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THREE-STEP ITERATIVE CONVERGENCE THEOREMS
WITH ERRORS IN BANACH SPACES

Yen-Cherng Lin

Abstract. Let q > 1 and E be a real q-uniformly smooth Banach space, K
be a nonempty closed convex subset of E and T : K → K be a single-valued
mapping. Let {un}∞n=1, {vn}∞n=1, {wn}∞n=1 be three sequences in K and
{αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be real sequences in [0, 1] satisfying some
restrictions. Let {xn} be the sequence generated from an arbitrary x1 ∈ K by
the three-step iteration process with errors: xn+1 = (1−αn)xn+αnTyn+un,
yn = (1 − βn)xn + βnTzn + vn, zn = (1 − γn)xn + γnTxn + wn, n ≥ 1.
Sufficient and necessary conditions for the strong convergence {xn} to a fixed
point of T is established. We also derive the corresponding new results on the
strong convergence of the three-step iterative process.

1. INTRODUCTION AND PRELIMINARIES

Let E be an arbitrary real Banach space and let Jq(q > 1) denote the generalized
duality mapping from E into 2E� given by

Jq(x) = {f ∈ E� : 〈x, f〉 = ‖x‖q = ‖x‖‖f‖}
where E� denote the dual space of E and 〈·, ·〉 denotes the generalized duality pairing
between E and E�. In particular, J2 is called the normalized duality mapping and
it is usually denoted by J . It is known (see e.g. [10]) that Jq(x) = ‖x‖q−2J(x) if
x �= 0 and that if E� is strictly convex, then Jq is single-valued. The single-valued
generalized duality mapping will be denoted by jq in the sequel.

Definition 1.1. Let E be a normed space and K be a nonempty subset of E .
Let T : K → E be a single-valued mapping.
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(i) T is said to be Lipschitzian mapping with constant L if ∀x, y ∈ K,

(1.1) ‖Tx − Ty‖ ≤ L‖x − y‖.

(ii) T is said to be accretive [12] if ∀x, y ∈ K, there exists j2(x− y) ∈ J2(x− y)
such that

〈Tx− Ty, j2(x − y)〉 ≥ 0,

or equivalently there exists jq(x − y) ∈ Jq(x − y) such that

(1.2) 〈Tx − Ty, jq(x − y)〉 ≥ 0.

(iii) T is said to be strongly accretive [12] if ∀x, y ∈ K , there exists j2(x − y) ∈
J2(x − y) such that

〈Tx− Ty, j2(x − y)〉 ≥ k‖x − y‖2

or equivalently there exists jq(x − y) ∈ Jq(x − y) such that

(1.3) 〈Tx − Ty, jq(x − y)〉 ≥ k‖x − y‖q

for some k > 0. Without loss of generality, we can assume that k ∈ (0, 1) and such
a number k is called the strong accretive constant of T .

(iv) T is said to be (strongly) pseudocontractive [12] if I − T (where I denotes
the identity mapping) is a (strongly) accretive mapping. That is ∀x, y ∈ K, there
exists j2(x − y) ∈ J2(x − y) such that

〈(I−T )x−(I−T )y, j2(x−y)〉 ≥ 0 (resp., 〈(I−T )x−(I−T )y, j2(x−y)〉 ≥ k‖x−y‖2)

or equivalently there exists jq(x − y) ∈ Jq(x − y) such that

(1.4) 〈(I − T )x− (I − T )y, jq(x − y)〉 ≥ 0

(resp., 〈(I − T )x − (I − T )y, jq(x − y)〉 ≥ k‖x − y‖q).

The constant k is said to be a strongly accretive constant with respect to I − T .

(v) T is said to be strictly pseudocontractive if ∀x, y ∈ K , there exists λ > 0 and
j2(x− y) ∈ J2(x − y) such that

(1.5) 〈Tx− Ty, j2(x − y)〉 ≤ ‖x − y‖2 − λ‖(x− Tx)− (x − Ty)‖2,

or equivalently there exists λ > 0 and jq(x − y) ∈ Jq(x− y) such that

〈Tx − Ty, jq(x − y)〉 ≤ ‖x − y‖q − λ‖(x− Tx)− (y − Ty)‖2‖x − y‖q−2.
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We note that the strictly pseudocontractive single-valued mapping has been dis-
cussed in [4, 11]. Without loss of generality we may assume λ ∈ (0, 1). We note
that (1.5) can be written in the form

(1.6) 〈(x− Tx) − (y − Ty), j(x− y)〉 ≥ λ‖(x− Tx) − (y − Ty)‖2.

