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POWERS OF GENERATORS AND TAYLOR EXPANSIONS
OF INTEGRATED SEMIGROUPS OF OPERATORS

Jung-Chan Chang and Sen-Yen Shaw

Abstract. Let A be the generator of an n-times integrated semigroup T (·)
and let r ∈ N. We first prove the equivalence of Riemann, Peano, and Taylor
operators, which are three different expressions of the r-th power of A1, the
part of A in the closure of the domain D(A) of A. Then we discuss optimal
and non-optimal rates of approximation of T (·)x for x ∈ D(Ar−1

1 ), via the
(n + r)-th Taylor expansion of T (·) in terms of Ak

1 , k = 0, . . . , r − 1.

1. INTRODUCTION

The well-established theory of C0-semigroups [7] is a powerful method in study-
ing the first order Cauchy problem:

(ACP)


du(t)

dt
= Au(t), t ≥ 0;

u(0) = x.

Recently, a generalization of semigroup called n-times integrated semigroup is in-
troduced by W. Arendt [1] and studied by many authors (cf. [1], [2], [8], [9], [10],
and [11] etc.). They are useful in solving the first order Cauchy problem, in partic-
ular, when A is non-densely defined and generates an integrated semigroup. In [2],
the authors showed that C0-semigroups on a Banach space can induce integrated
semigroups on embedded spaces and that, conversely, every integrated semigroup
on a Banach space can be ”sandwiched” by C0-semigroups on extrapolation and
interpolation spaces. In these cases, the domain of An plays an important role.
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On the other hand, we know that x ∈ D(An+1) is sufficient for the existence and
uniqueness of a solution to the problem (ACP ).

In studying integer powers Ar of the generator A of a C0-semigroup T (·),
Berens and Butzer [4, Sec. 2.2] introduce three equivalent operators, namely r-th
Taylor, Peano and Riemann operators and show that they are equal to A r. They also
discussed optimal rate (O(tr)) and non-optimal rate (O(t(r−1+β)) (0 < β < 1)) of
convergence of the r-th Taylor expansion

∑r−1
k=0

tk

k! A
kx of T (·)x for x ∈ D(Ar−1).

Later more complete results for the case r = 1 was also found in [5]. In [6], we
generalize the results in [5] to n-times integrated semigroups. In this context, we
also refer to [12] for more recent results on regularized approximation processes.

For the more general class of integrated semigroups, the above mentioned two
subjects, namely equivalent expressions of integral powers of generators and con-
vergence rates of Taylor expansions of semigroups, seem not found in the literature
yet. This paper aims to extend the mentioned known results on C0-semigroups to
n-times integrated semigroups. In Section 2, we characterize the r-th power Ar

1

of the part A1 (in D(A)) of the generator A of an n-times integrated semigroup
T (·) by studying the r-th Taylor, Peano and Riemann operators and showing that
they are equivalent to Ar

1. This is a generalization of Berens and Butzer’s result
(on C0-semigroups) for integrated semigroups. In Section 3, some optimal and non-
optimal rates of approximation of T (·) by its (n + r)-th Taylor expansion will be
obtained in Theorem 3.3. The special case n = 0 of it, Corollary 3.4, is even new
for C0-semigroups. These results generalize and improve the previous results (cf.
[4, 5, 6]) on C0-semigroups, and are new for integrated semigroups.

2. EQUIVALENT EXPRESSIONS OF THE R-TH POWER OF GENERATORS

Let X be a Banach space and let B(X) be the Banach algebra of all bounded
linear operators on X . First, we recall the definitions of an n-times integrated
semigroup and its generator and give definitions of three new operators.

Definition 2.1. [1, 2, 8, 9, 10, 11] Let n ∈ N. A strongly continuous family
{T (t); t ≥ 0} in B(X) is called an n-times integrated semigroup on X , if T (0) = 0
and

T (t)T (s)x =
1

(n − 1)!
( ∫ t+s

t

(s + t − r)n−1T (r)xdr

−
∫ s

0
(t + s − r)n−1T (r)xdr

)
for x ∈ X and t, s ≥ 0. A semigroup of class C0, or called C0-semigroup, is
also called a 0-times integrated semigroup. T (·) is said to be nondegenerate if
T (t)x = 0 for all t > 0 implies x = 0.
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The generator A of a nondegenerate n-times integrated semigroup T (·) is de-
fined as follows:

x ∈ D(A) and Ax = y if and only if T (t)x =
∫ t
0

T (u)ydu + tn

n! x for t ≥ 0.

