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ADDITIVITY OF JORDAN MULTIPLICATIVE MAPS ON JORDAN
OPERATOR ALGEBRAS

Runling An and Jinchuan Hou

Abstract. Let H be a Hilbert space and N a nest in H . Denote by Sa(H)
the Jordan ring of all self-adjoint operators on H and AlgN the nest alge-
bra associated to N . We show that a bijective map Φ : Sa(H) → Sa(H)
satisfying (1) Φ(ABA) = Φ(A)Φ(B)Φ(A) for every pair of A, B, or (2)
Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A) for every pair of A, B, or (3)
Φ(1

2 (AB +BA)) = 1
2 (Φ(A)Φ(B)+Φ(B)Φ(A)) for every pair of A, B must

be additive, that is, a Jordan ring isomorphism. We also show that if a bi-
jective map Φ : AlgN → AlgN satisfies the Jordan multiplicativity of the
form (2) or (3), then Φ must be a Jordan isomorphism. Moreover, such Jordan
multiplicative maps are characterized completely.

1. INTRODUCTION

It is a surprising result of Matindale [13] that every multiplicative bijective
map from a prime ring containing a nontrivial idempotent onto an arbitrary ring is
necessarily additive. Thus the multiplicative structure determines the ring structure
for some rings. Recently Matindale’s result has attracted attention of many authors
working on operator algebras. For example, it was utilized by Šemrl in [17] to
characterize the semigroup isomorphisms of standard operator algebras on Banach
spaces. Recall that a standard operator algebra on a Banach space X is a subal-
gebra of B(X) (the algebra of all bounded linear operators on X) which contains
the identity and all finite rank operators. Some other results on the additivity of
multiplicative maps between operator algebras can be found in [2, 3, 8, 9. 11, 14,
15]. Besides ring homomorphisms between rings, sometimes one has to consider
Jordan ring homomorphisms. Note that, Jordan operator algebras have important
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applications in the mathematical foundations of quantum mechanics. So it is also
interesting to ask when does the Jordan multiplicative structure determine the Jordan
ring structure of operator Jordan rings (or algebras).

Let R and R′ be Jordan rings and let Φ : R → R′ be a map. Recall that Φ is
called a Jordan (ring) homomorphism if it is additive and Jordan multiplicative, i.e.,
Φ(A + B) = Φ(A) + Φ(B) and Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A) for all
A, B ∈ R. In fact, there are three basic forms of Jordan multiplicative maps, namely,
(1) Φ(ABA) = Φ(A)Φ(B)Φ(A) for all A, B, (2) Φ(AB + BA) = Φ(A)Φ(B) +
Φ(B)Φ(A) for all A, B and (3) Φ(1

2(AB + BA)) = 1
2(Φ(A)Φ(B) + Φ(B)Φ(A))

for all A, B. It is clear that, if Φ is unital and additive, then these three forms of
Jordan multiplicativity are equivalent. But in general, for a unital map, we do not
know whether they are still equivalent without the additivity assumption.

The question of when a Jordan multiplicative map is additive was attacked by
several authors. Let φ be a bijective map on a standard operator algebra. Molnár
showed in [14] that if φ satisfies φ(ABA) = φ(A)φ(B)φ(A), then φ is additive.
Later, Molnár in [15] and then Lu in [11] considered the cases that φ preserves the
operation 1

2 (AB + BA) and the operation AB + BA, respectively, and proved that
such a φ is also additive. The additivity of Jordan †-skew multiplicative maps was
proved in [4]. Thus the Jordan multiplicative structure also determines the Jordan
ring structure of the standard operator algebras. In this paper, we consider the same
question and give affirmative answer for the cases of Jordan multiplicative maps on
the real Jordan algebras of all self-adjoint operators and the nest algebras on Hilbert
spaces.

Let us fix and recall some notations. Let H be a Hilbert space over C, B(H) the
algebra of all bounded linear operators on H . Let F (H) denote the subspace of all
finite rank operators in B(H) and I the identity operator on H . We denote by Sa

F (H)
the real linear space of all finite rank self-adjoint operators in F (H) and S a(H) the
real linear space of all self-adjoint operators in B(H), which are obviously Jordan
rings. A nest on H is a chain N of closed (under norm topology) subspaces of H

contain {0} and H , which is closed under the formation of arbitrary closed linear
span (denoted by

∨
) and intersection (denoted by

∧
). AlgN denotes the associated

nest algebra, which is the set of all operators T ∈ B(H) such that TN ⊂ N for
every element N ∈ N . When N �= {0, H}, we say that N is nontrivial. If N
is trivial, then AlgN = B(H). Let AlgFN = AlgN

⋂
F (H), the subalgebra of

all finite rank operators in AlgN . In [7], Erdos proved that AlgFN is dense in
AlgN in the strong operator topology. A subalgebra of AlgN is called a standard
subalgebra if it contains AlgFN . In particular, AlgFN is a standard subalgebra.
Note that (nontrivial) nest algebras are important non-self-adjoint operator algebras
that are neither prime nor semi-simple.

The present paper is organized as follows. Section 2 is devoted to proving the
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additivity of three kinds of Jordan multiplicative maps on the spaces of self-adjoint
operators. Let Φ : Sa(H) → Sa(H) be a bijective map. We show precisely that
Φ satisfies Φ(ABA) = Φ(A)Φ(B)Φ(A) for every A, B ∈ Sa(H) if and only if
there exists a unitary or conjugate unitary operator U such that Φ(A) = εUAU∗

for all A ∈ Sa(H), where ε = ±1 (Theorem 2.1); Φ satisfies Φ( 1
2AB + 1

2BA) =
1
2Φ(A)Φ(B)+ 1

2Φ(B)Φ(A) if and only if Φ(AB+BA) = Φ(A)Φ(B)+Φ(B)Φ(A)
for every pair A, B ∈ Sa(H), and in turn, if and only if there exists a unitary
or conjugate unitary operator U such that Φ(A) = UAU∗ for all A ∈ Sa(H)
(Theorem 2.2). In Section 3, we consider the additivity of Jordan multiplicative
maps on standard subalgebras of nest algebras. Let A be a standard subalgebra
of a nest algebra AlgN on a Hilbert space H , and Φ : A → A be a bijective
map satisfying Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A) for all A, B ∈ A, or
Φ( 1

2AB + 1
2BA) = 1

2Φ(A)Φ(B) + 1
2Φ(B)Φ(A) for all A, B ∈ A, then Φ is

additive (Theorem 3.1); and moreover, if A = AlgN , then there is a bounded
linear or conjugate linear invertible operator T with certain property concerning N
such that Φ(A) = TAT −1 for every A ∈ AlgN or Φ(A) = TA∗T−1 for every
A ∈ AlgN (Theorem 3.2).

