary element U lies in Rω. Since R is hyperfinite, we may
choose full matrix subalgebras M2k(C) of R so that M2k(C) ⊆ M2k+1(C) and
∪∞

k=1M2k(C) is ultraweakly dense in R. From our assumption that A1,A2 are non-
atomic abelian von Neumann algebras with separable preduals, they are isomorphic
to L∞[0, 1]. Suppose A1 and A2 are generated by Haar unitary elements U1 and
U2 respectively. We write U1 = {U (n)

1 } and U2 = {U (n)
2 } for U

(n)
1 and U

(n)
2 in R.

Since U1 and U2 commute with R, we may assume that U(n)
1 and U

(n)
2 commute with

M2n(C) (⊂ R). We may also assume that U
(n)
j lies in a finite dimensional abelian

subalgebra of M2n(C)′ ∩ R for j = 1, 2 (otherwise, we replace U
(n)
j by such an

element). Since U1 and U2 are Haar unitary elements, we may assume that U
(n)
1 and

U
(n)
2 have the same distribution and U

(n)
1 =

∑sn
j=1 λjE

(n)
j , U

(n)
2 =

∑sn
j=1 λjF

(n)
j for

E
(n)
1 , . . . , E

(n)
sn and F

(n)
1 , . . . , F

(n)
sn in M2n(C)′ ∩ R such that τ(E (n)

j ) = τ(F (n)
j ),

∑sn
j=1 E

(n)
j =

∑sn
j=1 F

(n)
j = I . Since M2n(C)′ ∩ R is again a factor of type II1,

there is a unitary element U (n) in it such that (U (n))∗E(n)
j U (n) = F

(n)
j for all

j = 1, . . . , sn. Then (U (n))∗U (n)
1 U (n) = U

(n)
2 . Let U = {U (n)}n in Rω. Then it

is easy to see that U ∈ Rω and U ∗U1U = U2 and thus U ∗A1U = A2.

The following lemma was proved by Popa in [14]:

Lemma 4.4. Suppose B is a von Neumannn subalgebra of a type II 1 von
Neumann algebra M (with trace τ ) and U is a unitary operator in M such that,
for any ε > 0, there is a finite dimensional von Neumann subalgebra A ε of B
such that τ(E) < ε for all minimal projections E in A ε, and UAεU

∗ and B
are orthogonal with respect to τ , then U is orthogonal to the set of normalizers
{V ∈ M : V BV ∗ = B, V unitary} of B in M, in particular, U is orthogonal to
to B and B′ ∩M.

Now we prove the main theorem in this section.

Theorem 4.5. Suppose M is a factor of type II1 and ω a free ultrafilter on
N. Let Mω be the ultrapower of M. Then Mω is prime. Moreover, if R is the
hyperfinite factor of type II1, then Rω is also a prime factor of type II 1.

Proof. Suppose on the contrary that Mω is not prime. Then Mω = M1⊗M2

for some factors M1 and M2 of type II1. Choose non-atomic abelian subalgebras
A1 of M1 and A2 of M2 such that A1 and A2 have separable preduals. From
Lemma 4.2, there is a unitary U in Mω such that U ∗A1U = A2 which is orthogonal
to M1 ⊗ CI . From the preceding lemma, U is orthogonal to the normalizers of
M1 in Mω. But the normalizers of M1 generate (linearly) Mω as a von Neumann
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algebra. This contradicts to the assumption that U lies in Mω, which shows that
Mω is prime. Similarly, using Lemma 4.3, we can show that Rω is also prime.

From the above theorem, we see that the central sequence algebra M⊗N of
two type II1 factors M and N may not be the tensor product of the corresponding
central sequence algebras (since R ∼= R⊗R and Rω is prime). This answers a
question of D. McDuff [8] in the negative.