It is known [1] that A is a closed linear operator and T (t)x− tn

n! x = A
∫ t
0 T (u)xdu

for all x ∈ X and t ≥ 0. But A need not be densely defined when n ≥ 1. Let r be
a natural number. Repeating substitution using this formula, we obtain

(2.1)

T (t)x −
r−1∑
k=0

tn+k

(n + k)!
Akx

=


1

(r − 1)!

∫ t

0
(t − u)r−1T (u)Arxdu for x ∈ D(Ar);

1
(r − 1)!

A

∫ t

0

(t − u)r−1T (u)Ar−1xdu for x ∈ D(Ar−1).

We will use (2.1) later.
We say A ∈ In if A generates an n-times integrated semigroup T (·) which

satisfies ||T (t)|| = O(tn) (t → 0+). It is known [9] that if A satisfies the Hille-
Yosida condition, then A ∈ I1. The In classes will play an important role in this
paper. The part of A in D(A) will be denoted by A1. A1 is densely defined in
D(A) (cf. [6, Lemma 3.5]).

Proposition 2.2. Let A ∈ In generate an n-times integrated semigroup T (·).
Then

(i) y := lim
t→0+

n!
tn T (t)x exists if and only if x ∈ D(A). Moreover, in this case,

we must have y = x and lim
t→0+

(n+1)!
tn+1

∫ t
0 T (u)xdu = x.

(ii) Let x ∈ D(A). Then z := lim
t→0+

n+1
t (n!

tn T (t)x − x) exists if and only if

x ∈ D(A1). In this case, we have

(a) lim
t→0+

n+1
t ( (n+1)!

tn T (t)x − x) = A1x;

(b) lim
t→0+

n+2
t ( (n+1)!

tn+1

∫ t
0 T (u)xdu− x) = A1x.

Proof.
(i) Suppose y := lim

t→0+

n!
tn T (t)x exists. Then

‖(n + 1)!
tn+1

∫ t

0
T (u)xdu− y‖ ≤ n + 1

tn+1

∫ t

0
sn‖n!

sn
T (s)x− y‖ds → 0
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as t → 0. This implies n!
tn

∫ t
0 T (u)xdu → 0. Since, from the definition of

A, we have n!T (t)x
tn − x = n!

tn A
∫ t
0 T (u)xdu, by the closedness of A, we see

that y = x. Since T (t)x = lim
h→0+

1
h

∫ t+h
t T (s)xds ∈ D(A) for all x ∈ X and

t ≥ 0, x also belong to D(A). The converse statement is proved in Theorem
3.3 of [6].

(ii) Since (i) implies lim
t→0+

(n+1)!
tn+1

∫ t
0 T (u)xdu = x, if z := lim

t→0+

n+1
t (n!

tnT (t)x−x)

exists, then, by (2.1) (for r = 1) and the closedness of A, we have that
x ∈ D(A) and Ax = z ∈ D(A), so that x ∈ D(A1) and A1x = z. The
converse and (a) and (b) are proved in Lemma 3.5 of [6].

In [4, Sec. 2.2], P. L. Butzer and H. Berens introduced three equivalent repre-
sentations of the r-th power of generator of a C0-semigroup, namely, the r-th Taylor
operator, the r-th Peano operator, and the r-th Riemann operator. In this section,
we extend their definitions to the case of n-times integrated semigroups and prove
that they are identical to the r-th power of A1.

Definition 2.3. Let r ∈ N and for each t > 0 let B
(r)
t be the operator given by

B
(r)
t x =

(n + r)!
tn+r

[T (t)x−
r−1∑
k=0

tn+k

(n + k)!
Akx], x ∈ D(Ar−1).

The r-th Taylor operator B (r) of T (·) is defined by

B(r)x = lim
t→0+

B
(r)
t x

whenever the limit exists.