2. JORDAN MULTIPLICATIVE MAPS ON Sa(H)

In this section, we characterize the Jordan multiplicative maps on self-adjoint
operator space Sa(H) by checking their additivity.

The following is one of our main results.

Theorem 2.1. Let H be a complex Hilbert space with dim H > 1 and
Φ : Sa(H) → Sa(H) be a bijective map. Then Φ satisfies

(2.1) Φ(ABA) = Φ(A)Φ(B)Φ(A)

for every A, B ∈ Sa(H) if and only if there exists a unitary or conjugate unitary
operator U such that Φ(A) = εUAU ∗ for all A ∈ Sa(H), where ε = ±1.

Proof. The “if” part is obvious. We divide the proof of “only if” part into a
few steps.

Step 1. Φ(0) = 0.
There exists an operator A ∈ Sa(H) such that Φ(A) = 0 by the bijectivity of

Φ. Thus Φ(0) = Φ(A0A) = Φ(A)Φ(0)Φ(A) = 0.

Step 2. Φ(I) = ±I and Φ(P )2 = Φ(P ) for all projections P .
Take A = I in the equation (2.1), we get Φ(B) = Φ(I)Φ(B)Φ(I) which

implies that Φ(I) is invertible. Let A = B = I in (2.1), we see that Φ(I) = Φ(I)3.
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Multiplying this formula by Φ(I)−1, we have Φ(I)2 = I . Therefore Φ(I) = ±I

according to the fact that Φ(I) is self-adjoint.
If Φ(I) = −I , let Ψ = −Φ. Then Ψ meets the equation (2.1) and Ψ(I) = I .

So, with no loss of generality, we assume that Φ(I) = I .
Now, letting A = P, B = I in (2.1) yields that Φ(P )2 = Φ(P ) for all pro-

jections P .

Step 3. Φ preserves the order and the orthogonality of the projections in both
directions.

If projections P, Q satisfy P ≤ Q, that is, PQ = QP = P , then Φ(P )Φ(Q)Φ(P )
= Φ(PQP ) = Φ(P ) = Φ(QPQ) = Φ(Q)Φ(P )Φ(Q). Multiplying this formula by
Φ(Q) from both sides, we obtain that Φ(P )Φ(Q) = Φ(Q)Φ(P ) = Φ(P ), that is,
Φ preserves the order of projections. If PQ = QP = 0, then PQP = QPQ = 0.
By (2.1) we have

Φ(P )Φ(Q)Φ(P ) = Φ(P )Φ(Q)Φ(Q)Φ(P ) = Φ(P )Φ(Q)(Φ(P )Φ(Q))∗ = 0

and

Φ(Q)Φ(P )Φ(Q) = Φ(Q)Φ(P )Φ(P )Φ(Q) = Φ(Q)Φ(P )(Φ(Q)Φ(P ))∗ = 0.

Therefore Φ(P )Φ(Q) = Φ(Q)Φ(P ) = 0 and Φ preserves the orthogonality of
projections. Considering Φ−1 we see that Φ preserves the order and the orthogonality
of the projections in both directions.

Step 4. Φ preserves the rank of projections in both directions.
We show that for every P ∈ Sa(H), rank(P ) = rank(Φ(P )). Let P ∈ Sa(H)

be a rank-1 projection. Then rank(Φ(P )) is at least 1. If the rank of Φ(P ) is greater
than one, then there exist two mutually orthogonal rank-1 projections Q1, Q2 such
that Q1, Q2 < Φ(P ). Let P1 = Φ−1(Q1) and P2 = Φ−1(Q2). Then, by Step
3, P1 < P , P2 < P and P1P2 = P2P1 = 0, which is contrary to the fact that
rank(P ) = 1. Suppose now that Φ(P ) is a rank-k projection if and only if P ∈ Sa

is a rank-k projection, k = 1, 2, . . .n − 1. Let P be a rank-n projection, then
rank(Φ(P )) is at least n. If the rank of Φ(P ) is greater than n, then there exist two
projections Q1 �= Q2 with rank(Q1) = n, rank(Q2) = n such that Q1, Q2 < Φ(P ).
Let P1 = Φ−1(Q1), P2 = Φ−1(Q2), then rank Pi ≥ n and by Step 3, we have
P1 < P , P2 < P , P1 �= P2, which is contrary to the fact that rank(P ) = n.

Step 5. Φ is orthogonally additive on the finite rank projections.
If P, Q ∈ Sa(H) are orthogonal finite rank projections, we know that Φ(P ),

Φ(Q) are orthogonal finite rank projections. As Φ preserves the order, we have
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Φ(P ), Φ(Q) ≤ Φ(P + Q), which implies that Φ(P ) + Φ(Q) ≤ Φ(P + Q). Since
Φ preserves also the rank of projections, it follows that

(2.2) Φ(P ) + Φ(Q) = Φ(P + Q).

This means that Φ is orthogonally additive on the set of all finite rank projections
in Sa(H).

Step 6. Φ maps finite rank self-adjoint operators into finite rank self-adjoint
operators.

Every finite rank self-adjoint operator can be written as a real linear combination
of mutually orthogonal rank-one projections. Therefore, if A is a finite rank self-
adjoint operator, we can find a projection P with rank(P ) =rank(A) such that
PAP = A. Since Φ(A) = Φ(P )Φ(A)Φ(P ), by (2.1) and Step 3, we see that Φ(A)
has finite rank, as desired.

