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Global Stability of a Nonlocal Epidemic Model with Delay

Liang Zhang and Jian-Wen Sun*

Abstract. In this work, we investigate the nonlocal time-delayed and reaction-diffusion

epidemic model studied by Guo et al. [Z. Guo, F. Wang and X. Zou, Threshold dy-

namics of an infective disease model with a fixed latent period and non-local infections,

J. Math. Biol. 65 (2012) 1387–410]. In the case that the coefficients are independent of

the spatial variable, we obtain the global stability of the disease-free equilibrium and

the unique endemic equilibrium, which partially answers the open problem proposed

by Guo et al.

1. Introduction

Incorporating a fixed latency and spatial mobility into a disease, Guo et al. [2] derived a

nonlocal and time-delayed reaction-diffusion SIR model

(1.1)



∂u1(t, x)

∂t
= ∇ · [D1(x)∇u1(t, x)] + µ(x)

−d(x)u1(t, x)− r(x)u1(t, x)u2(t, x), t > 0, x ∈ Ω,

∂u2(t, x)

∂t
= ∇ · [D2(x)∇u2(t, x)]− β(x)u2(t, x)

+

∫
Ω

Γ(τ, x, y)r(y)u1(t− τ, y)u2(t− τ, y) dy, t > 0, x ∈ Ω,

[Di(x)∇ui(x, t)] · ν = 0, t > 0, x ∈ ∂Ω.

In (1.1), Ω is a bounded smooth domain, u1(t, x) and u2(t, x) represent the density of

susceptible and infectious individuals at time t and location x. The functions µ(x), d(x)

and r(x) represent the recruiting rate, the natural death rate and transmission rate of the

disease, respectively. β(x) = σI(x) + γI(x) + d(x), where σI(x) and γI(x) represent the

disease-induced mortality rate and the recovery rate in the infective period at location x.

The discrete delay τ means the fixed latent period of the disease, Γ is the Green function of

the operator ∇·[DL(·)∇]−βL(·) associated with the zero flux boundary condition (see [1]),
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and βL(x) = σL(x) + γL(x) + d(x), where σL(x) and γL(x) represent the disease-induced

mortality rate and the recovery rate in the latent period at location x, respectively.

Let X := C(Ω,R2) be the Banach space with the supremum norm ‖·‖X. Let τ ≥ 0 and

Cτ := C([−τ, 0],X) with the norm ‖φ‖ := maxθ∈[−τ,0] ‖φ(θ)‖X, ∀φ ∈ Cτ . Define X+ :=

C(Ω,R2
+) and C+

τ := C([−τ, 0],X+), then (X,X+) and (Cτ , C
+
τ ) are strongly ordered

spaces. For σ > 0 and a given function u(t) : [−τ, σ) → X, we define ut ∈ Cτ by ut(θ) =

u(t + θ), ∀ θ ∈ [−τ, 0]. We know that for any initial function φ ∈ C+
τ , system (1.1) has

a unique solution u(t, ·, φ) ∈ C+
τ on [0,∞) with u0 = φ [2, 12]. Moreover, the semiflow

Φ(t) = ut(·) : C+
τ → C+

τ generated by (1.1), i.e.,

(Φ(t)φ)(θ, x) = u(t+ θ, x, φ), ∀ t ≥ 0, θ ∈ [−τ, 0], x ∈ Ω

has a global compact attractor in C+
τ , ∀ t ≥ 0.

As stated in [2], for spatially heterogeneous system (1.1), the stability of steady state

û(x) is an important but very difficult problem. And we mention that it is also harder to

obtain the uniqueness of û(x). Based on this, the authors further considered the model

that the coefficients are independent of spatial variable:

(1.2)



∂u1(t, x)

∂t
= D1∆u1(t, x) + µ− du1(t, x)− ru1(t, x)u2(t, x), t > 0, x ∈ Ω,

∂u2(t, x)

∂t
= D2∆u2(t, x)− βu2(t, x)

+

∫
Ω

Γ(τ, x, y)ru1(t− τ, y)u2(t− τ, y) dy, t > 0, x ∈ Ω,

∂u1(t, x)

∂ν
=
∂u2(t, x)

∂ν
= 0, t > 0, x ∈ ∂Ω.