Definition 2.4. Let r ∈ N. For an x ∈ X , if there exist elements gk,r ∈ X ,
k = 0, 1, . . . , r − 1 such that

P
(r)
t (g0,r, g1,r, . . . , gr−1,r)x =

(n + r)!
tn+r

[T (t)x−
r−1∑
k=0

tn+k

(n + k)!
gk,r]

converges as t → 0+, then we write x ∈ D(P (r)) and use the notation P (r)(g0,r, g1,r,

. . . , gr−1,r)x to denote the limit. By the definition, it is easy to see that D(P (r))
is a linear manifold in X . It will be seen that g0,r, g1,r, . . . , gr−1,r and the corre-
sponding limit P (r)(g0,r, g1,r, . . . , gr−1,r)x turn out to be uniquely determined by
x. So we can denote P (r)x = P (r)(g0,r, g1,r, . . . , gr−1,r)x. P (r) is called the r-th
Peano operator.

Lemma 2.5. Let A ∈ In generate an n-times integrated semigroup T (·) and
let r ∈ N. Suppose x ∈ D(P (r)), say P (r)(g0,r, g1,r, . . . , gr−1,r)x exists. Then we
have:
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(a) g0,r = x and x ∈ D(A).
(b) If r = 1, then x ∈ D(A1) and P (1)x = A1x.
(c) If r ≥ 2, then x ∈ D(P (k)) and P (k)(g0,r, g1,r, . . . , gk−1,r)x = gk,r for each

k = 1, 2, . . . , r − 1. In particular, g1,r = P (1)x = A1x.

Proof.

(a) Since lim
t→0+

tr

(n+r)···(n+1)
P

(r)
t (g0,r, g1,r, . . . , gr−1,r)x = 0, it is easy to see that

lim
t→0+

n!T (t)x
tn =g0,r. Then it follows from (i) of Proposition 2.2 that g0,r =x.

(b) has been proved in (ii) of Proposition 2.2.

(c) Since P
(r)
t (g0,r, g1,r, . . . , gr−1,r) is convergent as t → 0+, we have

||P (r−1)
t (g0,r, g1,r, . . . , gr−2,r)x − gr−1,r||

= || (n + r − 1)!
tn+r−1

{T (t)x−
r−1∑
k=0

tn+k

(n + k)!
gk,r}‖

=
t

(n + r)
‖P (r)

t (g0,r, g1,r, . . . , gr−1,r)x‖ → 0 as t → 0+.

So, x ∈ D(P (r−1)) and P (r−1)(g0,r, g1,r, . . . , gr−2,r)x = gr−1,r. Repeating
this argument, we have x ∈ D(P (k)) and P (k)(g0,r, . . . , gk−1,r)x = gk,r for
all k = 1, 2, . . . , r − 1.

Definition 2.6. Let r ∈ N and for each t > 0 let operator C
(r)
t x be given by

C
(r)
t x =

(n + 1)r

tr
[
n!T (t)

tn
− I ]rx, x ∈ X.

We define the operator C(r) by

C(r)x = lim
t→0+

C
(r)
t x

whenever the limit exists. We call C(r) the r-th Riemann operator.

For need in the proof of the main theorem (Theorem 2.10) of this section, we
first prove the following three lemmas.

Lemma 2.7. Let A ∈ In generate an n-times integrated semigroup T (·) and
let r ∈ N. Then we have
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(a) D(B(r)) ⊂ D(A).

(b) D(P (r)) ⊂ D(A).

(c) D(C(r)) ⊂ D(A).

Proof.
(a) Let x ∈ D(B(r)). Then lim

t→0+

tr

(n+r)···(n+1)B
(r)
t x = 0 and it implies that

lim
t→0+

n!T (t)x
tn = x. By Proposition 2.2(i), x ∈ D(A).

(b) is proved in Lemma 2.5.
(c) Let x ∈ D(C(r)). Then lim

t→0
[n!T (t)

tn − I ]rx = 0. If r = 1, then the result is
true by Proposition 2.2(i). For r ≥ 2, using the Binomial Theorem, we have

that 0 = lim
t→0+

(n!T (t)
tn − I)rx = lim

t→0+

r∑
i=1

(−1)r−i r!
i!(r−i)!

(n!T (t)
tn )ix − (−1)rx.

Since R(T (t)) ⊂ D(A) for each t ≥ 0, it follows that x ∈ D(A).

Lemma 2.8. Let A ∈ In generate an n-times integrated semigroup T (·) and
let r ∈ N. If x ∈ D(A), then for each tk ≥ 0, k = 1, 3, . . . , r

[T (tr)− tnr
n!