One of the important results proved by Connes in [3] (and stated in [8]) says
that the tensor product of two factors of type II1 has no non-trivial central sequences
if and only if any of the two factors has no non-trivial central sequences. When
one of the central sequence algebra of the tensor factor is trivial, we can show that
McDuff’s question has a positive answer. Now we assume that M is a full factor
of type II1 and N is another type II1 factor. We will show that the central sequence
algebra of M⊗N is canonically isomorphic to that of N . This generalizes Connes’s
result. From the definition of property Γ (for any positive constant and any given
finitely many elements, there is a trace-zero unitary so that the unitary commutes
with the given elements within the constant in trace norm), we have the following
lemma. Here we shall use [X, Uj] to denote XUj − UjX .

Lemma 4.6. Suppose M is a factor of type II1 with a separable predual.
Then M is a full factor if and only if there are unitary elements U 1, . . . , Un in M
and a positive constant K such that for any X in M,

‖X − τ(X)I‖2
2 ≤ K

n∑

j=1

‖[X, Uj]‖2
2.

Theorem 4.7. Let ω be a free ultrafilter on N. Suppose M is a full factor of
type II1 and N is another type II1 factor. Then (M⊗N )ω is canonically isomorphic
to Nω.

Proof. Let Φ be the unique (trace-preserving) conditional expectation from
M⊗N onto N (= CI⊗N ). Then Φ is ultraweakly continuous. Suppose that {Yj}
in M⊗N is a central sequence. We shall show that it is equivalent to a central
sequence in CI⊗N . Without loss of generality, we may assume that each Yj is a
finite sum of simple tensor products in M⊗N and write Yj =

∑mj

l=1 A
(j)
l ⊗B

(j)
l for

A
(j)
l in M and B

(j)
l in N . Then Φ(Yj) =

∑mj

l=1 τ(A(j)
l )I ⊗ B

(j)
l and ‖Φ(Yj)‖ ≤

‖Yj‖. For any given j, we may choose B
(j)
l ’s so that they are mutually orthogonal

with respect to the trace and each has trace norm one. Suppose U1, . . . , Un and K
are as given in Lemma 4.6 (for M). From our assumption that {Yj} is central, we
have that for any ε > 0, there is an N ∈ N such that when j ≥ N ,
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n∑

k=1

‖[Yj, Uk ⊗ I ]‖2
2 ≤ ε2.

Then we have that

‖Yj − Φ(Yj)‖2
2 = ‖

mj∑

l=1

(A(j)
l − τ(A(j)

l )I)⊗ B
(j)
l ‖2

2

=
mj∑

l=1

‖A(j)
l − τ(A(j)

l )I‖2
2‖B(j)

l ‖2
2

≤
mj∑

l=1

K

n∑

k=1

‖[A(j)
l , Uk]‖2

2 = K

n∑

k=1

mj∑

l=1

‖[A(j)
l , Uk]‖2

2

= K

n∑

k=1

‖[Yj, Uk ⊗ I ]‖2
2 ≤ Kε2.

Thus as elements in (M⊗N )ω, {Yj}={Φ(Yj)},which corresponds to an element in
N ω . This shows that (M⊗N )ω is contained in Nω and therefore they are equal.

5. NON-ISOMORPHIC ULTRAPOWERS

In this section, we shall show that certain properties of a factor hold true for its
ultrapower. For example, we shall show that the ultrapower Rω of the hyperfinite
II1 factor has property Γ while Lω

F2
does not. Thus Rω is not isomorphic to Lω

F2

although LF2 can be embedded into Rω as a subfactor.
First we prove a lemma.

Lemma 5.1. Suppose M is a subfactor of Rω with a separable predual. Then
M′ ∩Rω contains a 2 × 2 full matrix algebra.

Proof. Suppose M1, M2, . . . are in the unit ball of M so that they are ultra-
weakly dense in the ball. Write Mj = {X (j)

n } with X
(j)
n in R. For any given n and

{X (l)
k : 1 ≤ k, l ≤ n}, there is a 2× 2 matrix unit system E

(11)
n , E

(12)
n , E

(21)
n , E

(22)
n

in R such that ‖X (l)
k E

(st)
n − E

(st)
n X

(l)
k ‖2 ≤ 1

n , for 1 ≤ k, l ≤ n and 1 ≤ s, t ≤ 2.
Let Est = {E(st)

n } in Rω. Then Est’s commute with M1, M2, . . . and they form a
2 × 2 matrix unit system in Rω. This completes the proof.

