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ON CLOSEDNESS IN THE L-TOPOLOGY OF T.V.S.

Y. Chiang and Y. S. Wang

Abstract. Let X and Y be Hausdorff and locally convex topological vector
spaces. In this paper, we prove that a convex subset of X is closed if and
only if it is closed in the topology on X induced by the set of continuous
linear mappings from X into Y . As applications, some existence results for
vector equilibrium problems and vector variational inequalities associated with
discontinuous mappings are given.

1. INTRODUCTION

For given topological vector spaces X and Y , let L(X, Y ) denote the set of
continuous linear mappings from X into Y . Throughout the paper, all topological
vector spaces are assumed to be real spaces. When Y = IR, L(X, Y ) is the topo-
logical dual space X∗. For x ∈ X and � ∈ L(X, Y ), we shall alternatively write
the value �(x) of � at x as 〈�, x〉.

The set L(X, Y ) induces a topology on X generalizing the usual weak topology.
This topology is called the L-topology on X induced by L(X, Y ). See Section 2 for
more discussion. The L-topology is first considered in [4] for dealing with vector
variational inequalities.

As well known, a convex subset of a Hausdorff locally convex topological vector
space X is closed if and only if it is weakly closed. The main work of this section is
to generalize this result to convex subsets of X in the L-topology; see Theorem 2.1.
The work was motivated by an attempt to derive existence results for generalized
vector quasi-variational inequalities associated with mappings without continuity
assumptions.
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It is worth observing that most of the results in generalized quasi-variational
inequalities require the upper semicontinuity assumption, in the sense of multivalued
mappings, on the associated mappings. When the associated mappings are single
valued, this assumption reduces to the ordinary notion of continuity. There are very
few results in the literature without continuity assumption; see [6-8. 12-14] and
references there in.

The problem of generalized vector quasi-variational inequalities includes the
problem of vector variational inequalities as a special case. As an application of
our main result, in Section 3, we shall derive some existence results for vector
variational inequalities associated with discontinuous operators. Existence results
for generalized vector quasi-variational inequalities associated with discontinuous
mappings will appear elsewhere. As vector variational inequality problems closely
relate to vector equilibrium problems, our existence results for vector variational
inequalities will be obtained from that for vector equilibrium problems associated
with discontinuous bifunctions.

Our existence results are established by employing Fan-KKM Theorem [9]. To
use this theorem, we need some definitions for multivalued mappings. For any given
nonempty set X , let 2X denote the family of all subsets of X . For given nonempty
sets X and Y , a mapping Φ : X −→ 2Y will be also called a multivalued mapping
from X into Y . The mapping Φ is said to have nonempty values if Φ(x) is nonempty
for every x ∈ X . When Y is a topological space, we say that Φ has closed values if
Φ(x) is closed in Y for every x ∈ X . Similarly, if Y is a topological vector space,
Φ is said to have convex values if every Φ(x) is convex in Y .

For a given nonempty convex subset K of a topological vector space X , a
multivaued mapping Φ from K into X is a KKM mapping if for any nonempty
finite set E ⊂ K,

co(E) ⊂
⋃
x∈E

Φ(x) ,

where co(E) denotes the convex hull of E in X . Observe that every KKM multi-
valued mapping has nonempty values. Now, we state Fan-KKM Theorem below.

Theorem 1.1. Let K be a nonempty convex subset of a Hausdorff topological
vector space X , and let Φ : K −→ 2X be a KKM mapping. If Φ has closed values,
and if Φ(x) is compact for some x ∈ K , then

⋂
x∈K

Φ(x) is nonempty.

2. THE L-TOPOLOGY

For given topological vector spaces X and Y , the L-topology on X induced by
L(X, Y ) is the topology having the family

{�−1(U) : U is open in Y and � ∈ L(X, Y )}
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as a subbasis. When Y = R, this topology becomes the usual weak topology. In
the rest of this section, we shall consider any fixed topological vector spaces X
and Y , and the L-topology on X induced by L(X, Y ) will be simply called the
L-topology on X . The corresponding topological space will be denoted by XL.
Note that XL is a topological vector space, and that XL is Hausdorff if and only if
X is Hausdorff and locally convex [4, Theorem 3.1].

