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A Heat Conduction Problem on Some Semi-infinite Regions

Jong-Yi Chen and Yunshyong Chow*

Abstract. An infinite homogeneous d-dimensional medium initially is at zero tem-

perature. A heat impulse is applied at the origin, raising the temperature there to

a value greater than a constant value u0 > 0. The temperature at the origin then

decays, and when it reaches u0, another equal-sized heat impulse is applied at time

t1. Subsequent equal-sized heat impulses are applied at the origin at times tn, n ≥ 2,

when the temperature there has decayed to u0. The waiting-time sequence {tn−tn−1}
can be defined recursively by a difference equation and its asymptotic behavior was

first proposed as a conjecture by Myshkis in 1997.

In this paper we study the same heating-time problem set on semi-infinite regions

[−L,L]×R and {(x, y) : x2 + y2 ≤ L}×R with insulated boundary condition and all

actions taking place at some point p which needs not be the origin.

1. Introduction

Myshkis [6] studied the following heat conduction problem: let u(x, t) be the temperature

at position x = (x1, x2, . . . , xd) and time t of a homogeneous medium filling up the whole

Rd. Suppose u ≡ 0 at t = 0 and a heat impulse of size b is applied at x = 0. A heat

impulse of the same size is applied again at x = 0 at time t1 when u(0, t1) = u0, i.e., when

the temperature at x = 0 decreases to a given value u0 > 0. This process is repeated

indefinitely.

Denote by t0 = 0, t1, t2, . . . the sequence of consecutive times that a heat impulse of

size b is applied at x = 0. By solving the heat equation

(1.1)


∂u

∂t
= a ·

d∑
i=1

∂2u

∂x2
i

,

u(x, t+n−1) = u(x, tn−1) + b · δ0(x),

where a is the heat conduction coefficient of the medium and δ0(x) the Dirac function at

x = 0, it is easy to show by superposition principle that for n ≥ 0 and tn−1 < t ≤ tn,

u(x, t) is given by
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(1.2) u(x, t) = b

n−1∑
j=0

f(x, t− tj).

Here f(x, t) =
(

1
4πat

)d/2
exp

(
−
∑d
i=1 x

2
i

4at

)
is the fundamental solution to the heat equation

(1.1) above. The heating condition

(1.3) u(0, tn) = u0 for n ≥ 1

then implies

(1.4) u0 = u(0, tn) = b

n−1∑
j=0

f(0, tn − tj) = b

n−1∑
j=0

(
1

4πa(tn − tj)

)d/2
.

For j ≥ 1, define τj = 4πa(tj − tj−1)(u0/b)
2/d as the normalized waiting time between

two consecutive heating times tj−1 and tj . By a simple computation (1.4) can be rewritten

as

(1.5) τ1 = 1 and

n∑
j=1

 n∑
s=j

τs

−d/2 = 1 for n ≥ 2.

The sequence {τn} is thus recursively defined. Myshkis [6] conjectured that {τn} is in-

creasing and τn/n ≈ constant for d = 1. The following is known.

Theorem 1.1. [1,5] Let d ∈ N. The waiting-time sequence {τn} given in (1.5) is increas-

ing and satisfies

(i) limn τn/n = π2/2 for d = 1,

(ii) limn τn/log n = 1 for d = 2,

(iii) limn τn = {ζ(d/2)}2/d for d ≥ 3.

Here ζ(s) ≡
∑∞

k=1 k
−s is the Riemann-Zeta function.

Since 4πa(u0/b)
2/dtn =

∑n
s=1 τs, we get easily the following result.

Theorem 1.2. The heating-time sequence {tn : n ≥ 0} recursively defined by the heat

equation (1.1) and the heating condition (1.3) satisfies:

(i) lim
n

tn
n2

=
π

16a

(
b

u0

)2

for d = 1,

(ii) lim
n

tn
n log n

=
1

4πa

(
b

u0

)
for d = 2,
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(iii) lim
n

tn
n

=
1

4πa

(
bζ(d2)

u0

) 2
d

for d ≥ 3.

In particular, the conduction coefficient a can be determined without ever leaving the

origin x = 0 if one knows the impulse size b, the threshold temperature u0 and the heating

times t0 = 0, t1, t2, t3, . . ..

In this paper we will study the same heating problem, but set on a semi-infinite region

with insulated boundary condition and all actions taking place at point p which needs

not be the origin. Two particular regions considered here are a slab in R2 and an infinite

cylinder in R3 respectively. Let

(1.6) D1 = [−L,L]× R and D2 =
{

(x, y) : x2 + y2 ≤ L2
}
× R.

By symmetry we may set p = (µ, 0) for D1 and p = (µ, 0, 0) for D2 respectively. As

above, let t0 = 0, t1, t2, . . . the sequence of consecutive times that a heat impulse of size b

is applied at p. For tn−1 < t < tn, the temperature function u satisfies the following heat

equation

(1.7)


∂u

∂t
(x, t) = a ·∆u(x, t) for (x, t) ∈Dj × R+,

∂u

∂n
(x, t)

∣∣∣∣
∂Dj

= 0 and u(x, t+n−1) = u(x, tn−1) + b · δp(x).