The proof of the following corollary is similar to the above proof of the lemma.

Corollary 5.2. Suppose M is a type II1 factor with a separable predual. Then
Mω has property Γ if and only if M has.
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The following corollary is an immediate consequence of Lemma 5.1 and a result
in [8].

Corollary 5.3. Suppose M is a type II 1 factor with a separable predual and
Mω ∼= Rω. Then M ∼= M⊗R.

For two non-isomorphic factors, to determine whether their ultrapowers are
isomorphic or not seems to be a hard problem. We end the section with the following
theorem.

Theorem 5.4. Suppose M is a type II1 factor with a separable predual and
Mω ∼= Rω. Then the following are equivalent:

(1) M ∼= R;

(2) For any two embeddings Φ and Ψ of M into R ω, there is a unitary operator
U in Rω such that U ∗Φ(X)U = Ψ(X) for any X in M;

(3) For any embedding Ψ of M⊗M into Rω, there is a unitary U in Rω such
that U ∗Ψ(X ⊗ Y )U = Ψ(Y ⊗ X) for all X, Y in M;

(4) For any embedding Ψ of M⊗M into Rω, there is a unitary U in Rω such
that U ∗Ψ(X ⊗ I)U = Ψ(I ⊗ X) for all X in M.

Proof. The implications of (1) to (2), (2) to (3) and (3) to (4) are clear. We
only need to show that (4) implies (1).

From Corollary 5.3, M ∼= M⊗R. Choose a generator X for M and denote
the isomorphism from Mω to Rω by α. Then X can be viewed as an element
in Mω and let Z = α(X). Now we consider M⊗M and define an embedding
ϕ : M⊗M → (M⊗R)ω by ϕ(X ⊗ I) = X ⊗ I and ϕ(I ⊗ X) = I ⊗ Z.
Note that (M⊗R)ω ∼= Mω ∼= Rω. Thus we may view ϕ as an embedding from
M⊗M into Rω. From our assumption, there is a unitary U in Rω such that
X ⊗ I = U∗(I ⊗ Z)U . Since X is a generator for M, from [3] we know that
M ∼= R.

6. EMBEDDING INTO THE ULTRAPOWER OF THE HYPERFINITE II1 FACTOR

Connes asks whether every factor of type II1 with a separable predual can be
embedded into the ultrapower of the hyperfinite II1 factor. Suppose a factor M
can be embedded into Rω as a subfactor. It is also interesting to know when two
embeddings are equivalent. The following theorem answers this question for a hy-
perfinite von Neumann algebra. It is a consequence of the fact that two embeddings
of a finite dimensional algebra into R are approximately equivalent.
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Theorem 6.1. Suppose R1 is a finite hyperfinite von Neumann algebra with
a separable predual and Φ, Ψ are two embeddings of R 1 into Rω. Then there is
a unitary element U in Rω such that U ∗Φ(X)U = Ψ(X), for all X in R1.

Popa [14] showed that Rω does not have a Cartan subalgebra. Similar method
implies that Rω has the same property. We state the result in the following corollary
and omit its proof here.

Corollary 6.2. The central sequence algebra Rω of R has no Cartan subal-
gebras.

The central sequence algebra Rω of R is clearly not hyperfinite. It shares many
similar properties to those of Rω. We do not know if they are isomorphic to each
other. But one can easily prove the following result.

Theorem 6.3. The ultrapower Rω can be embedded into Rω.

Proof. Since R ∼= ⊗∞
1 R, we shall show that Rω can be embedded into

(⊗∞
1 R)ω. For any X = {Xn} in Rω with Xn in R, define ϕ(X) to be an element

in (⊗∞
1 R)ω corresponding to the sequence X1 ⊗ I ⊗ I ⊗· · · , I ⊗X2 ⊗ I ⊗· · · , . . .

in (⊗∞
1 R)ω. It is easy to see that ϕ(X) is a central sequence and thus ϕ induces

an embedding from Rω into (⊗∞
1 R)ω.
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