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The Minimal Cycles over Brieskorn Complete Intersection Surface

Singularities

Fanning Meng, Wenjun Yuan* and Zhigang Wang

Abstract. In this paper, we study a complete intersection surface singularity of

Brieskorn type and provide a condition for the coincidence of the fundamental cy-

cle and the minimal cycle on the minimal resolution space.

1. Introduction

Let (X, o) be a germ of a normal complex surface singularity and let π : (X̃, E)→ (X, o)

be a resolution, where E = π−1(o) denotes the exceptional divisor. Let E =
⋃r
i=1Ei be

the irreducible decomposition of E. A formal sum D =
∑r

i=1 diEi (di ∈ Z) is called a cycle

on E. For any effective cycle D on E (i.e., di ≥ 0 for any i), the arithmetic genus pa(D)

of D is defined by pa(D) = 1− χ(D), where χ(D) = dimCH
0(X̃,OD)− dimCH

1(X̃,OD)

and OD = O
X̃
/O

X̃
(−D). From Riemann-Roch theorem, we have

(1.1) χ(D) = −1

2
(D2 +K

X̃
D),

where K
X̃

is the canonical divisor on X̃. If B,C are cycles, we have

(1.2) pa(B + C) = pa(B) + pa(C)− 1 +BC.

The fundamental cycle ZE is by definition the smallest one among the cycles F > 0

such that FEi ≤ 0 for every irreducible component Ei of E. The arithmetic genus of ZE is

called the fundamental genus of (X, o) and denoted by pf (X, o). The minimal cycle A on

E is the smallest one among the cycles D > 0 such that pa(D) = pa(ZE), D ≤ ZE . Clearly,

we always have A ≤ ZE . It sometimes happens that A = ZE . This equality holds on the

minimal resolution for minimal Kulikov singularities (cf. [7]), hypersurface singularities of

Brieskorn type with certain conditions (cf. [8]). However, even for a particular class of
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singularities, a more systematic study will be required in order to classify when such a

coincidence of important cycles occurs.

In this paper, we consider a germ (W, o) ⊂ (Cm, o) of an isolated Brieskorn complete

intersection singularity defined by

W = {(xi) ∈ Cm | qj1xa11 + · · ·+ qjmx
am
m = 0, j = 3, . . . ,m} ,

where ai ≥ 2 are integers. By Serre’s criterion for normality, (W, o) is a normal surface sin-

gularity. Neumann [6] showed that the universal abelian cover of a weighted homogeneous

normal surface singularity with rational homology sphere link is a complete intersection

singularity of Brieskorn type. The aim of this paper is to give a condition for the coinci-

dence of the fundamental cycle and the minimal cycle over these singularities.

This paper is organized as follows. In Section 2, we mention fundamental facts on cycles

over a cyclic quotient singularity, and the minimal cycles over normal surface singularities.

In Section 3, we consider the minimal cycles over Brieskorn complete intersection surface

singularities and give a condition for the coincidence of the fundamental cycle and the

minimal cycle on the minimal resolution space.

2. Preliminaries

Let us first introduce some notations which will be used throughout this paper. For

1 ≤ i ≤ m, we define positive integers dim, nim and eim as follows:

dim := lcm(a1, . . . , âi, . . . , am),

nim :=
ai

gcd(ai, dim)
,

eim :=
dim

gcd(ai, dim)
.

(The symbol ̂ in the definition of dim indicates an omitted term.) In addition, we define

integers µim by the following conditions:

eimµim + 1 ≡ 0 (mod nim), 0 ≤ µim < nim.

For 1 ≤ i ≤ m, we define integers ĝ and ĝi as follows:

ĝ :=
a1 · · · am

lcm(a1, . . . , am)
, ĝi :=

a1 · · · âi · · · am
lcm(a1, . . . , âi, . . . , am)

.
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2.1. Cyclic quotient singularities

For any x ∈ R, we put bxc = max {n ∈ Z | n ≤ x}, and dxe = min {n ∈ Z | n ≥ x}. For

integers ci ≥ 2, i = 1, 2, . . . , r, we put

[[c1, . . . , cr]] := c1 −
1

c2 −
1

. . . −
1

cr

.