Step 7. Φ(λA) = λΦ(A) for every λ ∈ R and A ∈ Sa(H).
If P is a rank-1 projection and λ ∈ R is a scalar, then we have

Φ(λP ) = Φ(P (λP )P ) = Φ(P )Φ(λP )Φ(P ) = hP (λ)Φ(P )

for some scalar hP (λ) ∈ R. It follows from the fact that Φ(P ) has rank 1, we have
that

hP (λ2µ)Φ(P ) = Φ(λ2µP ) = Φ(λP )Φ(µP )Φ(λP ) = hP (λ)2hP (µ)Φ(P ),

which gives that

(2.3) hP (λ2µ) = hP (λ)2hP (µ)

for every λ, µ ∈ R. Choosing µ = 1 entails hP (λ2) = hP (λ)2. Thus from (2.3)
we obtain that hP is a multiplicative function.

We now assert that hP does not depend on P . Let Q ∈ Sa(H) be a rank one
projection with the property that PQP �= 0. Then

Φ(λPµ2QλP ) = Φ(µP )Φ(λ2P )Φ(µP ) = hP (µ)2hQ(λ2)Φ(P )Φ(Q)Φ(P ).

This yields that
hP (λ)2hQ(µ2) = hP (µ)2hQ(λ2).

Hence we have that hP = hQ. If PQP = 0 then we can choose a rank one
projection R such that PRP �= 0 and QRQ �= 0, which implies that hP = hQ =
hR. Thus hP does not depend on P . So there exists a multiplicative function
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h : R → R such that Φ(λP ) = h(λ)Φ(P ) holds for every rank one projection
P ∈ Sa(H) and every λ ∈ R. Note that

(2.4) h(−λ) = −h(λ)

for every real number λ.
For any A ∈ Sa(H) we have Φ(Pλ2AP ) = Φ(P )Φ(λ2A)Φ(P ) = Φ(λP )Φ(A)

Φ(λP ) = h(λ)2Φ(P )Φ(A)Φ(P ). Since this holds for every rank one projection
P and Φ(P ) runs through the whole set of rank one projections, we obtain that
Φ(λ2A) = h(λ)2Φ(A) for every λ ∈ R. This yields that

Φ(λA) = h(λ)Φ(A)

for every A ∈ Sa(H) and every λ ∈ R.
We further prove that h is additive. Let x, y ∈ H be vectors with the property

that ‖x‖ = ‖y‖ = 1 and 〈x, y〉 = 0. Let A = (λx + µy) ⊗ (λx + µy), P = x ⊗ x

and Q = y ⊗ y, here λ, µ ∈ R. Then we have h(λ2 + µ2)Φ(A) = Φ((λ2 +
µ2)A) = Φ(A(P + Q)A) = Φ(A)[Φ(P ) + Φ(Q)]Φ(A) = Φ(A)Φ(P )Φ(A) +
Φ(A)Φ(Q)Φ(A) = Φ(APA) + Φ(AQA) = Φ(λ2A) + Φ(µ2A) = (h(λ2) +
h(µ2))Φ(A). So h is additive on R+. If λ > 0, µ < 0, then h(λ + (−µ)) =
h(λ) + h(−µ) = h(λ) − h(µ). Thus h is additive and then is an automorphism of
R. Therefore h is the identity on R.

Step 8. Φ is additive.
Let A, B ∈ Sa

F (H) be arbitrary. For any rank one projection P = x⊗x on H , by
Step 7, we have Φ(P )Φ(A+B)Φ(P ) = Φ(P (A+B)P ) = 〈(A+B)x, x〉Φ(P ) =
〈Ax, x〉Φ(P )+〈Bx, x〉Φ(P ) = Φ(PAP )+Φ(PBP ) = Φ(P )Φ(A)Φ(P )+Φ(P )Φ
(B)Φ(P ) = Φ(P )(Φ(A) + Φ(B))Φ(P ), which forces that Φ(A + B) = Φ(A) +
Φ(B), i.e., Φ is additive on Sa

F (H).

Step 9. There exists an unitary or conjugate unitary operator such that Φ(A) =
UAU∗ for all A ∈ Sa(H).

By Step 8, Φ is a Jordan ring isomorphism of Sa(H). Thus, the conclusion
follows from Corollary 4 in [6] directly, completing the proof.

Next let us consider other two forms of Jordan multiplicative maps.

Theorem 2.2. Let H be a complex Hilbert space with dimH > 1 and let
Φ : Sa(H) → Sa(H) be a bijective map. Then the following statements are
equivalent.

(i) Φ( 1
2AB+1

2BA) = 1
2Φ(A)Φ(B)+1

2Φ(B)Φ(A) for every pair A, B ∈ Sa(H).
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(ii) Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A) for every pair A, B ∈ Sa(H).
(iii) There exists a unitary or conjugate unitary operator U such that Φ(A) =

UAU∗ for all A ∈ Sa(H).

Proof. (iii)⇒(ii) and (iii)⇒(i) are obviously. (i)⇒(ii) or (ii)⇒(i) is not easily
checked directly. So we will show that (i)⇒(iii) and (ii)⇒(iii).

Let us show that (i)⇒(iii) by several steps. Assume that (i) holds true.

Step 1. Φ(0) = 0.
Indeed, there exists some A ∈ Sa(H) such that Φ(A) = 0. Thus we have

Φ(0) = Φ(
1
2
(A0 + 0A)) =

1
2
(Φ(A)Φ(0) + Φ(0)Φ(A)) = 0.

Step 2. Φ preserves projections in both directions and Φ(I) = I .
Since Φ(P ) = Φ( 1

2 (P 2 + P 2)) = 1
2(Φ(P )2 + Φ(P )2) = Φ(P )2, we see that Φ

preserves projections. Since Φ−1 has the same properties as Φ, it follows that Φ
preserves projections in both directions. For every A ∈ Sa(H) we have Φ(A) =
Φ( 1

2(AI + IA)) = 1
2(Φ(A)Φ(I) + Φ(I)Φ(A)). Multiplying this equality by Φ(I)

from the right and the left sides respectively, we have Φ(A)Φ(I) = Φ(I)Φ(A).
Hence Φ(I) = λI for some λ ∈ R. Since Φ(I)2 = Φ(I) and Φ(I) �= 0, we have
Φ(I) = I .