I ][T (tr−1)−
tnr−1

n!
I ] · · · [T (t1) − tn1

n!
I ]x

= lim
t→0+

∫ tr

0
T (ur)

∫ tr−1

0
T (ur−1) · · ·

∫ t1

0
T (u1)C

(r)
t xdu1du2 · · ·dur.

Proof. By the definition of A and C
(r)
t , we see that for x ∈ X∫ tr

0

T (ur)
∫ tr−1

0

T (ur−1) · · ·
∫ t1

0

T (u1)C
(r)
t xdu1du2 · · ·dur

=
(

(n + 1)!
tn+1

)r

Ar

∫ tr

0
T (ur)

∫ tr−1

0
T (ur−1) · · ·

∫ t1

0
T (u1)

∫ t

0
T (sr)

∫ t

0
T (sr−1)

· · ·
∫ t

0
T (s1)xds1ds2 · · ·dsrdu1du2 · · ·dur

=
(

(n+1)!
tn+1

)r ∫ t
0 T (sr)[T (tr)− tnr

n! I ]
∫ t
0 T (sr−1)[T (tr−1)− tnr−1

n! I ]

· · ·
∫ t

0
T (s1)[T (t1) − tn1

n!
I ]xds1ds2 · · ·dsr.

If x ∈ D(A), then [T (tr) − tnr
n! I ][T (tr−1) − tnr−1

n! I ] · · · [T (t1) − tn1
n! I ]x ∈ D(A).

Thus, by taking t → 0+ and using (i) of Proposition 2.2, one can easily deduce the
asserted equality.



Powers of generators and Taylor expansions of integrated semigroups of operators 107

Lemma 2.9. Let A ∈ In generate an n-times integrated semigroup T (·) and
let r ∈ N. If x and y belong to D(A) and satisfy

(2.2)
[T (tr) − tnr

n!
I ][T (tr−1) −

tnr−1

n!
I ] · · · [T (t1)− tn1

n!
I ]x

=
∫ tr

0
T (ur)

∫ tr−1

0
T (ur−1) · · ·

∫ t1

0
T (u1)ydu1du2 · · ·dur

for any tk ≥ 0, k = 1, 2 · · ·r. Then x ∈ D(Ar
1) and Ar

1x = y.

Proof. We will show it by induction. For r = 1, the assertion is true by
the definition of generators of integrated semigroups. Now, assume that r ≥ 2
and the assertion holds for r − 1. Suppose (2.2) holds for x, y ∈ D(A). Since
f1(t1) := (T (t1) − tn1

n! )x and g1(t1) :=
∫ t1
0 T (u)ydu lie in D(A), by the induction

assumption, we have that

(2.3) f1(t1) ∈ D(Ar−1
1 ) and Ar−1

1 f1(t1) = g1(t1) for all t1 > 0.

We next show that x ∈ D(A1). Since f1(t1) ∈ D(Ar−1), from (2.1) we get

(2.4)
[T (t)− tn

n!
]f1(t1) =

r−2∑
k=1

tn+k

(n + k)!
Akf1(t1)

+
1

(r − 2)!

∫ t

0

(t − u)r−2T (u)g1(t1)du.

Now, integrating both sides of (2.4) relative to t1 over [0, s] and dividing them by
tn+1, we get

1
tn+1

∫ s

0
[T (t)− tn

n!
I ]f1(t1)dt1

=
1

tn+1
[

tn+1

(n + 1)!

∫ s

0
Af1(t1)dt1 +

r−2∑
k=2

tn+k

(n + k)!
Ak

∫ s

0
f1(t1)]dt1

+
1

tn+1
· 1
(r − 2)!

∫ t

0
(t − u)r−2T (u)

∫ s

0
g1(t1)dt1du.

When letting t → 0+, the first term converges to 1
(n+1)!

∫ s
0 Af1(t1)dt1, the second

term converges to 0. Since 1
(n+1)!

∫ s
0 g1(t1)dt1 ∈ D(A), by (i) of Proposition 2.2,

the third term converges to 1
(n+1)!

∫ s
0 g1(t1)dt1 when r = 2 and 0 when r > 2.