A subset E of X will be called L-open (L-closed or L-compact) if E is open
(closed or compact) in XL. It is clear that every L-open (or L-closed) subset of X
is originally open (or closed) in X . Similarly, compact (or bounded) subsets of X

are L-compact (or L-bounded).
In general, closed subsets of X are not necessarily L-closed in X . It is well

known that a closed subset of a Hausdorff locally convex topological vector space
is weakly closed if it is convex; see e.g., [11, Theorem 3.12]. We prove in Theorem
2.1 to generalize this result to the notion of L-closedness. It is worth to mention that
if X is a normed space and Y is a Banach space, then the notion of L-boundedness
coincides with that of boundedness; see [5, Proposition 2.2].

To state our main theorem, we need some notations. For any given subset E

of X , we shall use E
L for the closure of E in XL. The original closure of E is

denoted by E as usual.

Theorem 2.1. Assume that X and Y are Hausdorff locally convex topological
vector spaces. If E is a nonempty convex subset of X , then E

L = E.

As immediate consequences of Theorem 2.1, we obtain:

Theorem 2.2. Assume that X and Y are Hausdorff locally convex topological
vector spaces.

(i) A convex subset of X is L-closed if and only if it is original closed.

(ii) A vector subspace of X is originally closed if and only if it is L-closed.
(iii) A convex subset of X is originally dense if and only if it is dense in X L.

As another consequence of Theorem 2.1, we consider the convergence of se-
quences in XL. A sequence {xn}∞n=1 is called L-convergent in X if it converges in
XL to some x ∈ X , written by xn

L−→ x. We shall write xn −→ x when {xn}∞n=1

converges to x originally in X . Note that

xn
L−→ x ⇐⇒ �(xn) −→ �(x) for all � ∈ L(X, Y ).

Now, by a similar argument as in [11, Theorem 3.13, p. 65], the following
theorem is obtained from Theorem 2.1.
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Theorem 2.3. Assume that X is a metrizable locally convex topological vector
space. If {xn}∞n=1 is a sequence in X with xn

L−→ x ∈ X , then there is a sequence
{x̂n}∞n=1 in the convex hull of {xn}∞n=1 such that x̂n −→ x.

Theorem 2.1 will be proved by two lemmas. First, we recall some preliminary
definitions. A subset P of Y is called a hyperplane if it is of the form y+V for some
y ∈ Y and some linear subspace V of Y of codimension 1, i.e., dim(Y/V ) = 1,
or equivalently, V = ker(ϕ) for some non-zero linear mapping ϕ : Y −→ IR. Note
that P is closed if and only if ϕ is continuous, i.e., ϕ ∈ Y ∗; see e.g., [11, Theorem
1.18, p. 14]. When P is closed, we associate to P two disjoint open subsets of Y
given by

P+ = y + {ζ ∈ Y : ϕ(ζ) > 0} and P− = y + {ζ ∈ Y : ϕ(ζ) < 0} .

Two disjoint subsets A and B of X are called strictly separated by L(X, Y ) if
there exist an � ∈ L(X, Y ) and a closed hyperplane P ⊂ Y such that

A ⊂ �−1(P+) and B ⊂ �−1(P−) .

Lemma 2.4. Assume that Y is a Hausdorff locally convex topological vector
space. If y0 is a non-zero vector in Y , then there exists ϕ ∈ Y ∗ such that ϕ(y0) = 1
and Y = Y0 ⊕ V , where Y0 = {ty0 : t ∈ IR} and V = ker(ϕ).

Proof. Let Y0 be equipped with the subspace topology from Y . Since Y is
Hausdorff, the mapping t 	−→ ty0 is a linear homeomorphism from IR onto Y0 [10,
Theorem (5.9.1), p. 89]. Consider the linear functional f : Y0 −→ IR defined by

f(ty0) = t for t ∈ IR.

Since Y is Hausdorff and locally convex, there exists g ∈ Y ∗ such that

g(y) = f(y) for y ∈ Y0;

see [10, Theorem (8.4.6), p. 156]. It follows from [10, Theorems (5.8.1), p. 86,
and (8.4.8), p. 157]nab that there exists π ∈ L(Y, Y0) such that

Y = Y0 ⊕ V and π(y) = y for y ∈ Y0,

where V = ker(π). Clearly, the composite ϕ = g◦π is a continuous linear functional
on Y . For (t, v) ∈ IR × V , ϕ(ty0 + v) = f(ty0) = t. This completes the proof.