Step 3. Φ preserves the order and the orthogonality of projections in both
directions.

If projections P, Q ∈ Sa(H) are orthogonal to each other, then we have

0 = Φ(0) = Φ(
1
2
(PQ + QP )) =

1
2
(Φ(P )Φ(Q) + Φ(Q)Φ(P )).

Multiplying this equality by Φ(Q) from the left and from the right respectively,
we have Φ(Q)Φ(P )Φ(Q) = −Φ(P )Φ(Q) and Φ(Q)Φ(P )Φ(Q) = −Φ(Q)Φ(P ).
Hence

Φ(P )Φ(Q) = Φ(Q)Φ(P ) = 0

and Φ preserves the orthogonality of projections in both directions.
We assert that Φ preserves the partial order relation ≤ between projections. If

P, Q ∈ Sa(H) are projections and P ≤ Q, then we obtain

Φ(P ) = Φ(
1
2
(PQ + QP )) =

1
2
(Φ(P )Φ(Q) + Φ(Q)Φ(P )).

Multiplying this equality by Φ(Q) from both sides, we get that Φ(Q)Φ(P )Φ(Q) =
Φ(P )Φ(Q) and Φ(Q)Φ(P )Φ(Q) = Φ(Q)Φ(P ), that is, Φ(P )Φ(Q) = Φ(Q)Φ(P ) =
Φ(P ). Thus Φ preserves the partial order.
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Step 4. Φ preserves the rank of projections in both directions, Φ is orthogonally
additive on the finite rank projections.

The argument is similar to that of Step 4 and Step 5 in the proof of Theorem
2.1.

Step 5. Φ maps finite rank self-adjoint operators into finite rank self-adjoint
operators.

If A ∈ Sa
F (H), then there exists a finite rank projection P such that PA =

AP = A. A simple computation gives

Φ(A) = Φ(
1
2
(AP + PA)) =

1
2
(Φ(A)Φ(P ) + Φ(P )Φ(A)),

which implies that Φ(A) is also finite rank.

Step 6. Φ(−P ) = −Φ(P ) for every finite rank projection.
Let P1, P2, · · · , Pn ∈ Sa(H) be pairwise orthogonal finite rank projections and
λ1, λ2, . . . , λn ∈ R. Using the orthoadditivity of Φ we have

(2.5)

Φ(
∑

k λkPk) = Φ( 1
2((

∑
k λkPk)(

∑
l Pl) + (

∑
l Pl)(

∑
k λkPk)))

=
1
2
(Φ(

∑
k

λkPk)Φ(
∑

l

Pl) + Φ(
∑

l

Pl)Φ(
∑

k

λkPk))

=
1
2
(Φ(

∑
k

λkPk)
∑

l

Φ(Pl) +
∑

l

Φ(Pl)Φ(
∑
k

λkPk))

=
∑

l
1
2(Φ(

∑
k λkPk)Φ(Pl) + Φ(Pl)Φ(

∑
k λkPk))

=
∑

l Φ( 1
2((

∑
k λkPk)Pl + Pl

∑
k λkPk)))

=
∑

l Φ(λlPl).

Let P be of rank 1, we have

Φ(λP ) = Φ(
1
2
((λP )P + P (λP )))

=
1
2
(Φ(λP )Φ(P ) + Φ(P )Φ(λP ).

Multiplying this equality by Φ(P ) from both sides, we have that Φ(P )Φ(λP )Φ(P ) =
Φ(P )Φ(λP ) = Φ(λP )Φ(P ). It follows that

Φ(λP ) = Φ(P )Φ(λP )Φ(P ).

Since Φ(P ) is of rank 1, the equality above ensures that

(2.6) Φ(λP ) = µΦ(P )
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for some µ ∈ R. So, we obtain that Φ(−P ) = cΦ(P ) for some scalar c ∈ R. Since

c2Φ(P ) = (cΦ(P ))2 = Φ(−P )2 = Φ(P ),

we have c = ±1. By the injectivity of Φ we get Φ(−P ) = −Φ(P ). Thus, (2.5)
implies that

(2.7) Φ(−P ) = −Φ(P )

for every finite rank projection P ∈ Sa(H).

Step 7. Φ(PTP ) = Φ(P )Φ(T )Φ(P ) for every T ∈ Sa
F (H) and every projec-

tion P ∈ Sa
F (H).

For any A, B ∈ Sa(H) we write

A ◦ B =
1
2
(AB + BA).

With this notation the condition (i) can be restated as

Φ(A ◦ B) = Φ(A) ◦ Φ(B)

for every pair A, B ∈ Sa(H)
Let T ∈ Sa

F (H) be arbitrary and let P ∈ Sa
F (H) be a projection. Choose a

finite rank projection Q ∈ Sa
F (H) such that QP = PQ = P and TQ = QT = T .

It is trivial to compute that

(2P − Q) ◦ (T ◦ P ) = PTP.

Thus we get
Φ(2P − Q) ◦ (Φ(T ) ◦ Φ(P )) = Φ(PTP ).

We prove that Φ(2P − Q) = 2Φ(P ) − Φ(Q). Indeed, since Q − P is a projection
which is orthogonal to P , by (2.5) and (2.7) we see that

Φ(2P − Q) = Φ(P − (Q − P )) = Φ(P ) + Φ(−(Q− P ))

= Φ(P ) − Φ(Q− P ) = Φ(P ) − Φ(Q− P )

= Φ(P ) − (Φ(Q)− Φ(P )) = 2Φ(P )− Φ(Q).

So, we have
(2Φ(P )− Φ(Q)) ◦ (Φ(T ) ◦ Φ(P )) = Φ(PTP ).