Hence

(2.5)
1

tn+1

∫ s

0
[T (t) − tn

n!
I ]f1(t1)dt1 converges as t → 0+.
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Since x ∈ D(A) and A ∈ In, by Proposition 2.2(i),

(2.6)
1

tn+1

∫ t

0
T (t1)xdt1 converges to

1
(n + 1)!

x as t → 0+.

Since we can write

(T (s)− sn

n!
I)

1
tn+1

∫ t

0

T (t1)xdt1 − sn+1

n!(n + 1)!
· 1

t
[
n!T (t)

tn
− I ]x

=
1

tn+1

∫ s

0
A

∫ t

0
T (u)T (t1)xdudt1 − sn+1

n!(n + 1)!
· 1
t
[
n!T (t)

tn
− I ]x

=
1

tn+1

∫ s

0
[T (t)− tn

n!
I ]T (t1)xdt1 − 1

tn+1

∫ s

0
[T (t) − tn

n!
I ]

tn1
n!

xdt1

=
1

tn+1

∫ s

0
[T (t)− tn

n!
I ]f1(t1)dt1,

from (2.5) and (2.6) it follows that

(2.7) 1
t
(
n!T (t)

tn
− I)x is convergent to some z ∈ X as t → 0+.

Thus, (n!T (t)
tn − I)x → 0 as t → 0, so that, by Proposition 2.2(i), we see that x ∈

D(A), which implies z ∈ D(A). Moreover, since 1
t (

n!T (t)
tn x−x) = A n!

tn+1

∫ t
0 T (u)xdu,

by (2.6), (2.7), and the closedness of A, we know that x ∈ D(A) and Ax =
(n + 1)z ∈ D(A), i.e., x ∈ D(A1).

It follows from (a) in (ii) and (i) of Proposition 2.2 that (n+1)!

tn+1
1

f1(t1) → A1x and
(n+1)!

tn+1
1

g1(t1) → ỹ as t1 → 0+. These facts together with (2.3) and the closedness

of Ar−1
1 imply that A1x ∈ D(Ar−1

1 ) and Ar−1
1 A1x = y. Hence x ∈ D(Ar

1) and
Ar

1x = Ar−1
1 A1x = y.

The following theorem is the main theorem of this section. It generalizes The-
orem 2.2.13 of [4] from C0-semigroups to n-times integrated semigroups.

Theorem 2.10. Let A ∈ In generate an n-times integrated semigroup T (·)
and let r ∈ N. The following statements are equivalent

(a) x ∈ D(Ar
1),

(b) x ∈ D(B(r)),

(c) x ∈ D(P (r)),

(d) x ∈ D(C(r)).
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Moreover, we have Ar
1x = B(r)x = P (r)x = C(r)x for each x ∈ D(Ar

1).

Proof. We separate the proof into the following implications ”(a) ⇔ (b)”, ”(b)
⇔ (c)” and ”(a) ⇔ (d)”.

(a) ⇒ (b). Let x ∈ D(Ar
1). By Definition 2.3 and (2.1) it follows that B

(r)
t x =

(n+r)!
(r−1)!tn+r

∫ t
0 (t − u)r−1T (u)Ar

1xdu. So, we have

lim
t→0+

||B(r)
t x − Ar

1x|| = lim
t→0+

|| (n+r)!
(r−1)!tn+r

∫ t
0 (t − u)r−1(T (u)− un

n! )A
r
1xdu||

≤ 1
(r − 1)!

lim
t→0+

sup
0≤u≤t

||(n!T (u)
un

− I)Ar
1x|| = 0

by the fact that Ar
1x ∈ D(A) and Proposition 2.2(i). Hence, x ∈ D(B(r)) and

B(r)x = Ar
1x.

(b) ⇒ (a). Let x ∈ D(B(r)). By Lemma 2.7, we know that x ∈ D(A) and
so lim

t→0+

(n+1)!
tn+1

∫ t
0 T (u)xdu = x, by Proposition 2.2(i). If r = 1, then B(1)x =

lim
t→0

(n+1)!
tn+1 (T (t)x − tn

n! x) ∈ D(A). Using (2.1) for the special case r = 1 and the

fact that A is a closed operator, we have that x ∈ D(A) and Ax = B(1)x ∈ D(A),
i.e., x ∈ D(A1) and A1x = B(1)x. This shows ”(b) ⇒ (a)” for the case r = 1.