From (1.6) we have

‖x − y‖ ≥ λ‖x− y − (Tx − Ty)‖ ≥ λ‖Tx− Ty‖ − ‖x − y‖
so that

‖Tx − Ty‖ ≤ (1 + λ)
λ

‖x − y‖
∀x, y ∈ K. Hence a strictly pseudocontractive mapping is also a Lipschitzian
mapping with constant greater than 1.

In 1967, the concept of a single-valued accretive mapping was introduced by
Browder and Kato independently (see e.g. [12]). Browder stated that the following
initial value problem

(1.7)
du(t)
dt

+ Tu(t) = 0, u(0) = u0

is solvable if T is locally Lipschitzian and accretive on E .

In Hilbert spaces, (1.5) (hence,(1.6)) is equivalent to the following inequality

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(x− Tx)− (y − Ty)‖2, k = (1− λ) < 1.

Let E be a real q−uniformly smooth Banach space with q > 1, K be a nonempty
closed convex subset of E with K + K ⊆ K, and T : K → K be a single-valued
mapping with F (T ) �= ∅. Let {un}, {vn} and {wn} be three sequences in K and
{αn}, {βn} and {γn} be real sequences in [0, 1] satisfying certain restrictions. Let
{xn} be the sequence generated from x1 ∈ K by the three-step iterative process
with errors:

(1.8)




zn = (1 − γn)xn + γnTxn + wn,

yn = (1− βn)xn + βnTzn + vn,

xn+1 = (1 − αn)xn + αnTyn + un, n ≥ 1.

Especially if un = 0, vn = 0 and wn = 0 for n ∈ N , then {xn} is called the
three-step iterative sequence which was suggested and analyzed by Noor [12]. If
γn = 0 and wn = 0 for n ∈ N , then {xn} is called the Ishikawa iterative sequence
with error; if γn = βn = 0 and vn = wn = 0 for n ∈ N , then {xn} is called the
Mann iterative sequence with error.
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In this paper by using Jensen’s inequality and new approximation methods,
we construct some simplified conditions to establish the sufficient and necessary
conditions for the strong convergence of {xn} to a fixed point of T . The uniqueness
of the fixed point of T is also discussed. We note that to compare with [11,Theorem
2 and Corollary 2] our results have the following features: (i) The uniform convexity
of E is removed. (ii) The Ishikawa iterative process is replaced by the three-step
iterative process with errors. (iii) Our restrictions imposed on {αn} are much weaker
than those in [11, Theorem 2 and Corollary 2]. Our results also improve and extend
the corresponding results in [1, 8, 12, 13].

Now we give some preliminaries which will be used in the sequel. Let E be
a real Banach space. The modulus of smoothness of E is defined as the function
ρE : [0,∞) → [0,∞) :

ρE(τ) = sup{1
2
(‖x + y‖+ ‖x − y‖) − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ}.

E is said to be uniformly smooth if and only if limτ→0+(ρE(τ)/τ) = 0. Let q > 1.
The space E is said to be q−uniformly smooth (or to have a modulus of smoothness
of power type q > 1) if there exists a constant c > 0 such that ρE(τ) ≤ cτ q. It
is well known that Hilbert spaces, Lp and lp spaces, 1 < p < ∞ as well as the
Sobolev spaces, W

p
m, 1 < p < ∞ are p−uniformly smooth. Hilbert spaces are

2-uniformly smooth while if 1 < p ≤ 2, Lp, lp and W p
m are p−uniformly smooth.

If p ≥ 2, Lp, lp and W p
m are 2-uniformly smooth.

Theorem 1.1. [10]. Let q > 1 and E be a real Banach space. Then the
following are equivalent:

(1) E is q−uniformly smooth.
(2) There exists a constant cq > 0 such that for all x, y ∈ E

(1.9) ‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ cq‖y‖q.

Lemma 1.1 [9]. Let{an}∞n=1 and {bn}∞n=1 be sequences of nonnegative real
numbers such that

∑∞
n=1 bn < ∞ and an+1 ≤ an + bn, ∀n ≥ 1. Then limn→∞ an

exists.

2. MAIN RESULTS

Throughout this section, L stands for the Lipschitzian constant of T , λ and cq

are the constants appearing in inequalities (1.5), (1.6), (1.9), respectively.