Then tn is determined by the heating condition

(1.8) u(p, tn) = u0 for n ≥ 1.

Equation (1.2) still holds except the fundamental solution f changes. In both cases, we

require

(1.9) f(·, t) is bounded for any t > 0 and lim
t→∞
‖f(·, t)‖∞ = 0.

We start with D1. The method of separation of variables and the superposition prin-

ciple imply

(1.10) f(x, y, t) =

∫ ∞
−∞

dβ

∞∑
m=0

cm(β)eıβye
−a
(
m2π2

4L2 +β2
)
t · cos

mπ(x+ L)

2L
.

Using the impulse condition f(x, 0+) = δµ(x)δ0(y), we can verify easily that

(1.11) cm(β) =
2− δm,0

4πL
cos

mπ(µ+ L)

2L
, which is independent of β.

Here, δm,0 is the well-known Kronecker symbol. Putting it back to (1.10) and integrating

out β, we get [7]

f(x, y, t) =
e−

y2

4at

4L
√
πat

∞∑
m=0

(2− δm,0) cos
mπ(µ+ L)

2L
cos

mπ(x+ L)

2L
e−

am2π2t
4L2 .
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Here and in the derivation of (1.11) we have used the following formulas

(1.12)

∫ ∞
−∞

eıβy−aβ
2t dβ =

√
πe−

y2

4at

√
at

and

∫ ∞
−∞

eı(β−β
′)y dy = 2πδ0(β − β′)

from the inverse Fourier transform. Let v(t) = f(µ, 0, t). Then

(1.13) v(t) =
1

4L
√
πat

∞∑
m=0

(2− δm,0) cos2 mπ(µ+ L)

2L
· e−

am2π2t
4L2 .

The heating condition (1.8) then implies that for n ≥ 1,

(1.14) u0 = u(µ, 0, tn) = b
n−1∑
j=0

f(µ, 0, tn − tj) = b

n−1∑
j=0

v(tn − tj).

Remember t0 = 0. This is the defining recursive relation for the heating times {tn, n ≥ 0}
of (1.7) set in D1.

As to D2 =
{

(x, y) : x2 + y2 ≤ L
}
× R ⊆ R3, its fundamental solution f to (1.7) can

be derived similarly. Using the cylindrical coordinate (r, θ, z) and symmetry, we expect f

on D2 to be independent of θ. Hence,

(1.15)
∂f

∂t
= a

(
∂2f

∂r2
+

1

r

∂f

∂r
+
∂2f

∂z2

)
for 0 ≤ r < L with

∂f

∂r

∣∣∣∣
r=L

= 0.

By the method of separation of variables, we seek for particular solutions to (1.15) in the

form R(r)Z(z)T (t). Substituting into (1.15), we get

(1.16)

R′′(r) + 1
rR
′(r) + α2R(r) = 0 and R′(L) = 0,

Z ′′(z) + β2Z(z) = 0 and T ′(t) = −a(α2 + β2)T (t),

where α, β are real constants. Hence, Z(z) = eıβz, T (t) = e−a(α2+β2)t and R(r) = J0(αr).

Here Jn means the Bessel function of order n. Note that the Weber function Y0(αr) does

not appear as R(r) is required to be continuous at r = 0. The insulated boundary condition

in (1.16) implies that α satisfies J ′0(αL) = 0. Note that J ′0(z) = −J1(z), J1(0) = 0 and

J1(−z) = −J1(z). It is well-known [8] that all the zeros of J1(z) are real and simple. Let

S = {λ0 = 0 < λ1 < λ2 < · · ·}

be all the nonnegative zeros of J1(z). Then R(r) = J0(λr/L) with λ ∈ S. By the

superposition principle,

(1.17) f(r, θ, z, t) =

∫ ∞
−∞

dβ
∞∑
k=0

ck(β)eıβze
−a
(
λ2k
L2 +β2

)
t
J0

(
λkr

L

)
,
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where the constant ck(β) is to be determined by the impulse condition

(1.18) δµ(x)δ0(y)δ0(z) = f(r, θ, z, 0+) =

∫ ∞
−∞

dβ
∞∑
k=0

ck(β)eıβzJ0

(
λkr

L

)
.