Lemma 2.5. Assume that X and Y are Hausdorff locally convex topological
vector spaces. Let A and K be disjoint nonempty convex subsets of X . If A is
closed and K is compact, then A and K are strictly separated by L(X, Y ).
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Proof. By [11, Theorem 3.4, p. c58], there exist a g ∈ X∗ and an r ∈ IR such
that

g(x) > r for all x ∈ A and g(x) < r for all x ∈ K.

Choose any non-zero vector y0 ∈ Y , and let Y0 = {ty0 : t ∈ IR}. By Lemma 2.4,
there exists ϕ ∈ Y ∗ such that

ϕ(y0) = 1 and Y = Y0 ⊕ V ,

where V = ker(ϕ). Consider the closed hyperplane P = ry0 + V . Note that

P+ = {ty0 + v : t > r and v ∈ V } and P− = {ty0 + v : t < r and v ∈ V } .

Let h : IR −→ Y be the continuous linear mapping defined by h(t) = ty0 for all
t ∈ IR. Clearly, the composite � = h ◦ g lies in L(X, Y ) satisfying A ⊂ �−1(P+)
and K ⊂ �−1(P−). This completes the proof.

Proof of Theorem 2.1. Clearly, E ⊂ E
L. To prove the opposite inclusion, we

consider any fixed point x0 ∈ X \ E. By Lemma 2.5, there exist an � ∈ L(X, Y )
and a closed hyperplane P in Y such that

x0 ∈ �−1(P−) = U and E ⊂ �−1(P+) .

Since U is an L-open subset of X with U ∩ E = ∅, we have E
L ⊂ X \ U and

x0 /∈ E
L. This proves E

L ⊂ E, and completes the proof.

2. VEP AND VVI ASSOCIATED WITH DISCONTINUOUS MAPPINGS

This section is devoted to deriving some existence results for vector equilibrium
problems and vector variational inequalities associated with discontinuous bifunc-
tions or operators. These problems are formulated by considering mappings with
values in an ordered topological vector space. We shall fix once for all a Hausdorff
topological vector space Z with a preorder defined by a closed convex cone C ⊂ Z
such that C 
= Z and IntC 
= ∅, where IntC is the interior of C in Z . In this
section, the L-topology on a given topological vector space X will be referred to as
the L-topology induced by L(X, Z).

To state our results, we need some preliminary definitions and notations. For
any subset A of a topological vector space X , we denote Ac by the complement of
A in X , and when A is nonempty, we denote F (A) by the family of all nonempty
finite subsets of A.

Let K be a nonempty subset of a topological vector space X . The vector
equilibrium problem VEP(f, K) associated with a bifunction f : K × K −→ Z
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is the problem of finding an x̂ ∈ K such that f(x̂, u) ∈ (−IntC)c for all u ∈ K .
Such an x̂ is called a solution of the problem VEP(f, K).

If T : K −→ L(X, Z) is an operator, then by considering the bifunction

f(x, u) = 〈T (x), u − x〉 for x, u ∈ K ,

VEP(f, K) becomes the vector variational inequality VVI(T, K) associated with
T . An x̂ ∈ K is called a solution of VVI(T, K) if 〈T (x̂), u − x̂〉 ∈ (−IntC)c for
all u ∈ K.

When Z = IR and C is the set of all non-negative real numbers, the prob-
lem VEP(f, K) becomes the equilibrium problem EP(f, K) associated with f :
K × K −→ IR, while VVI(T, K) becomes the variational inequality VI(T, K)
associated with T : K −→ X ∗.

Recall that a bifunction f as given above is called vector 0-diagonally convexc
[2] if for any finite set {u1, ..., un} ⊂ K,

x =
n∑

j=1

λjuj with λj ≥ 0 for all j and
n∑

j=1

λj = 1 =⇒
n∑

j=1

λjf(x, uj) ∈ (−IntC)c ,

and that f is called C-quasiconvex-like [1] if for all x, y1, y2 ∈ K and for 0 ≤ t ≤ 1,

f(x, ty1 + (1− t)y2) ∈ f(x, y1)− C or f(x, ty1 + (1− t)y2) ∈ f(x, y2)− C .

When Z = IR and C is the set of non-negative real numbers, vector 0-diagonally
convexity reduces to 0-diagonally convexity introduced by Zhow and Chen [15],
and a real bifunction is called quasiconvex-like if it is C-quasiconvex-like.