To establish threshold dynamics, the authors in [2] defined the spectral radius of the next

generation operator as the basic reproduction numberR0 for the model (1.2), which played

a threshold role. It follows from [2] that the basic reproduction number R0 is given by

(1.3) R0 = e−βLτ
rµ

βd
.

Then one of the main results in [2] is the disease persistence and extinction of (1.2).

Theorem 1.1. Suppose u(t, x, φ) is the solution of system (1.2) with u0 = φ ∈ C+
τ . Then

the following statements hold.

(i) If R0 < 1, then the disease free equilibrium (µ/d, 0) is globally attractive.

(ii) If R0 > 1, the system (1.2) admits at least one positive steady state (endemic steady

state), and there exists an η > 0 such that for any φ ∈ C+
τ with φ2(0, ·) 6≡ 0, we have

lim inf
t→∞

ui(t, x) ≥ η, ∀ i = 1, 2

uniformly for all x ∈ Ω.
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Note that the system (1.2) admits a unique positive constant steady state Ê =

(û1, û2). When the demographic function in (1.2) is replaced by the Logistic function

u1(x, t) [c0 − c1u1(x, t)], the mass action infection incidence function is replaced by ru1u2
b0+b2u2

with b0 > 0 and b2 > 0, the authors [2] stated that the stability of û could be obtained by

employing [11, Theorem 4.1(i)] under some conditions on the constant parameters. When

b2 = 0, that is, the mass action infection incidence function is considered, however, these

conditions will not hold and thus [11, Theorem 4.1(i)] does not apply to (1.2).

The objective of this work is to attempt to derive the global stability of the steady state

of (1.2). Our results partially answer the open problem in [2, Section 5] by constructing

the Lyapunov functional for the system (1.2). And when we show the stability of the

steady state, restrictions on the coefficients in (1.2) are never imposed. The rest of this

work is organized as follows. Section 2 is devoted to the proof the stability of the steady

state of (1.2). As a discussion, Section 3 completes this work.

2. Global stability

In this section, motivated by the arguments of [4,6], we discuss the global stability of the

positive constant steady state Ê = (û1, û2) and disease-free equilibrium E0 = (u∗1, 0) =

(µ/d, 0).

Consider the following spatially homogeneous system associated with (1.2). Letting

u(t, x) = u(t) = (u1(t), u2(t)), we have

(2.1)


du1

dt
= µ− du1(t)− ru1(t)u2(t),

du2

dt
= e−βLτru1(t− τ)u2(t− τ)− βu2(t)

with initial condition

(u1(s), u2(s)) = (ϕ1(s), ϕ2(s)) ≥ 0, s ∈ [−τ, 0], ϕ = (ϕ1, ϕ2) ∈ C([−τ, 0],R2), ϕ2(0) > 0.

It is not difficult to see that the basic reproduction number for the system (2.1) is given

by

R∗0 = e−βLτ
rµ

βd
= R0,

and Ê = (û1, û2) =
(
βeβLτ

r , µr−dβe
βLτ

βreβLτ

)
is the unique interior equilibrium of (2.1). At what

follows, motivated by the arguments of [6], we construct a Lyapunov functional of (2.1)

to obtain the global stability of Ê for (2.1). Consider the ordinary differential equation

(2.2)


du1

dt
= µ− du1 − ru1u2,

du2

dt
= e−βLτru1u2 − βu2.
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Notice that (û1, û2) is also the interior equilibrium of (2.2). Let u = (u1, u2), denote by

f(u) the vector field given by (2.2). Define

V0(u) = e−βLτ (u1 − û1 lnu1) + (u2 − û2 lnu2),

an easy calculation from [7] gives that

∇V0(u) · f(u) = e−βLτdû1

(
2− u1

û1
− û1

u1

)
+ e−βLτrû1û2

(
2− u1

û1
− û1

u1

)
.