Lemma 2.1. Let E be a real q−uniformly smooth Banach space with q > 1
and K be a nonempty convex subset of E with K + K ⊆ K and T : K → K be a
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Lipschitzian mapping with Lipschitzian constant L and the set F (T ) of fixed points
of T is nonempty. Let {un}∞n=1, {vn}∞n=1 and {wn}∞n=1 be three sequences in K,
and {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be real sequences in [0, 1]. Let {xn} be the
sequence generated from an arbitrary x 1 ∈ K by the three-step iterative process
(1.8) with errors. Then

(2.1) ‖xn+1 − x�‖q ≤ (1 + δn)‖xn − x�‖q + θn, ∀n ≥ 1, ∀x� ∈ F (T ),

where

δn = −αn + αn(1− βn)Lq + αnβn(1− γn)L2q + αnβnγnL3q,

and

θn = qαnβnL2q‖wn‖‖zn − x� − wn‖q−1 + αnβnL2qcq‖wn‖q

+qαnLq‖vn‖‖yn − vn − x�‖q−1 + αnLqcq‖vn‖q + q‖un‖
‖xn+1 − un − x�‖q−1 + cq‖un‖q.

Proof. Let x� be an arbitrary element in F (T ). Then it follows from (1.8) and
(1.9) that

(2.2)

‖xn+1 − x�‖q = ‖(1− αn)xn + αnTyn + un − x�‖q

≤ ‖(1− αn)xn + αnTyn − x�‖q

+q〈un, jq(xn+1 − un − x�)〉+ cq‖un‖q

≤ ‖(1− αn)xn + αnTyn − x�‖q

+q‖un‖‖xn+1 − un − x�‖q−1 + cq‖un‖q.

By Jensen’s inequality, we have

(2.3)

‖(1−αn)xn+αnTyn−x�‖q = ‖(1−αn)(xn−x�)+αn(Tyn−x�)‖q

≤ (1−αn)‖xn−x�‖q+αn‖Tyn−x�‖q

≤ (1−αn)‖xn−x�‖q+αnLq‖yn−x�‖q

and by (1.9) and Jensen’s inequality, we have
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(2.4)

‖yn − x�‖q = ‖(1− βn)xn + βnTzn + vn − x�‖q

= ‖(1− βn)(xn − x�) + βn(Tzn − x�) + vn‖q

≤ ‖(1− βn)(xn − x�) + βn(Tzn − x�)‖q

+q〈vn, jq(yn − vn − x�)〉 + cq‖vn‖q

≤ (1 − βn)‖xn − x�‖q + βnLq‖xn − x�‖q

+q‖vn‖‖yn − vn − x�‖q−1

+cq‖vn‖q,

and

(2.5)

‖zn − x�‖q = ‖(1− γn)xn + γnTxn + wn − x�‖q

= ‖(1− γn)(xn − x�) + γn(Txn − x�) + wn‖q

≤ ‖(1− γn)(xn − x�) + γn(Txn − Tx�)‖q

≤ +q〈wn, jq(zn − wn − x�)〉 + cq‖wn‖q

≤ (1 − γn)‖xn − x�‖q + γnLq‖xn − x�‖q

+q‖wn‖‖zn − wn − x�‖q−1

+cq‖wn‖q.

Hence form (2.4) and (2.5), we have

(2.6)

‖yn−x�‖q ≤ (1−βn)‖xn−x�‖q+βnLq{(1−γn)‖xn−x�‖q

+γnLq‖xn−x�‖q

+q‖wn‖‖zn − wn − x�‖q−1 + cq‖wn‖q}
+q‖vn‖‖yn − vn − x�‖q−1 + cq‖vn‖q

= {1− βn + βnLq(1− γn) + βnγnL2q}‖xn − x�‖q

+qβnLq‖wn‖‖zn − x� − wn‖q−1 + βnLqcq‖wn‖q

+q‖vn‖‖yn − vn − x�‖q−1 + cq‖vn‖q,

From (2.2)–(2.6), we derive that

‖xn+1 − x�‖q ≤ (1 + δn)‖xn − x�‖q + θn

where

δn = −αn + αn(1− βn)Lq + αnβn(1− γn)L2q + αnβnγnL3q
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and

θn = qαnβnL2q‖wn‖‖zn − x� − wn‖q−1 + αnβnL2qcq‖wn‖q

+qαnLq‖vn‖‖yn − vn − x�‖q−1 + αnLqcq‖vn‖q

+q‖un‖‖xn+1 − un − x�‖q−1 + cq‖un‖q.