Let n and µ be positive integers that are relatively prime and µ < n. Let εn denote

the primitive n-th root of unity exp(2π
√
−1/n). Then the singularity of the quotient

C2

/〈εn 0

0 εµn

〉

is called the cyclic quotient singularity of type Cn,µ. A non-singular point is regarded as of

type C1,0. It is known (cf. [1]) that if E =
⋃r
i=1Ei is the exceptional divisor of the minimal

resolution of Cn,µ, then Ei ' P1 and the weighted dual graph of E is chain-shaped as in

Figure 2.1, where n/µ = [[c1, . . . , cr]].

−c1 −c2 −cr· · ·

E1 E2 Er

Figure 2.1: The weighted dual graph of
⋃r
i=1Ei

Lemma 2.1. [2, Lemma 1.2] Let ei = [[ci, . . . , cr]]. Take a positive integer λ0 and define

the sequence {λi}ri=0 by the recurrence formula λi = dλi−1/eie for 1 ≤ i ≤ r. Take

relatively prime positive integers ni and µi satisfying ni/µi = ei for 1 ≤ i ≤ r. Put

λr+1 := λrcr − λr−1.

(1) If λi−1 = λici − λi+1 holds for 1 ≤ i ≤ r, then λ1 = (µ1λ0 + λr+1)/n1.

(2) If λ0 ≡ 0 (mod n1), then λi = µiλi−1/ni for 1 ≤ i ≤ r. If µ1λ0 + 1 ≡ 0 (mod n1),

then λi = (µiλi−1 + 1)/ni for 1 ≤ i ≤ r.

(3) If either λ0 ≡ 0 (mod n1) or µ1λ0 + 1 ≡ 0 (mod n1), then λi−1 = λici − λi+1 holds

for 1 ≤ i ≤ r. Furthermore, λr+1 = 0 when λ0 ≡ 0 (mod n1), and λr+1 = 1 when

µ1λ0 + 1 ≡ 0 (mod n1).

(4) If λ0 ≡ 0 (mod n1), then λr = λ0/n1. If µ1λ0+1 ≡ 0 (mod n1), then λr = dλ0/n1e.
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Example 2.2. Let e1 = [[2, 2, 2]] = 4
3 and take λ0 = 4. Then λ1 = 3, λ2 = 2, λ3 = 1,

λ4 = 0 and e2 = 3
2 , e3 = 2, and n1 = 4, µ1 = 3, n2 = 3, µ2 = 2, n3 = 2, µ3 = 1. Following

Lemma 2.1, we have λ1 = (µ1λ0 + λr+1)/n1 = (3 × 4 + 0)/4 = 3, λ2 = µ2λ1/n2 =

(2× 3)/3 = 2, λ3 = µ3λ2/n3 = λ0/n1 = 1, λ4 = 0.

2.2. Minimal cycles over normal surface singularities

Let (X, o) be a germ of a normal complex surface singularity. Let π : (X̃, E)→ (X, o) be

a resolution of (X, o), where π−1(o) = E =
⋃r
i=1Ei is the irreducible decomposition of E.

Let D be a cycle with 0 ≤ D < ZE , where ZE is the fundamental cycle on E. Then we

can construct a sequence of positive cycles

Z0 = D, Z1 = Z0 + Ei1 , . . . , Zj = Zj−1 + Eij , . . . , Zl = Zl−1 + Eil = ZE ,

such that Zj−1Eij > 0 for j = ε + 1, . . . , l, where Ei1 is arbitrary, and ε = 0 if D > 0

and ε = 1 if D = 0. This sequence is called a computation sequence from D to ZE .

When D = 0, it is a Laufer’s computation sequence of ZE . We can always construct a

computation sequence from D to ZE as in [3].

Lemma 2.3. [8, Lemma 1.1] Let D be a cycle on E such that 0 ≤ D ≤ ZE. Then

pa(D) ≤ pf (X, o).

Proof. Let Z0 = D,Z1 = Z0 +Ei1 , . . . , Zj+1 = Zj +Eij+1 , . . . , Zl = ZE be a computation

sequence from D to ZE . Then for j = 0, . . . , l − 1, following (1.1) and (1.2), we have

pa(Zj+1) = pa(Zj) + pa(Eij+1)− 1 + ZjEij+1 ≥ pa(Zj).

Definition 2.4. [8, Definition 1.2] Let A be a cycle on E satisfying 0 < A ≤ ZE . Suppose

pf (X, o) ≥ 1. Then A is said to be a minimal cycle on E if pa(A) = pf (X, o) and

pa(D) < pf (X, o) for any cycle D with D < A.