A function g : K −→ Z is called C-quasiconcave [3] if for any x0, x1 ∈ K ,

g(x0) ∈ g(xt) − C or g(x1) ∈ g(xt) − C ,

where xt = (1 − t)x0 + tx1 for 0 ≤ t ≤ 1. When Z = IR and C is the set of non-
negative real numbers, a function g : K −→ IR is simply called quasiconcave when
it is C-quasiconcave, i.e., g(x0) ≤ g(xt) or g(x1) ≤ g(xt) for any x0, x1 ∈ K ,
where xt is given above.

Now, we are ready to establish some existence results. The following lemma is
an immediate consequence of Fan-KKM Theorem whose proof is omitted.

Lemma 3.1. Let K be a nonempty compact and convex subset of a Hausdorff
topological vector space. For a given bifunction f : K×K −→ Z , let Φ f : K −→
2K be the multivalued mapping defined by

Φf(u) = {x ∈ K : f(x, u) ∈ (−IntC)c} .
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If Φf is a KKM mapping and has closed values, then VEP(f, K) has a solution.

Remark 3.2. Let K be a nonempty convex subset of a topological vector space.
For a given bifunction f : K × K −→ Z , the multivalued mapping Φf given in
Lemma 3.1 is a KKM mapping if either f is vector 0-diagonally convex [2, proof of
Lemma 3.6] or f is C-quasiconvex-like with f(x, x) ∈ (−IntC)c for every x ∈ K

[2, proof of Lemma 3.9].

Lemma 3.3. Let K be a nonempty closed and convex subset of a Hausdorff
topological vector space. For any given bifunction f : K × K −→ Z , let Φ f be
the multivalued mapping given in Lemma 3.1. Then VEP(f, K) has a solution if

(i) Φf is a KKM mapping and has closed values, and
(ii) (Coercivity) There exist nonempty compact subsets A and B of K with B

convex such that if x ∈ K ∩Ac, then f(x, ux) ∈ (−IntC) for some ux ∈ B.

Proof. Consider any E ∈ F(K). By Lemma 3.1, there is an xE ∈ co(E ∪ B)
such that

f(xE, u) ∈ (−IntC)c for all u ∈ co(E ∪ B).

Since B ⊂ co(E ∪ B), the coercivity condition implies xE ∈ A. This proves that

SE = {x ∈ A : f(x, u) ∈ (−IntC)c for all u ∈ co(E ∪ B)} 
= ∅ .

Let SE be the closure of SE in A. It is easy to see that the family {SE : E ∈ F(K)}
has the finite intersection property. It follows from the compactness of A that

S =
⋂

E∈F(K)

SE 
= ∅ .

We claim that any x̂ ∈ S is a solution of VEP(f, K).
For an arbitrary u ∈ K, let U = {x̂, u}. Since x̂ ∈ SU , there is a net {xα}

in SU such that xα −→ x̂. Note that f(xα, u) ∈ (−IntC)c for every α, i.e., xα

∈ Φf (u). The closedness of Φf(u) implies x̂ ∈ Φf (u). The proof is complete.

Corollary 3.4. Let K be a nonempty closed and convex subset of a Hausdorff
topological vector space, and let f : K × K −→ Z be a bifunction. Assume that
for every u ∈ K the set

{x ∈ K : f(x, u) ∈ (−IntC)c}

is closed in K, and that the coercivity condition given in Lemma 3.3 is satisfied.
Then VEP(f, K) has a solution if either
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(a) f is vector 0-diagonally convex, or
(b) f is C-quasiconvex-like with f(x, x) ∈ (−IntC)c for every x ∈ K.

Theorem 3.5. Assume that Z is locally convex and X is a Hausdorff locally
convex topological vector space. Let K be a nonempty closed and convex subset of
X . For any given bifunction f : K×K −→ Z , let Φf be the multivalued mapping
given in Lemma 3.1. Then VEP(f, K) has a solution if the following conditions
are satisfied.

(i) Φf is a KKM mapping and has closed values.
(ii) For every u ∈ K, the function x 	−→ f(x, u) is C-quasiconcave.
(iii) (Coercivity) There exist nonempty L-compact subsets A and B of K with B

convex such that if x ∈ K ∩Ac, then f(x, ux) ∈ (−IntC) for some ux ∈ B.