To prove the assertion by induction, we assume r ≥ 2 and that ”(b) ⇒ (a)”
holds for r − 1. By the definition of B(r), we have x ∈ D(Ar−1) ⊂ D(Ar−2) and
B

(r)
t x = n+r

t (B(r−1)
t x − Ar−1x), so that

lim
t→0+

B
(r−1)
t x = lim

t→0+

t

n + r
B

(r)
t x + Ar−1x = 0 · B(r)x + Ar−1x = Ar−1x.

Hence x ∈ D(B(r−1)) and B(r−1)x = Ar−1x. By the induction assumption, we
have x ∈ D(Ar−1

1 ) and Ar−1
1 x = B(r−1)x = lim

w→0+
B

(r−1)
w x.

Next, by the definitions of B
(r)
t x and B

(r−1)
t x, we have∫ s

0
T (u)B(r)

t xdu

=
(n + r)!

tn+r

{∫ s

0

T (u)[T (t)− tn

n!
]xdu −

r−1∑
k=1

tn+k

(n + k)!

∫ s

0

T (u)Akxdu
}

=
(n + r)!

tn+r

{∫ s

0
T (u)A

∫ t

0
T (w)xdwdu− (T (s)− sn

n!
)

r−1∑
k=1

tn+k

(n + k)!
Ak−1x

}
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=
(n + r)!

tn+r
[T (s)− sn

n!
]
∫ t

0
[T (w)−

r−2∑
k=0

wn+k

(n + k)!
Ak]xdw

=
(n + r)
tn+r

[T (s) − sn

n!
]
∫ t

0

wn+r−1B(r−1)
w xdw.

for s > 0, and so

||
∫ s

0
T (u)B(r)

t xdu − [T (s)− sn

n!
]Ar−1

1 x||

= || (n + r)
tn+r

[T (s)− sn

n!
]
∫ t

0
wn+r−1[B(r−1)

w x − Ar−1
1 x]dw|| → 0

as t → 0+. Hence, (T (s)− sn

n! )A
r−1
1 x =

∫ s
0 T (u)B(r)xdu, which implies Ar−1

1 x ∈
D(A) and A(Ar−1

1 x) = B(r)x. This and the fact that T (t)x ∈ D(A) for all t > 0
imply that B

(r)
t x ∈ D(A) for all t > 0, and hence B(r)x ∈ D(A). It follows that

Ar−1
1 x ∈ D(A1) and Ar

1x = A(Ar−1
1 x) = B(r)x.

(b) ⇒ (c). It is obvious by taking gk,r = Akx for k = 1, 2, · · · , r − 1.

(c) ⇒ (b). Let x ∈ D(P (r)). Then there exist gj,r(j = 0, 1, 2, . . . , r − 1) such

that P
(r)
t (g0,r, g1,r · · ·gr−1,r)x = (n+r)!

tn+r {T (t)x −
r−1∑
k=0

tn+k

(n+k)!
gk,r} is convergent as

t → 0+. By Lemma 2.5, we know that x ∈ D(P(k)) and P (k)(g0,r, g1,r · · ·gk−1,r)x =
gk,r for k = 1, . . . , r − 1. To show x ∈ D(B(r)), by comparing Definitions 2.3
and 2.4, it suffices to show that gk,r = Ak

1x for k = 1, 2, . . . , r − 1. If k = 1, by
Lemma 2.5, we know that P (1)x = A1x, g0,r = x and g1,r = A1x. Moreover,

P
(2)
t (g0,r, g1,r)x =

(2 + n)!
tn+2

{T (t)x − tn

n!
g0,r − tn+1

(n + 1)!
g1,r}

=
(2 + n)!

tn+2
{T (t)x − tn

n!
x − tn+1

(n + 1)!
A1x}

= B
(2)
t x.

So, lim
t→0+

B
(2)
t x = lim

t→0+
P

(2)
t (g0,r, g1,r)x = P (2)(g0,r, g1,r)x = g2,r so that x ∈

D(B(2)) and B(2)x = g2,r. Then by ”(b) ⇒ (a)” for r = 2, we have x ∈ D(A2
1)

and A2
1x = B(2)x = g2,r. Then by induction, we complete the proof that gk,r = Ak

1x
for k = 1, 2, . . . , r − 1. This shows that {gk,r; k = 1, 2, . . . , r − 1} is uniquely
determined by x if x ∈ D(P (r)).