In 1977, Laufer [4] showed that if (X, o) is an elliptic singularity (i.e., pf (X, o) = 1),

then A is the minimally elliptic cycle. In other words, if (X, o) is a minimally elliptic

singularity, then A = ZE (cf. [4]). In fact, as Tomaru [8] said, for the definition of

minimally elliptic cycle, we need not the assumption A ≤ ZE . However, in the case of

pf (X, o) ≥ 2, we need the assumption A ≤ ZE . Further, as the minimally elliptic cycle,

the existence and the uniqueness of the minimal cycle A can also be shown as in [4].

Lemma 2.5. [8, Lemma 1.4] Let Z0 = A,Z1 = Z0 + Ei1 , . . . , ZE = Zl = Zl−1 + Eil be a

computation sequence from A to ZE. Then Eik is a smooth rational cure and Zk−1Eik = 1

for k = 1, 2, . . . , l.
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Suppose that E =
⋃N
i=0Ei whose dual graph is star-shaped with central curve E0. Let⋃s

i=1Ei be a cyclic branch with E0 ∩ E1 6= ∅. Suppose that the weighted dual graph of

E0 ∪ (
⋃s
i=1Ei) is as in Figure 2.2, where E2

i = −bi, i = 1, 2, . . . , s.

−b1 −b2 −bs· · ·

E1 E2 EsE0

Figure 2.2: The weighed dual graph of
⋃s
i=1Ei

Let d, e be positive integers and d/e = [[b1, . . . , bs]] satisfying gcd(d, e) = 1. Let c0 = d,

c1 = e and let c2, c3, . . . , cs be the integers which are inductively defined by the relation

ci+1 = bici − ci−1 for 1 ≤ i ≤ s − 1, thus cs = 1 by Lemma 2.1(4). Then we have the

following lemma.

Lemma 2.6. [8, Lemma 3.2] Suppose that the coefficient of E0 in ZE is dt, where t is

a positive integer. Then the coefficient of Ei in ZE is given by tci, i = 1, 2, . . . , s. In

particular, ZEEi = 0 for i = 1, 2, . . . , s.

Let d, e and b1, . . . , bs be as above. Let l, µ be integers defined by µd − el = 1 with

0 < µ < d. Then l/µ = [[b1, . . . , bs−1, bs − 1]]. Put γ0 = l, γ1 = µ and define γ2, . . . , γs

inductively by γi = bi−1γi−1 − γi−2 (i = 2, . . . , s), then γs−1 = bs − 1 and γs = 1.

Lemma 2.7. [8, Lemma 3.3] If the coefficient of E0 in ZE is l, then the coefficient of

Ei in ZE is given by γi, 1 ≤ i ≤ s. In particular, ZEEi = 0 for i = 1, . . . , s − 1 and

ZEEs = −1. Furthermore, if
⌊
d
l

⌋
= 1, then bs ≥ 3.

3. Minimal cycles over (W, o)

In this section, we consider the minimal cycles over Brieskorn complete intersection surface

singularity (W, o) defined as in Section 1, and provide a condition for the coincidence

of the fundamental cycle and the minimal cycle on the minimal resolution space. Let

π : (W̃ , E) → (W, o) be the minimal good resolution of (W, o). Let αi := nim, βi := µim

and dm = lcm(a1, . . . , am).

Theorem 3.1. [5, Theorem 4.4] Let g and −c0 denote the genus and the self-intersection

number of E0, respectively. Then the weighted dual graph of the exceptional set E is as in

Figure 3.1, where the invariants are as follows:

2g − 2 = (m− 2)ĝ −
m∑
i=1

ĝi, c0 =

m∑
w=1

ĝwβw
αw

+
a1 · · · am
d2m

,

βw/αw =

[[cw,1, . . . , cw,sw ]]−1 if αw ≥ 2,

0 if αw = 1.
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E0 −c0

[g]

−c1,1

E1,1,1

−c1,2

E1,2,1

−c1,s1

E1,s1,1

−c1,1

E1,1,ĝ1

−c1,2

E1,2,ĝ1

−c1,s1

E1,s1,ĝ1

−cm,1

Em,1,1

−cm,2

Em,2,1

−cm,sm

Em,sm,1

−cm,1

Em,1,ĝm

−cm,2

Em,2,ĝm

−cm,sm

Em,sm,ĝm

· · ·

· · ·

· · ·

· · ·

···

·
·
·

···

Cα1,β1

ĝ1

Cαm,βm

ĝm

Figure 3.1: The weighted dual graph of the exceptional set E.