We assert that Φ(Q)Φ(T )Φ(Q) = Φ(T ) and Φ(Q)Φ(P )Φ(Q) = Φ(P ). In fact,
these follow from the equalities

Φ(T ) =
1
2
(Φ(T )Φ(Q) + Φ(Q)Φ(T ))
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and
Φ(P ) =

1
2
(Φ(P )Φ(Q) + Φ(Q)Φ(P ))

after multiplying them by Φ(Q) from both sides. Similarly, one can now easily
check that

(2Φ(P )− Φ(Q)) ◦ (Φ(P ) ◦Φ(Q)) = Φ(P )Φ(T )Φ(P ).

Therefore, we have Φ(PTP ) = Φ(P )Φ(T )Φ(P ).

Step 8. Φ(λA) = λΦ(A) for every λ ∈ R and A ∈ Sa
F (H).

Fix a rank 1 projection P ∈ Sa
F (H), by Step 6, there is a bijective function

hP : R → R such that

(2.8) Φ(λP ) = hP (λ)Φ(P ) (λ ∈ R).

Now we claim that hP is multiplicative. To see this, let P ∈ S a
F (H) be a rank 1

projection. We have

hP (λµ)Φ(P ) = Φ(
1
2
((λP )(µP ) + (µP )(λP )))

=
1
2
(hP (λ)Φ(P )hP (µ)Φ(P ) + hP (µ)Φ(P )hP (λ)Φ(P ))

= hP (λ)hP (µ)Φ(P )

and this shows that hP is multiplicative. Therefore, hP (−λ) = −hP (λ).
We show that hP does not depend on P . If Q ∈ Sa

F (H) is another rank-1
projection not orthogonal to P , then we have

Φ( 1
2((λP )Q + Q(λP ))) =

1
2
(hP (λ)Φ(P )Φ(Q) + hP (λ)Φ(Q)Φ(P ))

=
1
2
hP (λ)(Φ(P )Φ(Q)+ Φ(Q)Φ(P )).

Similarly,

Φ(
1
2
(P (λQ) + (λQ)P )) =

1
2
hQ(λ)(Φ(P )Φ(Q) + Φ(Q)Φ(P )).

Since PQ �= 0, we must have PQ+QP �= 0 and hence Φ(P )Φ(Q)+Φ(Q)Φ(P ) �=
0. It follows that hP = hQ. If Q is orthogonal to P , then we can choose a rank-1
projection R ∈ Sa

F (H) such that R is neither orthogonal to P nor orthogonal to Q.
By what we just proved, we get hP = hQ = hR. Therefore, there is a bijective
function h : R → R such that

Φ(λP ) = h(λ)Φ(P )



Additivity of Jordan Multiplicative Maps 55

for every λ ∈ R and every rank-1 projection P ∈ Sa
F (H).

Next we show that

(2.9) Φ(λA) = h(λ)Φ(A)

for every A ∈ Sa
F (H) and λ ∈ R. By (2.5), we see that (2.9) holds if A is any

finite rank projection. Let A ∈ Sa
F (H) be arbitrary, then there exists a finite rank

projection P such that PA = AP = A. A simple computation gives

Φ(λA) = Φ((
1
2
(A(λP ) + (λP )A))

=
1
2
(Φ(A)h(λ)Φ(P )+ h(λ)Φ(P )Φ(A)) = h(λ)Φ(A).

We claim that h is the identity map on R. Let x, y ∈ H be orthogonal unital
vectors and λ, µ ∈ R be such that λ2 + µ2 = 1. Put P = x ⊗ x, Q = y ⊗ y and
R = (λx + µy) ⊗ (λx + µy). It is obvious that R, P, Q are rank-1 projections and
P is orthogonal to Q. By Step 7. we have

h(λ2 + µ2)Φ(R) = Φ((λ2 + µ2)R) = Φ(R(P + Q)R) = Φ(R)Φ(P + Q)Φ(R)

= Φ(R)Φ(P )Φ(R) + Φ(R)Φ(Q)Φ(R) = Φ(RPR) + Φ(RQR)

= Φ(λ2R) + Φ(µ2R) = (h(λ2) + h(µ2))Φ(R).

By the multiplicativity of h, we get h(λ)2+h(µ)2 = 1 whenever λ2 +µ2 = 1. This
equality implies that, for any 0 ≤ a ≤ 1, we have 0 ≤ h(a) ≤ 1, h(a)+h(1−a) = 1
and h preserves the order. In particular, h(1) = 1 and h(1

2 ) = 1
2 . Next we show that

the restriction of h to the rational numbers is the identity. By the multiplicativity
of h we have h(2) = 2. Assume that h(n) = n. It follows form 1 − h( 1

n+1 ) =
h(1− 1

n+1 ) = h( n
n+1 ) = nh( 1

n+1 ) that h(n+1) = n+1. By induction, this implies
that h(n) = n for all natural numbers n. Hence, h(r) = r for every rational r.
Because h is also order preserving, we see that h(λ) = λ holds for all λ ∈ R, as
desired.

Step 9. Φ(λA) = λΦ(A) for every λ ∈ R and A ∈ Sa(H).
Let A ∈ Sa(H) be arbitrary and λ ∈ R, a computation gives that

1
2
(Φ(λA)Φ(x⊗ x) + Φ(x⊗ x)Φ(λA)) = Φ(

1
2
λ(A(x⊗ x) + (x ⊗ x)A))

=
1
2
Φ(A)Φ(λx⊗ x) +

1
2
Φ(λx⊗ x)Φ(A)

=
1
2
λ(Φ(A)Φ(x⊗ x) + Φ(x ⊗ x)Φ(A)),
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which implies that (λΦ(A)− Φ(λA))Φ(x⊗ x) = Φ(x ⊗ x)(λΦ(A)− Φ(λA)) for
every rank 1 operator. Hence λΦ(A) = Φ(λA).

Step 10. Φ is additive on Sa
F (H), and thus a Jordan ring isomorphism.

The proof is the same as that of Step 8 in Theorem 2.1.

Step 11. There exists an unitary or conjugate unitary operator such that Φ(A) =
UAU∗ for all A ∈ Sa(H).