(a) ⇒ (d). Define the linear operator Dt from X into X by Dt = n!
tn

∫ t
0 T (s)ds

for each t > 0. Then there exists M > 0 such that ||Dt|| ≤ Mt as t → 0+.
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From (i) of Proposition 2.2 we see that (n+1)Dtx
t strongly converges to x for each

x ∈ D(A). It implies that (n+1)DtAk
1x

t strongly converges to Ak
1x as t → 0+ for

each k = 1, 2, . . . , r and each x ∈ D(Ar
1). So, for each x ∈ D(Ar

1), we have

|| (n + 1)r

tr
(
n!T (t)

tn
− I)rx − Ar

1x||

= || (n + 1)r

tr
Dr

t A
r
1x − Ar

1x||

= || (n + 1)r

tr
Dr

t A
r
1x − (

n + 1
t

)r−1Dr−1
t Ar

1x

+(
n + 1

t
)r−1Dr−1

t Ar
1x − (

n + 1
t

)r−2Dr−2
t Ar

1x

+(
n + 1

t
)r−2Dr−2

t Ar
1x + · · ·+ n + 1

t
DtA

r
1x − Ar

1x||

≤ ||(n + 1
t

)r−1Dr−1
t [

n + 1
t

DtA
r
1x − Ar

1x]||

+||(n + 1
t

)r−2Dr−2
t [

n + 1
t

DtA
r
1x − Ar

1x]||

+ · · ·+ ||n + 1
t

DtA
r
1x − Ar

1x||

≤
r−1∑
k=0

(n + 1)kMk||n + 1
t

DtA
r
1x − Ar

1x|| → 0 as t → 0+.

So, x ∈ D(C(r)) and C(r)x = Ar
1x.

(d) ⇒(a). Suppose that x ∈ D(C(r)) and C(r)x = y. By Lemma 2.7, we know
that x ∈ D(A). Then by Lemma 2.8 we have that

[T (tr)− tnr
n!

I ][T (tr−1)−
tnr−1

n!
I ] · · · [T (t1) − tn1

n!
I ]x

−
∫ tr

0
T (ur)

∫ tr−1

0
T (ur−1) · · ·

∫ t1

0
T (u1)ydu1 · · ·dur

= lim
t→0

∫ tr

0

T (ur)
∫ tr−1

0

T (ur−1) · · ·
∫ t1

0

T (u1)(C
(r)
t x − y)du1 · · ·dur = 0

for any arbitrarily fixed tk > 0, k = 1, 2 · · ·r. Hence, by Lemma 2.9, it follows
that x ∈ D(Ar

1) and Ar
1x = y = C(r)x.
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3. APPROXIMATION VIA (n + r)-TH TAYLOR EXPANSION

In this section, we consider approximation of n-times integrated semigroups via
their (n+ r)-th Taylor expansions. First, we recall the definition of a K-functional.

Definition 3.1. Let X be a Banach space with norm || · ||X and Y be a
submanifold with seminorm || · ||Y . The K-functional is defined by

K(t, x) := K(t, x, X, Y, ‖ · ‖Y ) = inf
y∈Y

{||x− y||X + t||y||Y }.

It is well known that K(t, x) is a bounded, continuous, monotonically increasing
and subadditive function of t for each x ∈ X [3].

The following approximation theorem can be found in [6, Theorem 3.10] and
[12, Theorem 4.8].

Proposition 3.2. Let A ∈ In generate an n-times integrated semigroup T (·).
Then the following statements are equivalent for 0 < β ≤ 1 and x ∈ D(A)

(a) ||n!
tnT (t)x − x|| = O(tβ) (t → 0+),

(b) K(t, x, X, D(A), || · ||D(A)) = O(tβ) (t → 0+).

The main result of this section is the following approximation theorem which treats
both the optimal (β = 1) and non-optimal (0 < β < 1) rates of convergence.

Theorem 3.3. Let A ∈ In generate an n-times integrated semigroup T (·) and
let r ≥ 1 be a natural number. Then the following statements are equivalent for
0 < β ≤ 1 and x ∈ D(Ar−1

1 ).
(a)

||[T (t)−
n+r−1∑
j=n

tj

j!
Aj−n

1 ]x|| = O(t(r−1+n+β)) (t → 0+).