Denote

V (u,ut) = V0(u) + V1(ut),

where

V1(ut) = e−βLτrû1û2

∫ τ

0
H

(
u1(t− η)u2(t− η)

û1û2

)
dη

and H(s) = s− 1− ln s. Note that V1(ut) ≥ 0 and V1(ut) = 0 if and only if u1(t)u2(t) =

û1û2 identically. By virtue of [2, Theorems 2.1 and 3.1], the solutions of (2.1) is bounded

above and bounded away from zero for large time provided R∗0 > 1 (see also Theo-

rem 1.1(ii)). Thus V is defined for all t ≥ 0. In order to obtain dV
dt along the positive

solution to the system (2.1), we calculate the derivatives of V0 and V1 separately.

dV0(u(t))

dt
= e−βLτ

(
1− û1

u1

)
(µ− du1 − ru1u2)

+

(
1− û2

u2

)(
e−βLτru1(t− τ)u2(t− τ)− βu2

)
= e−βLτ

(
1− û1

u1

)
(µ− du1 − ru1u2) +

(
1− û2

u2

)(
e−βLτru1u2 − βu2

)
+

(
1− û2

u2

)(
e−βLτru1(t− τ)u2(t− τ)− e−βLτru1u2

)
= ∇V0(u) · f(u) +

[
e−βLτru1(t− τ)u2(t− τ)− u2

û2
e−βLτru1(t− τ)u2(t− τ)

− e−βLτru1u2 +
u2

û2
e−βLτru1u2

]
.

In view of the expression of ∇V0(u) · f(u), we have

dV0(u(t))

dt
= e−βLτdû1

(
2− u1

û1
− û1

u1

)
+ e−βLτrû1û2

(
2− u1

û1
− û1

u1

)
+ e−βLτrû1û2

(
u1(t− τ)u2(t− τ)

û1û2
− u1(t− τ)u2(t− τ)

û1u2
− u1u2

û1û2
+
u1

û1

)
= e−βLτdû1

(
2− u1

û1
− û1

u1

)
+ e−βLτrû1û2

(
2− û1

u1
− u1(t− τ)u2(t− τ)

û1u2

)
+ e−βLτrû1û2

(
u1(t− τ)u2(t− τ)

û1û2
− u1u2

û1û2

)
.
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According to [6, inequality (7)], we substitute a1 = u1, a2 = û1u2, b1 = û1, b2 = u1u2,

b′2 = u1(t− τ)u2(t− τ) for n = 2, then there holds

(2.3) 2− û1

u1
− u1(t− τ, x)u2(t− τ, x)

û1u2
+ ln

u1(t− τ, x)u2(t− τ, x)

u1u2
≤ 0.

We continue calculation for the derivative of V0(u):

dV0(u(t))

dt
= e−βLτdû1

(
2− u1

û1
− û1

u1

)
+ e−βLτrû1û2

(
2− û1

u1
− u1(t− τ)u2(t− τ)

û1u2
+ ln

u1(t− τ)u2(t− τ)

u1u2

)
+ e−βLτrû1û2

(
u1(t− τ)u2(t− τ)

û1û2
− u1u2

û1û2
− ln

u1(t− τ)u2(t− τ)

u1u2

)
.

(2.4)

Now we calculate the derivative of V1(ut).

(2.5)
dV1(ut)

dt
= e−βLτrû1û2

(
u1u2

û1û2
− u1(t− τ, x)u2(t− τ, x)

û1û2
+ ln

u1(t− τ)u2(t− τ)

u1u2

)
.

Combining (2.4) and (2.5), we obtain

dV

dt
= e−βLτdû1

(
2− u1

û1
− û1

u1

)
+ e−βLτrû1û2

(
2− û1

u1
− u1(t− τ)u2(t− τ)

û1u2
+ ln

u1(t− τ)u2(t− τ)

u1u2

)
.

Thus, the inequality (2.3) implies that

dV (u,ut)

dt
≤ 0,

which gives that V is a Lyapunov functional. Moreover, dVdt = 0 if and only if u1 = û1 and

u2 = û2. So the largest compact invariant set in Γ̂ =
{

(u1, u2) ∈ C(R+) | dVdt = 0
}

is the

singleton Ê. By [3, Theorem 5.3.1], u→ Ê as t→∞. Then we have the following result

on the global stability of Ê for system (2.1).