This follows from [6, Corollary 4]. Here we give a direct proof. By Step 5 and
the additivity of Φ, it is easily seen that Φ preserves adjacency in both directions
on Sa

F (H). By [6] there exist a unitary or conjugate unitary operator U : H → H

and a real number c such that Φ(x ⊗ x) = cUx ⊗ xU ∗ for all x ∈ H . By Step 9
we see that c = 1. For every A ∈ Sa

F (H), applying the claims in Step 7 and 9, one
gets 〈Ax, x〉Φ(x⊗ x) = Φ((x⊗ x)A(x⊗ x)) = Φ(x⊗ x)Φ(A)Φ(x⊗ x) = Ux ⊗
xU∗Φ(A)Ux⊗xU∗ = 〈Φ(A)Ux, Ux〉Ux⊗xU∗ = 〈U∗Φ(A)Ux, x〉Φ(x⊗x). So,
〈U∗Φ(A)Ux, x〉 = 〈Ax, x〉 holds for all x ∈ H and consequently, Φ(A) = UAU∗

as H is a complex Hilbert space. If A ∈ Sa(H) is not of finite rank, the following
equality

1
2
U(A(x ⊗ x) + (x⊗ x)A)U∗ = Φ(

1
2
(A(x⊗ x) + (x ⊗ x)A))

=
1
2
(Φ(A)U(x⊗ x)U∗ + U(x ⊗ x)U∗Φ(A))

implies that (UAx − Φ(A)Ux) ⊗ Ux = Ux ⊗ (Φ(A)Ux − Ax). Hence, for every
x ∈ H , there exists some λx ∈ R such that UAx − Φ(A)Ux = λxUx. This
entails that UA − Φ(A)U = λU for some λ ∈ R. So there exists a functional
ϕ : Sa(H) → R such that

Φ(A) = UAU∗ + ϕ(A)I

for every A ∈ Sa(H). Thus we have

1
2
U(A(x ⊗ x) + (x ⊗ x)A)U∗

=
1
2
(Φ(A)U(x⊗ x)U∗ + U(x ⊗ x)U∗Φ(A))

=
1
2
((UAU∗ + ϕ(A)I)Ux⊗ Ux + (Ux ⊗ Ux)(UAU∗ + ϕ(A)I)).

It follows that 2ϕ(A)Ux⊗ Ux = 0, and hence ϕ(A) = 0 for every A, as desired.

(ii)⇒(iii). To do this, we need a claim which is also interesting of itself.
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Claim. Let H be a complex Hilbert space. If A ∈ S a(H) is such that
BA + AB ≥ 0 holds for every 0 ≤ B ∈ Sa(H), then A is a nonnegative scalar
multiple of the identity.

We first observe that A is positive. Indeed, for I ∈ Sa(H), we have AI +IA ≥
0, that is A ≥ 0. If 0 �= x ∈ H is arbitrary, then we have x⊗Ax + Ax⊗x ≥ 0. It
follows from this inequality that for each y ∈ H , we have 〈(x⊗Ax+Ax⊗x)y, y〉=
〈y, Ax〉〈x, y〉+ 〈y, x〉〈Ax, y〉 ≥ 0, which implies that

(2.10) Re(〈y, x〉〈Ax, y〉)≥ 0.

We can write Ax = λx + u, where λ ∈ C and u ∈ x⊥ ∈ H is a vector orthogonal
to x. Let y = µx + v with µ ∈ C and v ∈ H a vector orthogonal to x. It follows
from (2.10) that Re((λµ‖x‖2 + 〈u, v〉)µ) ≥ 0. This implies that

|µ|2Re(λ‖x‖2) + Re(µ〈u, v〉) ≥ 0

holds for all µ ∈ C and v ∈ x⊥. It is easy to see that we necessarily have ‖u‖2 = 0,
that is, u = 0.

The above observation shows that, for every x ∈ H , the vectors Ax and x are
linearly dependent. Therefore, A is a scalar multiple of the identity. This completes
the proof of the claim.

Now let us turn to the proof of (ii)⇒(iii).
Note that, if A ∈ Sa(H) is positive, then there is a positive element B ∈ Sa(H)

such that 2B2 = A. Thus Φ(A) = Φ(2B2) = 2Φ(B)2 ≥ 0. Since Φ−1 has the
same properties as Φ, we see that Φ preserves the positivity in both directions.

Let A ∈ Sa(H) be positive. We have Φ(A)Φ(I) + Φ(I)Φ(A) = Φ(2A) ≥ 0.
Since Φ(A) runs through all positive elements of Sa(H), by the above Claim,
we infer that Φ(I) = λI for some scalar λ > 0. Considering the transformation
Ψ : Sa(H) → Sa(H) defined by Ψ(A) = 1

λΦ(A). Since Φ(A) = Φ(I A
2 + A

2 I) =
2λΦ(A

2 ), one can easily check that Ψ(1
2AB+ 1

2BA) = 1
2Ψ(A)Ψ(B)+ 1

2Ψ(B)Ψ(A).
Now by (i)⇒(iii), there exists a unitary or conjugate unitary operator U such that
Φ(A) = λUAU∗ for every A ∈ Sa(H). Since λU(AB + BA)U∗ = Φ(AB +
BA) = Φ(A)Φ(B)+ Φ(B)Φ(A) = λ2U(AB + BA)U∗, we must have λ = 1. So,
(iii) holds true, completing the proof.

3. JORDAN MULTIPLICATIVE MAPS ON NEST ALGEBRAS

Let H be a (real or complex) Hilbert space and N be a nest on H . It is well
known that x ⊗ f is in AlgFN if and only if there exists an element N ∈ N such
that x ∈ N and f ∈ (I − N−)H . It follows that AlgFN contains no idempotents
if N− = N for every N ∈ N . For more information on nest algebras, we refer to
[5].
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The following is our main result in this section which states that every bijective
Jordan multiplicative map on nest algebras is in fact a Jordan isomorphism.

Theorem 3.1. Let A be a standard subalgebra of a nest algebra Alg(N ) on
a Hilbert space H with dimH > 1, and Φ : A → A be a bijective map satisfying

(3.1) Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A),

then Φ is additive.

Proof. As AlgN = B(H) is a standard operator algebra if N = {0, I}, we
always assume in the sequel that the nest N is not trivial.