Proof. Let KL denote the subspace topology on K from XL. By Theorem 2.1,
KL is closed in XL. The sets A and B given in (iii) are compact subsets of KL.
By Lemma 3.3, it remains to show that Φf : KL −→ 2KL has closed values, or
equivalently, Φf (u) is L-closed in X for every u ∈ K . By Theorem 2.1 again, this
will be done if Φf has convex values.

Suppose on the contrary that Φf(u0) is not convex for some u0 ∈ K . There
exist distinct x0, x1 ∈ Φf (u0) such that xt 
∈ Φf (u0) for some t with 0 < t < 1,
where xt = (1− t)x0 + tx1. The condition (ii) implies that

f(x0, u0) ∈ f(xt, u0) − C or f(x1, u0) ∈ f(xt, u0) − C .

By assumption, we have f(xt, u0) ∈ (−IntC). Thus,

f(x0, u0) ∈ (−IntC) − C = −IntC or f(x1, u0) ∈ (−IntC) − C = −IntC .

This is a contradiction, and completes the proof.

Theorem 3.6. Assume that Z is locally convex and X is a Hausdorff locally
convex topological vector space. Let K be a nonempty closed and convex subset
of X , and let f : K ×K −→ Z be a bifunction. Assume that for every u ∈ K the
set {x ∈ K : f(x, u) ∈ (−IntC)c} is closed in K, and that the conditions (ii) and
(iii) of Theorem 3.5 are satisfied. Then VEP(f, K) has a solution if

(a) f is vector 0-diagonally convex, or
(b) f is C-quasiconvex-like with f(x, x) ∈ (−IntC)c for every x ∈ K.

Corollary 3.7. Assume that X is a Hausdorff locally convex topological
vector space. Let K be a nonempty closed and convex subset of X , and let f : K

×K −→ IR be a real bifunction. Then EP(f, K) has a solution if the following
conditions are satisfied.
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(i) For every u ∈ K the set {x ∈ K : f(x, u) ≥ 0} is closed in K .
(ii) f is 0-diagonally convex, or is quasiconvex-like with f(x, x) ≥ 0 for every

x ∈ K.
(iii) For every u ∈ K, the function x 	−→ f(x, u) is quasiconcave.
(iv) (Coercivity) There exist nonempty weakly compact subsets A and B of K

with B convex such that if x ∈ K ∩Ac, then f(x, ux) < 0 for some ux ∈ B.

At the end of the paper, we give some existence results for vector variational
inequalities. Let K be a nonempty convex subset of a topological vector space X .
For any given operator T : K −→ L(X, Z), consider the bifunction f : K×K −→
Z defined by

f(x, u) = 〈T (x), u − x〉 for x, u ∈ K .

We claim that f is vector 0-diagonally convex. Indeed, for any finite set {u1, u2,

..., un} ⊂ K, if x =
n∑

j=1

λjuj with λj ≥ 0 for all j and
n∑

j=1

λj = 1, then

n∑
j=1

λjf(x, uj) = 〈T (x),
n∑

j=1

tj(uj − x)〉 = 〈T (x), x − x〉 = 0 ∈ (−IntC)c .

From Corollary 3.4, we obtain the following theorem which extends [12, Theorem
3.1] to vector case for infinite dimensional spaces.

Theorem 3.8. Let K be a nonempty closed and convex subset of a Hausdorff
topological vector space, and let T : K −→ L(X, Z) be an operator. Then
VVI(T, K) has a solution if the following conditions are satisfied.

(i) For every u∈K the set {x∈K : 〈T (x), u−x〉 ∈ (−IntC)c} is closed in K.
(ii) (Coercivity) There exist nonempty compact subsets A and B of K with B

convex such that if x ∈ K ∩ Ac, then 〈T (x), ux − x〉 ∈ (−IntC) for some
ux ∈ B.

The following theorem is obtained from Theorem 3.5.

Theorem 3.9. Assume that Z is locally convex and X is a Hausdorff locally
convex topological vector space. Let T : K−→L(X, Z) be an operator, where K

is a nonempty closed and convex subset of X . Then VVI(T, K) has a solution if

(i) {x ∈ K : 〈T (x), u−x〉 ∈ (−IntC)c} is closed and convex for every u ∈ K ,
and

(ii) (Coercivity) There exist nonempty L-compact subsets A and B of K with B
convex such that if x ∈ K ∩ Ac, then 〈T (x), ux − x〉 ∈ (−IntC) for some
ux ∈ B.
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