Proposition 2.1. For any ϕ = (ϕ1, ϕ2) ∈ C([−τ, 0],R2
+) with ϕ2(0) > 0, let u(t, ϕ) =

(u1(t, ϕ), u2(t, ϕ)) be the solution of system (2.1). If R∗0 > 1, then limt→∞(u1(t), u2(t)) =

(û1, û2).

Now we are in a position to state the main result.

Theorem 2.2. Suppose u(t, x, φ) is the solution of system (1.2) with u0 = φ ∈ C+
τ . If

R0 > 1, for any φ = (φ1, φ2) ∈ C+
τ with φ2(0, ·) 6≡ 0, then u(t, x) tends to Ê as t → ∞

uniformly for x ∈ Ω.
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Proof. With the aid of [2, Lemma 2.3], it follows that for any φ = (φ1, φ2) ∈ C+
τ with

φ2(0, ·) 6≡ 0,

ui(t, x) > 0, ∀ t > 0, x ∈ Ω.

Then we can define

W =

∫
Ω
V (u(t, x),ut(·, x)) dx,

where

V (u(t, x),ut(·, x)) = V0(u(t, x)) + V1(ut(·, x))

= e−βLτ (u1(t, x)− û1 lnu2(t, x)) + (u2(t, x)− û2 lnu2(t, x))

+ e−βLτrû1û2

∫ τ

0
H

(
u1(t− η, x)u2(t− η, x)

û1û2

)
dη.

The derivative of W with respect to time t along the positive solution of (1.2) is

dW (u,ut)

dt
=

∫
Ω

∂V (u,ut)

∂t
dx,

∂V (u,ut)

∂t
= e−βLτ

(
1− û1

u1

)
· ∂u1

∂t
+

(
1− û2

u2

)
· ∂u2

∂t

+ e−βLτrû1û2

(
u1u2

û1û2
− u1(t− τ, x)u2(t− τ, x)

û1û2
+ ln

u1(t− τ, x)u2(t− τ, x)

u1u2

)
= e−βLτ

(
1− û1

u1

)
(D1∆u1 + µ− du1 − ru1u2)

+

(
1− û2

u2

)(
D2∆u2 − βu2 +

∫
Ω

Γ(τ, x, y)ru1(t− τ, y)u2(t− τ, y) dy

)
+ e−βLτrû1û2

(
u1u2

û1û2
− u1(t− τ, x)u2(t− τ, x)

û1û2
+ ln

u1(t− τ, x)u2(t− τ, x)

u1u2

)
= e−βLτ

(
1− û1

u1

)
·D1∆u1 +

(
1− û2

u2

)
·D2∆u2

+ e−βLτ

(
1− û1

u1

)
(µ− du1 − ru1u2)

+

(
1− û2

u2

)(
−βu2 +

∫
Ω

Γ(τ, x, y)ru1(t− τ, y)u2(t− τ, y) dy

)
+ e−βLτrû1û2

(
u1u2

û1û2
− u1(t− τ, x)u2(t− τ, x)

û1û2
+ ln

u1(t− τ, x)u2(t− τ, x)

u1u2

)
.

By using the Neumann boundary conditions and Green’s formula, we have

(2.6)

∫
Ω
e−βLτ

(
1− û1

u1

)
·D1∆u1 dx = −D1e

−βLτ û1

∫
Ω

|∇u1|2

u2
1

dx

and

(2.7)

∫
Ω

(
1− û2

u2

)
·D2∆u2 dx = −D2û2

∫
Ω

|∇u2|2

u2
2

dx.
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Additionally, note that
∫

Ω Γ(τ, x, y) dx =
∫

Ω Γ(τ, x, y) dy = e−βLτ for x, y ∈ Ω. Then∫
Ω

(
1− û2

u2

)(
−βu2 +

∫
Ω

Γ(τ, x, y)ru1(t− τ, y)u2(t− τ, y) dy

)
dx

=

∫
Ω

[(
1− û2

u2

)(
−βu2 + e−βLτru1(t− τ, x)u2(t− τ, x)

)]
dx.