Our idea is similar to that in [11] for the case that Φ acts on a standard operator
algebra. The main technique we will use is the following argument which will
be termed a standard argument. Suppose A, B, S ∈ A are such that Φ(S) =
Φ(A) + Φ(B). Multiplying this equality by Φ(T ) (T ∈ A) from the right and the
left, respectively, we get Φ(T )Φ(S) = Φ(T )Φ(A) + Φ(T )Φ(B) and Φ(S)Φ(T ) =
Φ(A)Φ(T ) + Φ(B)Φ(T ). Summing them, we get

Φ(S)Φ(T ) + Φ(T )Φ(S) = Φ(A)Φ(T ) + Φ(T )Φ(A) + Φ(T )Φ(B) + Φ(B)Φ(T ).

It follows from (3.1) that

Φ(ST + TS) = Φ(AT + TA) + Φ(BT + TB).

Moreover, if

Φ(AT + TA) + Φ(BT + TB) = Φ(AT + TA + BT + TB),

then by the injectivity of Φ, we will reach that

ST + TS = AT + TA + BT + TB.

We give the proof by several Steps.

Step 1. Φ(0) = 0
Obvious.
Fix an element E in N with 0 < E < I . For the sake of simplicity, we

write A = A11 ⊕ A12 ⊕ A22, where A11 = EAE , A12 = EA(I − E) and
A22 = (I − E)A(I − E).

Step 2. The following statements are true.

(i) T22 ∈ A22, A12T22 = 0 implies T22 = 0. Dually, T11 ∈ A11, T11A12 = 0
implies T11 = 0.
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(ii) Let T12 ∈ A12. Then A11T12 = 0 implies T12 = 0 and T12A22 = 0 implies
T12 = 0.

(iii) TiiSii + SiiTii = 0 for every Sii ∈ Aii (i = 1, 2) implies Tii = 0.
Obvious.

Step 3. Φ(A11 + A12) = Φ(A11) + Φ(A12).
Since Φ is surjective, we may find an element S = S11 + S12 + S22 ∈ A such

that

(3.2) Φ(S) = Φ(A11) + Φ(A12).

For T22 ∈ A22, applying a standard argument to (3.2), we get that Φ(ST22+T22S) =
Φ(A11T22 + T22A11) + Φ(A12T22 + T22A12) = Φ(A12T22). Therefore,

(3.3) ST22 + T22S = S12T22 + S22T22 + T22S22 = A12T22.

Multiplying Eq.(3.3) by E from the left side, we get that S12T22 = A12T22. Thus
S12 = A12 by Step 2.(ii). It follows that S22 = 0 by Step 2.(iii). For T12 ∈ A12,
applying a standard argument to (3.1) again, we have Φ(ST12+T12S) = Φ(A11T12+
T12A11) + Φ(A12T12 + T12A12). Hence, ST12 + T12S = S11T12 + T12S22 =
S11T12 = A11T12, this implies that S11 = A11 by Step 2.(i). Consequently, S =
A11 + A12.

Similarly, one can check the claim of Step 4.

Step 4. Φ(A12 + A22) = Φ(A12) + Φ(A22).

Step 5. Φ(A12 + B12A22) = Φ(A12) + Φ(B12A22).
A simple computation gives A12 + B12A22 = (E + B12)(A12 + A22) + (A12 +

A22)(E + B12). Then, by Step 3 and 4, we have that

Φ(A12 + B12A22) = Φ(A12 + A22)Φ(E + B12) + Φ(E + B21)Φ(A12 + A22)

= (Φ(A12) + Φ(A22))(Φ(E)+ Φ(B12))

+((Φ(E) + Φ(B12))(Φ(A12) + Φ(A22))

= Φ(A12)Φ(E) + Φ(A12)Φ(B12) + Φ(A22)Φ(E)

+Φ(A22)Φ(B12) + Φ(E)Φ(A12)

+Φ(B12)Φ(A12) + Φ(E)Φ(A22) + Φ(B12)Φ(A22)

= Φ(A12E + EA12) + Φ(A22B12 + B12A22)

+Φ(A12B12 + B12A12) + Φ(A22E + EA22)

= Φ(A12) + Φ(B12A22).
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Step 6. Φ is additive on A12.
Let A12, B12 ∈ A12 and choose S = S11 + S12 + S22 ∈ A such that

(3.4) Φ(S) = Φ(A12) + Φ(B12).

For T22 ∈ A22, applying a standard argument to (3.4), we get that

Φ(ST22 + T22S) = Φ(A12T22 + T22A12) + Φ(B12T22 + T22B12)

= Φ(A12T22) + Φ(B12T22) = Φ((A12 + B12)T22).

Hence,

T22S + ST22 = T22S22 + S12T22 + S22T22 = (A12 + B12)T22.

Multiplying the above equality by I − E from the left side, we see that T22S22 +
S22T22 = 0 and S22 = 0. Furthermore the equality S12T22 = (A12 + B12)T22

implies S12 = A12 + B12 by Step 2.(ii).
Now there remains to prove that S11 = 0. For T12 ∈ A12, applying a standard

argument to (3.4) again, we get that T12S+ST12 = T12S22+S11T12 = 0. Since we
have proved that S22 = 0, we have that S11T12 = 0 for every T12 ∈ A12. Hence,
by Step 2.(i), S11 = 0.

Step 7. Φ is additive on A11.
Let A11, B11 ∈ A11, and choose S = S11 + S12 + S22 ∈ A such that

(3.5) Φ(S) = Φ(A11) + Φ(B11)

For T22 ∈ A22, applying a standard argument to (3.5), we get that Φ(ST22 +
T22S) = Φ(A11T22 + T22A11) + Φ(B11T22 + T22B11) = 0. Hence ST22 + T22S =
S12T22 + S22T22 + T22S22 = 0. By a simple computation, we see that S12 = 0
and S22 = 0. For T12 ∈ A12, applying a standard argument to (3.5) again, we get
Φ(ST12 + T12S) = Φ(A11T12 + T12A11) + Φ(B11T12 + T12B11) = Φ(A11T12) +
Φ(B11T12) = Φ((A11+B11)T12) by Step 6. Hence ST12+T12S = (A11+B11)T12.
Since we have proved that S22 = 0, by Step 2.(i), we get S11 = A11 + B11.