Lemma 2.2. Let E be a real q−uniformly smooth Banach space with q > 1
and K be a nonempty convex subset of E with K + K ⊆ K and T : K → K
be a Lipschitzian mapping with Lipschitzian constant L and the set F (T ) of fixed
points of T is nonempty. Let {un}∞n=1, {vn}∞n=1 and {wn}∞n=1 be sequences in K ,
and {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be real sequences in [0, 1]. Let {xn} be the
sequence generated from an arbitrary x 1 ∈ K by the three-step iterative process
(1.8) with errors. Furthermore, if

∑∞
n=1 αn < ∞, then there is a constant M > 0

(e.g. M = eΣ∞
n=1

δn) such that

(2.7) ‖xn+m − x�‖q ≤ M‖xn − x�‖q + M(
n+m−1∑

k=n

θn)

∀m, n ∈ N , ∀x� ∈ F (T ). In particular,

(2.8) ‖xn+1 − x�‖q ≤ M‖x1 − x�‖q + M
n∑

k=1

θk

∀n ∈ N , ∀x� ∈ F (T ).

Proof. Since
∑∞

n=1 αn < ∞, by Lemma 2.1,
∑∞

n=1 δn < ∞ and ∀n ∈ N ,

‖xn+1 − x�‖q ≤ (1 + δn)‖xn − x�‖q + θn

≤ eδn‖xn − x�‖q + θn.

Hence by induction, we have

‖xn+1 − x�‖q ≤ eδn‖xn − x�‖q + θn

≤ eδn [eδn−1‖xn−1 − x�‖q + θn−1] + θn

≤ · · ·

≤ eΣ
n
k=1

δk‖x1 − x�‖q + eΣ
n
k=1

δk (
∑n

k=1 θk)

≤ M‖x1 − x�‖q + M(
∑n

k=1 θk)

for all n ∈ N and
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‖xn+m − x�‖q ≤ M‖xn − x�‖q + M
n+m−1∑

k=n

θk

for all m, n ∈ N .

Theorem 2.1. Let E be a real q−uniformly smooth Banach space with q > 1
and K be a nonempty convex subset of E with K + K ⊆ K and T : K → K be a
Lipschitzian mapping with Lipschitzian constant L and the set F (T ) of fixed points
of T is nonempty. Let {un}∞n=1, {vn}∞n=1 and {wn}∞n=1 be three sequences in
K and {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be real sequences in [0, 1]. Also suppose∑∞

n=1 αn < ∞,
∑∞

n=1 ‖un‖ < ∞,
∑∞

n=1 ‖vn‖ < ∞ and
∑∞

n=1 ‖wn‖ < ∞.
Let {xn} be the sequence generated from an arbitrary x 1 ∈ K by the three-step
iterative process (1.8) with errors. Then the sequence {xn} is bounded and

lim inf
n→∞ d(xn, F (T )) = 0

if and only if the sequence {xn} converges strongly to a fixed point of T where
d(xn, F (T )) is the distance of xn to set F (T ), i.e., d(xn, F (T )) = infu�∈F (T )‖xn−
u�‖ .

Proof. If the sequence {xn} converges strongly to a fixed point of T , say,
y� ∈ F (T ), it is easy to deduce that the sequence {xn} is bounded. Note that

d(xn, F (T )) = inf
u�∈F (T )

‖xn − u�‖ ≤ ‖xn − y�‖ → 0 as n → ∞.

Therefore lim infn→∞ d(xn, F (T )) = 0.
Suppose that the sequence {xn} is bounded and lim infn→∞ d(xn, F (T )) = 0.

Since the sequence {xn} is bounded and the series
∑∞

n=1 ‖un‖,
∑∞

n=1 ‖vn‖ and∑∞
n=1 ‖wn‖ are finite, from (2.8) there is a M̃ > 0 such that ‖xn − x�‖ < M̃ ,

‖xn+1 − un − x�‖ < M̃ , ‖un‖ < M̃ and ‖vn‖ < M̃ . Then

∞∑
n=1

θn ≤
∞∑

n=1

αnLq(2 + L)q−1M̃ q + q

∞∑
n=1

‖un‖M̃ q−1 + cq

∞∑
n=1

‖un‖q < ∞.