Theorem 3.2. [5, Theorem 5.1] Let εw,ν = [[cw,ν , . . . , cw,sw ]] if sw > 0, and let

ZE = θ0E0 +
m∑
w=1

sw∑
ν=1

ĝw∑
ξ=1

θw,ν,ξEw,ν,ξ.

Then θ0 and the sequence {θw,ν,ξ} are determined by the following:

θw,0,ξ := θ0 := min (emm, α1 · · ·αm) ,

θw,ν,ξ = dθw,ν−1,ξ/εw,νe (1 ≤ ν ≤ sw).

Theorem 3.3. Let π′ : (Ŵ , E) → (W, o) be the minimal resolution of (W, o). Assume

lcm(a1, . . . , am−1) ≤ am < 2 · lcm(a1, . . . , am−1), then ZE = A on E.

Proof. Following the proof of Lemma 2.3, by Definition 2.4, we need only to prove that

pa(ZE − Ei) < pf (W, o) for any irreducible component Ei of E. By (1.1) and (1.2), we

have

pa(ZE) = pa(ZE − Ei + Ei) = pa(ZE − Ei) + pa(Ei)− 1 + (ZE − Ei)Ei,

which implies that

(3.1) pa(ZE − Ei) = pa(ZE)− pa(Ei) + 1− ZEEi + E2
i .
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Assume that π′ is the minimal good resolution, then E2
0 ≤ −2 (or E2

0 = −1 and g(E0) ≥ 1)

and the weighted dual graph of the minimal good resolution of (W, o) is given as in

Figure 3.1. Let B be any irreducible component of E − E0 −
⋃m
w=1(

⋃ĝw
ξ=1Ew,sw,ξ), by

Lemma 2.1, Theorem 3.2 and (3.1), we have ZEB = 0 and

pa(ZE −B) < pf (W, o).

Since lcm(a1, . . . , am−1) ≤ am, emm ≤ αm ≤ α1 · · ·αm. In particular, in this case, ZE =

ME = (xm)E obtained by Meng-Okuma (cf. [5]), where ME is the maximal ideal cycle on

E. From Theorem 3.2, the coefficient of E0 in ZE is emm. It follows from Theorem 3.2,

Lemma 2.6, Lemma 2.7 and Lemma 2.1(3) that for w ∈ {1, . . . ,m} and ξ ∈ {1, . . . , ĝw},
we have

ZEEw,sw,ξ =

0 if w 6= m,

−1 if w = m.

Since lcm(a1, . . . , am−1) ≤ am < 2 · lcm(a1, . . . , am−1), emm ≤ αm < 2emm, which implies⌊
αm
emm

⌋
= 1. Following Lemma 2.7, we have (Em,sm,ξ)

2 < −2, ξ ∈ {1, . . . , ĝm}. Then by

(3.1), we have

pa(ZE − Ew,sw,ξ) < pf (W, o), w = 1, . . . ,m; ξ = 1, . . . , ĝw.

From Theorem 3.1, we have

−ZE · E0 = c0emm −
m−1∑
w=1

ĝwemmβw
αw

− ĝm(emmβm + 1)

αm

= emm

(
c0 −

m∑
w=1

ĝwβw
αw

)
− ĝm
αm

=
emma1 · · · am

d2m
− ĝm
αm

=
emmĝ

dm
− ĝm
αm

= 0.

Therefore, by (3.1) and the adjunction formula, we also have

pa(ZE − E0) = pa(ZE)− g(E0) + 1 + E2
0 < pf (W, o).

Similar as the proof of Theorem 4.4 in [8], we assume that the minimal resolution

does not coincide the minimal good resolution. Let π := φ ◦ π′ : (W,E)
φ−→ (Ŵ , E)

π′
−→

(W, o) be the minimal good resolution, where φ is a birational morphism obtained by

iterating monoidal transforms centered at a point. We may assume that E has at least

two irreducible components, otherwise ZE = A obviously. It suffices to show that pa(ZE−
Ei) < pf (W, o) for any Ei ⊂ E. Suppose that pa(ZE − Ei) = pf (W, o) = pa(ZE) for some
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Ei ⊂ E. Since ZE = ZE − Ei + Ei is a part of a computation sequence for ZE , it follows

from Lemma 2.5 that Ei is a smooth rational curve and

ZEEi = (ZE − Ei + Ei)Ei = (ZE − Ei)Ei + E2
i = 1 + E2

i .