Similarly, one can prove

Step 8. Φ is additive on A22.

Step 9. Φ is additive on EA = A11 + A12.
Let A11, B11 ∈ A11, A12, B12 ∈ A12. It follows from Step 3, 6 and 7 that

Φ((A11 + A12) + (B11 + B12)) = Φ((A11 + B11) + (A12 + B12))

= Φ(A11 + B11) + Φ(A12 + B12)

= Φ(A11) + Φ(B11) + Φ(A12) + Φ(B12)

= Φ(A11 + A12) + Φ(B11 + B12).
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Step 10. Φ(A11 + A22) = Φ(A11) + Φ(A22).
Let S = S11 + S12 + S22 ∈ A such that

(3.6) Φ(S) = Φ(A11) + Φ(A22).

For E , applying a standard argument to (3.6), we have that Φ(SE + ES) = Φ
(A11E + EA11) + Φ(A22E + EA22)) = Φ(2A11) and hence, SE + ES = 2S11 +
S12 = 2A11. Multiplying this equality by I − E from the right side, we get that
S12 = 0 and S11 = A11. Similarly, for I−E applying a standard argument to (3.6),
we can show that S22 = A22.

Step 11. Φ(A11 + A12 + A22) = Φ(A11) + Φ(A12) + Φ(A22).
Let S = S11 + S12 + S22 ∈ A such that

(3.7) Φ(S) = Φ(A11) + Φ(A12) + Φ(A22).

For E , applying a standard argument to (3.7) we have that Φ(SE + ES) = Φ
(2A11) + Φ(A12) = Φ(2A11 + A12). Hence SE + ES = 2A11 + A12, that is,
2S11 + S12 = 2A11 + A12. By a simple computation, we get that S11 = A11 and
S12 = A12. Similarly, for I − E applying a standard argument to (3.7), one gets
S22 = A22.

Now let us complete the proof of Theorem 3.1. For any A = A11 + A12 + A22

and B = B11+B12 +B22 in A, all steps are used in seeing the following equalities,

Φ(A + B) = Φ((A11 + B11) + (A12 + B12) + (A22 + B22))

= Φ(A11 + B11) + Φ(A12 + B12) + Φ(A22 + B22)

= Φ(A11) + Φ(B11) + Φ(A12) + Φ(B12) + Φ(A22) + Φ(B22)

= Φ(A11 + A12 + A22) + Φ(B11 + B12 + B22)

= Φ(A) + Φ(B).

Hence Φ is additive and hence a Jordan isomorphism.
Theorem 3.1 still holds if Φ is a Jordan multiplicative map of form (3) on a nest

algebra. The proof is similar to that of Theorem 3.1, and we omit it here. We guess
that every Jordan multiplicative map of form (1) on a nest algebra is also additive,
however we are not able to prove this in the present paper.

Theorem 3.1′. Let A be a standard subalgebra of a nest algebra Alg(N ) on
a Hilbert space H with dim H > 1, and Φ : A → A be a bijective map satisfying

Φ(
1
2
(AB + BA)) =

1
2
Φ(A)Φ(B) +

1
2
Φ(B)Φ(A),
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then Φ is additive.
The following results generalize the main results in [12] by omitting the addi-

tivity assumption.

Theorem 3.2. Let H be an infinite dimensional real or complex Hilbert space,
and AlgN be a nest algebra on H . Let Φ : AlgN → AlgN be a bijective map.
Then the following are equivalent.

(1) Φ satisfies Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A) ∀A, B ∈ AlgN .
(2) Φ satisfies Φ( 1

2(AB + BA))= 1
2Φ(A)Φ(B)+ 1

2Φ(B)Φ(A) ∀A, B ∈ AlgN .
(3) Either there exists a dimension preserving order isomorphism θ : N → M

and an invertible bounded linear or conjugate-linear operator T : X → Y

satisfying T (N ) = θ(N ) for every N ∈ N such that

Φ(A) = TAT−1 for all A ∈ AlgN ;

or there exists a dimension preserving order isomorphism θ : N ⊥ → M
and an invertible bounded linear or conjugate-linear operator T : X ∗ → Y

satisfying T (N ⊥) = θ(N⊥) for every N ∈ N such that

Φ(A) = TA∗T−1 for all A ∈ AlgA.

Moreover, in the latter case, X and Y are reflexive.
By Mn(F) we denote the algebra of n × n matrices over F (the real field

or the complex field). For every finite sequence of positive integers n1, n2, . . .nk,

satisfying n1 +n2 + . . .+nk = n, we associate an algebra T (n1, . . . , nk) consisting
of all n × n matrices of the form

A =




A11 A12 . . . A1k

0 A22 . . . A2k
...

... . . . ...
0 0 . . . Akk




where Aij is an ni×nj matrix. We will call such an algebra T (n1, . . . , nk) a block
upper triangular algebra in Mn(F). Let V(n1, . . . , nk) = {T = (Tij)k×k | Tij =
0 whenever i + j > k + 1}.

Theorem 3.3. Let T (n1, . . . , nk) be a block upper triangular algebra in M n(F)
and Φ : T (n1, . . . , nk) → T (n1, . . . , nk) be a bijective map. Then the following
are equivalent.

(1) Φ satisfies Φ(AB+BA) = Φ(A)Φ(B)+Φ(B)Φ(A) ∀A, B ∈ T (n1, . . . , nk).
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(2) Φ satisfies Φ( 1
2(AB + BA)) = 1

2Φ(A)Φ(B) + 1
2 Φ(B)Φ(A) ∀A, B ∈

T (n1, . . . , nk).
(3) There is a ring automorphism h : F → F and either there is an invertible

matrix T ∈ T (n1, . . . , nk) such that Φ is of the form Φ(A) = TAhT−1 for
all A ∈ T (n1, . . . , nk); or there is an invertible matrix T ∈ V(n1, . . . , nk)
such that Φ(A) = TAtr

h T−1 for all A ∈ A, where [aij]h = [h(aij)] and Atr

stands for the transpose of A.
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