Hence the sequence {‖xn+1 − x�‖q} is bounded, so is {‖xn+1 − x�‖}. Also from
(2.1) and Lemma 1.1, we know that limn→∞ ‖xn − x�‖ exists. Furthermore, from
(2.1) we have

(d(xn+1, F (T )))q ≤ (d(xn, F (T )))q + δnM̃ q + θn.

By Lemma 1.1, we have limn→∞(d(xn, F (T )))q exists. Since lim infn→∞ d(xn,
F (T )) = 0, limn→∞ d(xn, F (T )) = 0. By using the same argument in [2, Theorem
2.1], we have the sequence {xn} converges strongly to a fixed point of T .
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As mentioned in (1.6), a strictly pseudocontractive mapping is also a Lipschitzian
mapping, we have the following corollary.

Corollary 2.1. Let E be a real q−uniformly smooth Banach space with
q > 1 and K be a nonempty convex subset of E with K + K ⊆ K and T :
K → K be a strictly pseudocontractive mapping and the set F (T ) of fixed points
of T is nonempty. Let {un}∞n=1, {vn}∞n=1 and {wn}∞n=1 be three sequences in
K, {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be real sequences in [0, 1]. Also suppose∑∞

n=1 αn < ∞,
∑∞

n=1 ‖un‖ < ∞,
∑∞

n=1 ‖vn‖ < ∞ and
∑∞

n=1 ‖wn‖ < ∞.
Let {xn} be the sequence generated from an arbitrary x 1 ∈ K by the three-step
iterative process (1.8) with errors. Then the sequence {xn} is bounded and

lim inf
n→∞ d(xn, F (T )) = 0

if and only if the sequence {xn} converges strongly to a fixed point of T .

Proof. The conclusion of Corollary 2.1 follows immediately from Theorem
2.1 and the fact that a strictly pseudocontractive mapping is also a Lipschitzian
mapping.

Theorem 2.2. Let E be a real q−uniformly smooth Banach space with q > 1
and K be a nonempty convex subset of E with K + K ⊆ K and T : K → K
be a Lipschitzian strongly pseudocontraction mapping with Lipschitzian constant
L and strongly accrective constant k ∈ (0, 1) with respect to I − T . Assume
that the set F (T ) of fixed points of T is nonempty. Let {u n}∞n=1, {vn}∞n=1 and
{wn}∞n=1 be three sequences in K and {αn}∞n=1, {βn}∞n=1 be real sequences in
[0, 1]. Also suppose

∑∞
n=1 αn < ∞,

∑∞
n=1 ‖un‖ < ∞,

∑∞
n=1 ‖vn‖ < ∞ and∑∞

n=1 ‖wn‖ < ∞. Let {xn} be the sequence generated from an arbitrary x 1 ∈ K

by the three-step iterative process (1.8) with errors. Then the sequence {x n} is
bounded and

lim inf
n→∞ d(xn, F (T )) = 0

if and only if the sequence {xn} converges strongly to the unique fixed point of T .

Proof. Since all conditions of Theorem 2.1 hold, from Theorem 2.1 we have
that the sequence {xn} is bounded and lim infn→∞ d(xn, F (T )) = 0 if and only if
the sequence {xn} converges strongly to a fixed point, say x�, of T . Actually the
fixed point x� is unique. Indeed if there is another fixed point x̄, we have

x̄ = T x̄ and x� = Tx�.

If we choose that x̄ = T x̄ and x� = Tx� from the strongly pseudocontraction of T ,
there is jq(x̄ − x�) ∈ Jq(x̄ − x�), such that

0 = 〈0 − 0, jq(x̄− x�)〉 = 〈(I − T )x̄ − (I − T )x�, jq(x̄ − x�)〉 ≥ k‖x̄ − x�‖q.
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This implies that x̄ = x� and the proof is complete.

We can deduce similar conclusion of Theorem 2.2 for a Lipschitzian strongly
accrective mapping as follows whose proof will omitted.

Theorem 2.3. Let E be a real q−uniformly smooth Banach space with q > 1
and K be a nonempty convex subset of E with K + K ⊆ K and T : K → K

be a Lipschitzian strongly accrective mapping with Lipschitzian constant L and
strongly accrective constant k ∈ (0, 1). Assume that the set F (T ) of fixed points
of T is nonempty. Let {un}∞n=1, {vn}∞n=1 and {wn}∞n=1 be three sequences in
K and {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be real sequences in [0, 1]. Also suppose∑∞

n=1 αn < ∞,
∑∞

n=1 ‖un‖ < ∞,
∑∞

n=1 ‖vn‖ < ∞ and
∑∞

n=1 ‖wn‖ < ∞.
Let {xn} be the sequence generated from an arbitrary x 1 ∈ K by the three-
step iterative process (1.8) with errors. Then the sequence {xn} is bounded and
lim infn→∞ d(xn, F (T )) = 0 if and only if the sequence {xn} converges strongly
to an unique fixed point of T .