Since Ei is smooth, g(Ei) = 0. Hence by (1.1) and the adjunction formula K
Ŵ
Ei =

−E2
i + 2g(Ei)− 2 for any Ei ⊂ E, where K

Ŵ
is the canonical divisor on Ŵ , we have

pa(ZE − Ei)− pa(ZE) = 1 +
1

2

(
(ZE − Ei)2 +K

Ŵ
(ZE − Ei)

)
+ 1 +

1

2
(Z2

E +K
Ŵ
ZE)

= −1− ZEEi = 0,

which implies ZEEi = −1. Thus E2
i = −2. Let Ei be the proper transform of Ei

by φ. Then ZEEi = ZEEi = −1 by (0.2.2) in [9], which implies that Ei = Em,sm,ξ,

ξ ∈ {1, . . . , ĝm} and the coefficient of Ei in ZE is 1 by Lemma 2.7. From Proposition 2.9

in [9], the coefficient of Ei in ZE is 1. It follows that there exists only one irreducible

component Ej ⊂ E that intersects Ei transversely, which implies that φ doesn’t contain

any monoidal transform centered at a point of Ei. Then E2
m,sm,ξ

= E
2
i = E2

i = −2, which

contradicts Lemma 2.7. Hence we complete the proof.

In fact, as Tomaru [8] said, in elliptic case, i.e., (a1, a2) = (2, 3) or (2, 4) or (3, 3),

the result of Theorem 3.3 is already known by the classification of minimally elliptic

singularities (cf. [4]).

Let π : (W̃ , E)→ (W, o) be a resolution of (W, o). We define the Q-coefficient cycle K

on E by the relation:

−KEi = K
W̃
Ei

for any irreducible component Ei ⊆ E, where K
W̃

is a canonical divisor of W̃ . We call K

the canonical cycle on E (cf. [10, Definition 2.18]). Since (W, o) is a Gorenstein singularity,

there exists a cycle K such that −K is a canonical divisor of W̃ .

Theorem 3.4. [8, Theorem 1.6] Let π : (W̃ , E) → (W, o) be the minimal good resolution

and A the minimal cycle on E. Suppose pf (W, o) ≥ 2. Then −K ≥ ZE +A.

Example 3.5. Let (W, o) =
{
x21 + x32 + x43 = 0, 2x21 + 3x32 + x54 = 0

}
⊂ C4. Note that

lcm(2, 3, 4) ≮ 5 < 2 · lcm(2, 3, 4). The minimal resolution graph (is also the minimal good
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resolution graph) of (W, o) is given as follows:

−2−3

−3

−3

E3

−2

E4

−3

E5

−2

E6
−2

E0

E2

E7

E1

Then the fundamental cycle ZE = 12E0 + 4E1 + 4E2 + 5E3 + 3E4 + 5E5 + 3E6 + 6E7 and

pf (W, o) = 7. The minimal cycle A = 12E0 + 4E1 + 4E2 + 5E3 + 2E4 + 5E5 + 2E6 + 6E7

and −K = 44E0 +15E1 +15E2 +18E3 +9E4 +18E5 +9E6 +22E7. It is clear that ZE 6= A

and −K > ZE +A.

Example 3.6. Let (W, o) =
{
x21 + x32 + x43 = 0, 3x21 + 5x32 + x134 = 0

}
⊂ C4. Note that

lcm(2, 3, 4) < 13 < 2 · lcm(2, 3, 4). The minimal resolution graph (is also the minimal good

resolution graph) of (W, o) is given as follows:

−2−13

−13

−2

E3

−2

E4

−2

E5

−2

E6
−2

E0

E2

E7

E1

Then we have ZE = A = 12E0 +E1 +E2 + 8E3 + 4E4 + 8E5 + 4E6 + 6E7, pf (W, o) = 11

and −K = 132E0 + 11E1 + 11E2 + 95E3 + 48E4 + 95E5 + 48E6 + 66E7. It is easy to see

that −K > ZE +A.
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