(b) There exist gk,r ∈ X for k = 0, 1, . . . , r − 1 such that

||T (t)x−
n+r−1∑

j=n

tj

j!
gj−n,r || = O(t(r−1+n+β)) (t → 0+).

(c) K(t, Ar−1x, X, D(A), || · ||D(A)) = O(tβ) (t → 0+).

Proof. First, we write

n+r−1∑
j=n

tj

j!
Aj−n

1 =
r−1∑
k=0

tn+k

(n + k)!
Ak

1
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and
n+r−1∑

j=n

tj

j!
gj−n,r =

r−1∑
k=0

tn+k

(n + k)!
gk,r.

(a) ⇒ (c). The case r = 1 is true by Proposition 3.2. To prove it for r ≥ 2, let

yt := (n+r)!
tn+r

∫ t
0 (T (u)−

r−2∑
k=0

un+k

(n+k)!
Ak)xdu. Then yt ∈ D(A) and

Ayt =
(n + r)!

tn+r
[(T (t)−

r−1∑
k=0

tn+k

(n + k)!
Ak]x.

Now using (a) we have

t||Ayt|| = || (n + r)!
tn+r−1

[(T (t)−
r−1∑
k=0

tn+k

(n + k)!
Ak

1]x|| = O(tβ) (t → 0+)

and

||Ar−1x − yt|| = ||Ar−1
1 x − yt||

=

∥∥∥∥∥(n + r)!
tn+r

∫ t

0

(
T (u)−

r−1∑
k=0

un+k

(n + k)!
Ak

1

)
xdu

∥∥∥∥∥
≤ (n + r)!

tn+r

∫ t

0

∥∥∥∥∥
(

T (u)−
r−1∑
k=0

un+k

(n + k)!
Ak

1

)
x

∥∥∥∥∥ du = O(tβ) (t → 0+).

Hence (c) holds by the definition of K-functional.

(c) ⇒ (a). The case r = 1 is obvious by Proposition 3.2. For r ≥ 2, since
Ar−1

1 x ∈ D(A), by (2.1) and Proposition 3.2(applied to Ar−1
1 x), we see that (c)

implies

|| (n + r)!
tn+r−1

[T (t)−
r−1∑
k=0

tn+k

(n + k)!
Ak

1]x||

= || (n + r)!
tn+r−1

· 1
(r − 2)!

∫ t

0
(t − u)r−2A

∫ u

0
T (s)Ar−1

1 xdsdu

= || (n + r)!
tn+r−1

· 1
(r − 2)!

∫ t

0
(t − u)r−2 un

n!
(
n!T (u)

un
Ar−1

1 x − Ar−1
1 x)du||

= O(tβ) (t → 0+),

which is the same as (a).
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(a) ⇒ (b). It is obvious.

(b) ⇒ (a). Since (b) implies

lim
t→0+

||P (r−1)
t (g0,r, g1,r · · ·gr−2,r)x − gr−1,r||

= lim
t→0+

|| (n + r − 1)!
tr−1+n

(T (t)x −
r−2∑
k=0

tn+k

(n + k)!
gk,r) − gr−1,r||

= lim
t→0+

|| (n + r − 1)!
tr−1+n

[T (t)x−
r−1∑
k=0

tn+k

(n + k)!
gk,r]||

= 0,

we have P (r−1)(g0,r, g1,r · · ·gr−1,r)x = gr−1,r. From the proof of ((c) ⇒ (b)) in
Theorem 2.10, we see that g0,r = x and gk,r = Ak

1x for k = 1, . . . , r−1. It follows
that (a) is true.

For the special case n = 0 we obtain the following corollary which is new.

Corollary 3.4. Let A generate a C0-semigroup T (·) and let r ≥ 1 be a
natural number. Then the following statements are equivalent for 0 < β ≤ 1 and
x ∈ D(Ar−1).

(a)

||[T (t)−
r−1∑
k=0

tk

k!
Ak]x|| = O(t(r−1+β)) (t → 0+).

(b) There exist gk,r ∈ X , k = 0, 1, . . . , r − 1, such that

||T (t)x−
r−1∑
k=0

tk

k!
gk,r|| = O(t(r−1+β)) (t → 0+).

(c) K(t, Ar−1x, X, D(A), || · ||D(A)) = O(tβ) (t → 0+).
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