(2.8)

Combing equations (2.6)-(2.8), we obtain

dW

dt
= −

{
D1e

−βLτ û1

∫
Ω

|∇u1|2

u2
1

dx+D2û2

∫
Ω

|∇u2|2

u2
2

dx

}

+

{∫
Ω

[
e−βLτ

(
1− û1

u1

)
(µ− du1 − ru1u2)

+

(
1− û2

u2

)(
−βu2 + e−βLτru1(t− τ, x)u2(t− τ, x)

)
+ e−βLτrû1û2

(
u1u2

û1û2
− u1(t− τ, x)u2(t− τ, x)

û1û2
+ ln

u1(t− τ, x)u2(t− τ, x)

u1u2

)]
dx

}
:= M1 +M2.

Clearly, M1 ≤ 0. By similar arguments to the proof of Proposition 2.1, we have M2 ≤ 0

and M2 = 0 if and only if u = Ê. Thus, dW
dt ≤ 0 and dW

dt < 0, if u 6= Ê. Note that u is

bounded. Then by a similar proof to [5, Lemma 2.1], it follows that ui and uit, i = 1, 2

are bounded in C1 (see also [9]). Since Γ :=
{
u ∈ C1([0,∞)× Ω)

∣∣ dW (u,ut)
dt = 0

}
is just{

Ê
}

, applying a similar argument to the proof of [10, Theorem 2], we obtain ut → 0

uniformly. This complete the proof.

In the rest of this section, we discuss the global stability of the disease-free equilibrium

E0 = (u∗1, 0). Note that the global stability of E0 for system (1.2) is just a special case

in [2, Theorem 3.1(i)] when R0 < 1. However, we provide a distinct method to prove the

global stability of E0, which is valid for R0 ≤ 1.

Theorem 2.3. Suppose u(t, x, φ) is the solution of system (1.2) with u0 = φ ∈ C+
τ . If

R0 ≤ 1, then the disease free equilibrium E0 = (u∗1, 0) is globally stable in C+
τ .

Proof. Note that for any φ ∈ C+
τ , the solutions of (1.2) satisfy

u1(t, x) > 0, u2(t, x) ≥ 0, ∀ t > 0, x ∈ Ω.

We construct the following Lyapunov functional

W ′ =

∫
Ω

{
e−βLτΨ

(
u1(t, x)

u∗1

)
+ u2(t, x) + e−βLτr

∫ t

t−τ
u1(s, x)u2(s, x) ds

}
dx,
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where Ψ(z) = z−1−ln z, z ∈ R+. Calculating the time derivative of W ′ along the solution

of system (1.2), we get

dW ′

dt
=

∫
Ω

[
e−βLτ

(
1− u∗1

u1

)
(µ− du1 − ru1u2)

]
dx− e−βLτu∗1

∫
Ω

|∇u1|2

u2
1

dx

+

∫
Ω

[∫
Ω

Γ(τ, x, y)ru1(t− τ, y)u2(t− τ, y) dy − βu2

]
dx

+ e−βLτr

∫
Ω
u1u2 dx− e−βLτr

∫
Ω
u1(t− τ, x)u2(t− τ, x) dx

= −e−βLτ
∫

Ω

[
d

(u1 − u∗1)2

u1
+ ru1u2 − ru∗1u2

]
dx− e−βLτu∗1

∫
Ω

|∇u1|2

u2
1

dx

+ e−βLτ
∫

Ω
ru1(t− τ, x)u2(t− τ, x) dx− e−βLτ

∫
Ω
βu2 dx

+ e−βLτ
∫

Ω
ru1u2 dx− e−βLτ

∫
Ω
ru1(t− τ, x)u2(t− τ, x) dx

= −e−βLτd
∫

Ω

(u1 − u∗1)2

u1
dx+

∫
Ω
βu2

[
e−βLτ

ru∗1
β
− 1

]
dx− e−βLτu∗1

∫
Ω

|∇u1|2

u2
1

dx.

It then follows from (1.3) that

dW ′

dt
= −e−βLτd

∫
Ω

(u1 − u∗1)2

u1
dx+

∫
Ω
βu2(R0 − 1) dx− e−βLτu∗1

∫
Ω

|∇u1|2

u2
1

dx.