We note that if we take un = 0, vn = 0 and wn = 0 ∀n ≥ 1 in Theorem 2.1
and 2.2, then we can obtain the corresponding new results on the strong convergence
of the three-step iterative process:

(2.9)




zn = (1− γn)xn + γnTxn,

yn = (1− βn)xn + βnTzn,

xn+1 = (1− αn)xn + αnTyn, n ≥ 1.

Corollary 2.2. Let E be a real q−uniformly smooth Banach space with q > 1
and K be a nonempty convex subset of E and T : K → K be a Lipschitzian map-
ping with Lipschitzian constant L and the set F (T ) of fixed points of T is nonempty.
Let {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be real sequences in [0, 1]. Also suppose,∑∞

n=1 αn < ∞. Let {xn} be the sequence generated from an arbitrary x 1 ∈ K by
the three-step iterative process (2.9). Suppose that lim inf n→∞ d(xn, F (T )) = 0.
Then the sequence {xn} converges strongly to a fixed point of T . In addition, if T
is also a strongly pseudocontractive mapping, then the sequence {x n} converges
strongly to an unique fixed point of T .

Proof. It follows from Lemma 2.1 that

‖xn+1−x�‖q ≤ (1+δn)‖xn−x�‖q ≤ eΣn
j=1

δj‖x1−x�‖q ≤ eΣ
∞
j=1

δj‖x1−x�‖q < ∞.

This shows that {xn} is bounded. The conclusion of the corollary follows from
Theorem 2.1 and Theorem 2.2.
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From Theorem 2.3 we have a sufficient and necessary condition for three-step
iterative approximation of solutions to equation Tx = f in K as follows.

Theorem 2.4. Let E be a real q−uniformly smooth Banach space with q > 1
and K be a nonempty convex subset of E with K + K ⊆ K and T : K → K be a
strongly pseudocontractive mapping such that I − T : K → K is Lipchitzian with
Lipschitzian constant L and strongly accrective constant k ∈ (0, 1) with respect to
T . For any given f ∈ K, define S : K → K by

Sx = f − Tx + x, ∀x ∈ K.

Let {un}∞n=1, {vn}∞n=1 and {wn}∞n=1 be three sequences in K and {αn}∞n=1, {βn}∞n=1

and {γn}∞n=1 be real sequences in [0, 1]. Also suppose
∑∞

n=1 αn < ∞,
∑∞

n=1 ‖un‖ <
∞,

∑∞
n=1 ‖vn‖ < ∞ and

∑∞
n=1 ‖wn‖ < ∞. Let {xn} be the sequence generated

from an arbitrary x1 ∈ K by the three-step iterative process with errors:

(2.10)




zn = (1− γn)xn + γnSxn + wn,

yn = (1− βn)xn + βnSzn + vn,

xn+1 = (1− αn)xn + αnSyn + un, n ≥ 1.

If the set F (S) of fixed points of S is nonempty, then the sequence {x n} is bounded
and

lim inf
n→∞ d(xn, F (S)) = 0

if and only if the sequence {xn} converges strongly to an unique solution of the
equation Tx = f in K.

Proof. Since T : K → K is a strongly pseudocontractive mapping with
strongly accrective constant k ∈ (0, 1) such that I − T : K → K is Lipchitzian
with Lipschitzian constant L, S is a Lipchitzian strongly accrective mapping with
constant k ∈ (0, 1) and with Lipschitzian constant L. From Theorem 2.3, the
sequence {xn} is bounded and lim infn→∞ d(xn, F (S)) = 0 if and only if the
sequence {xn} converges strongly to an unique fixed point, say x̂, of S. For this
fixed point x̂ of S, we have x̂=Sx̂=f−T x̂+x̂, that is, f =T x̂. Hence the sequence
{xn} is bounded and lim infn→∞ d(xn, F (S)) = 0 if and only if the sequence {xn}
converges strongly to an unique solution of the equation Tx = f in K.
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