Since R0 ≤ 1, we have dW ′

dt ≤ 0. It is easy to see that dW ′

dt = 0 if u1 = u∗1 and u2(R0 −
1) = 0. If R0 = 1, then the first equation in (1.2) implies that u2 = 0. Thus the

set Γ̂ =
{
u ∈ C1([0,∞)× Ω)

∣∣ dW ′(u,ut)
dt = 0

}
is just the singleton E0. As mentioned in

Theorem 2.2, ui and uit, i = 1, 2 are bounded in C1. Hence, by applying a similar argument

to the proof of [10, Theorem 2], we obtain that ut → E0 uniformly. This completes the

proof.

3. Discussion

Generally, the study of the global stability of steady states for differential equation models

is an important and difficult problem for non-local and time-delayed reaction-diffusion

models. In [11], the fluctuation method is used to establish the global attractivity of the

positive constant steady state for a spatially homogeneous reaction-diffusion predator-prey

model with time-delayed and nonlocal effect. However, it holds under some restriction

on the constant parameters of the model system, which leads to unavailablity of [11,

Theorem 4.1(i)] for system (1.2) if R0 > 1. In this paper, by constructing the modified

Lyapunov functional, we get the global stability of the positive constant steady state of

system (1.2) if R0 > 1. Furthermore, the global stability of the disease-free equilibrium
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is obtained by constructing suitable Lyapunov functional if R0 ≤ 1, which seems to be a

weaker condition than it in Guo et al. [2].

For the epidemic model with nonlinear incidence function

(3.1)

∂u1(t, x)

∂t
= D1∆u1(t, x) + µ− du1(t, x)− ru1(t, x)

u2(t, x)

b0 + b2u2(t, x)
, t > 0, x ∈ Ω,

∂u2(t, x)

∂t
= D2∆u2(t, x)− βu2(t, x)

+

∫
Ω

Γ(τ, x, y)ru1(t− τ, y)
u2(t− τ, y)

b0 + b2u2(t− τ, y)
dy, t > 0, x ∈ Ω,

∂u1(t, x)

∂n
=
∂u2(t, x)

∂n
= 0, t > 0, x ∈ ∂Ω,

if b2 = 0, system (3.1) degenerate into system (1.2). If b2 > 0, it is easy to obtain a

unique positive constant steady state Ê = (û1, û2) when R0 > 1. To establish the global

stability of û, we construct suitable Lyapunov functional through the following ordinary

differential equation

(3.2)


du1

dt
= µ− du1 − ru1g(u2),

du2

dt
= e−βLτru1g(u2)− βu2,

where g(u2) = u2
b0+b2u2

. Note that Ê is also the unique positive steady state of system (3.2).

Similar to Section 2, we define V0 by

V0(u) = e−βLτ (u1 − û1 lnu1) + (u2 − û2 lnu2).

By Korobeinikov [8], ∇V0(u) · f(u) can be calculated as follows

∇V0(u) · f(u) = e−βLτdû1

(
2− u1

û1
− û1

u1

)
+ e−βLτrû1g(û2)

(
3− u1

û1
− u1û2g(u2)

û1u2g(û2)
− u2g(û2)

û2g(u2)

)
+ e−βLτrû1g(û2)

(
u2g(û2)

û2g(u2)
− 1− u2

û2
+
g(u2)

g(û2)

)
.

To deal with the delay term, we introduce V1(ut) by

V1(ut) =

∫ τ

0
H

(
u1(t− η)u2(t− η)

û1û2

)
dη,

where H(s) = s− 1− ln s. Let

V (u,ut) = V0(u) + e−βLτrû1g(û2)V1(ut).

So we have the following Lyapunov functional for the model (3.1)

W =

∫
Ω
V (u(t, x),ut(·, x)) dx.
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Applying similar method as in Section 2 for dealing with calculating the time derivative

of W along the solution of system (3.1), we can obtain the global stability of Ê for sys-

tem (3.1) if R0 > 1. Although we have never extended the method in [11, Theorem 4.1(i)]

to obtain the global stability of the steady state of (3.1), from the above, our method is

not dependent of the restriction on the constant parameters.
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