Multiplying both sides of (1.18) by exp(−ıβ′z) and then integrating over z,

(1.19) δµ(x)δ0(y) = 2π

∞∑
k=0

ck(β
′)J0

(
λkr

L

)
,

where the second formula in (1.12) was used. Now we multiply both sides of (1.19)

by J0(λ`r/L) and then integrate over
{

(x, y) : x2 + y2 ≤ L
}

. First changing to polar

coordinate (r, θ) for the right-hand side integral and then using the following orthogonal

relation for Dini’s expansion [8, p. 580]∫ L

0
rJ0

(
λkr

L

)
J0

(
λ`r

L

)
dr =

L2

2
J2

0 (λk) · δk,`,

we obtain J0(λ`µ/L) = 2π2L2c`(β
′)J2

0 (λ`). Hence,

ck(β
′) =

J0(λkµL )

2π2L2J2
0 (λk)

, which is independent of β′.

Putting it back to (1.17) and repeating the same procedure as in D1 case,

f(r, θ, z, t) =
1

πL2
√

4πat
e−

z2

4at

∞∑
k=0

J0(λkµL )J0(λkrL )

J2
0 (λk)

e−
aλ2kt

L2 .

This is the fundamental solution to (1.15). Let w(t) = f(p, t). Then

(1.20) w(t) =
1

πL2
√

4πat

∞∑
k=0

J2
0 (λkµL )

J2
0 (λk)

e−
aλ2kt

L2 .

Note that J0(λk) 6= 0. The heating condition (1.8) then implies that

(1.21) u0 = u(p, tn) = b
n−1∑
j=0

f(p, tn − tj) = b
n−1∑
j=0

w(tn − tj) for n ≥ 1,

which is the defining recursive relation for the heating times {tn, n ≥ 0} of (1.7) set on

D2.

In comparison with (1.4), the heating times problem for semi-infinite regions D1 and

D2 is more complicated than that for an infinite rod. It seems an awful task to verify the

monotonicity of the waiting-time sequence {tn+1 − tn;n ≥ 0} defined in (1.14) and (1.21).

Fortunately, this can be done by using a result in [2], which can be applied to many similar

problems in auto-regulated systems. Moreover, we will show that lim(tn+1 − tn) = ∞.

Since λ0 = 0 and J0(0) = 1, the first term 1 of the infinite series in both (1.13) and (1.20)

is the leading term as t → ∞. By using limn(tn − tj) = ∞, for 0 ≤ j < n, to ignore all

non-leading terms, both difference equations (1.14) and (1.21) look like (1.4) with d = 1.

The following result, similar to Theorem 1.2(i), will be proved in Section 2.
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Theorem 1.3. For the heating times {tn : n ≥ 0} recursively defined by the heat equation

(1.7) and the heating condition (1.8), the waiting-time sequence {tn+1 − tn : n ≥ 0} is

increasing. Moreover,

(1.22) lim
n

tn
n2

=
π

16a

(
b

u0γj

)2

,

where, depending on j = 1 or 2, γj = 2L or πL2 and is the cross-section area of the

semi-infinite region Dj given in (1.6).

When viewed from a faraway place, each Dj looks like an infinite rod. It is therefore

expected that the order estimate of {tn} in (1.22) is consistent with that in Theorem 1.2(i),

even if the temperature measurement is taken at a point different from the explosion point.

See [4]. Certainly, constants b, u0 and a should appear on the right-hand side of (1.22).

The factor γj is of interest as it is the cross-section area of Dj. We believe (1.22) holds

for general regions like G× R, where G is a smooth bounded domain in Rd−1.

In contrast with the remark after Theorem 1.2, (1.22) is less satisfactory from the

physical viewpoint as it fails to determine the conduction coefficient a which is now mixed

up with the cross-section area γj of the semi-infinite region Dj . Moreover, it is independent

of the parameter µ in the action site p. We wonder whether there is some way to determine

the conduction coefficient a, the parameter µ and the geometric quantity γj from the heat-

time sequence {tn}.
Finally we remark that Theorem 1.3 is proved by modifying the method used in [5].

We first show that the waiting-time sequence {tn+1 − tn;n ≥ 0} is increasing. By using

some inequality shown in Lemma 2.2 below, we obtain that lim(tn+1 − tn)/n exists by

verifying lim inf(tn+1 − tn)/n = lim sup(tn+1 − tn)/n. It is then easy to find the limiting

constant from the defining recursive formulas (1.14) and (1.21) respectively.

2. Proof of Theorem 1.3

For j ≥ 1, define τj = tj − tj−1 as the waiting time between two consecutive heatings. We

first show {τn : n ≥ 1} is increasing via the following result.

Lemma 2.1. [2] Let sequence {τn} be recursively defined by

(2.1)

n∑
j=1

g

 n∑
s=j

τs

 = 1 for n ≥ 1,

where g is a continuous, strictly decreasing function on (0,∞) with g(0+) ≥ 1 and g(∞) =

0. If log g ∈ C1 and is convex, then the sequence {τn} is increasing. Moreover, lim τn =

β < ∞ iff
∑∞

n=1 g(n) < ∞. In that case, the constant β is uniquely determined by the

equation
∑∞

n=1 g(nβ) = 1.
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Since tn − tj =
∑n

s=j+1 τs, both the difference equations (1.14) for D1 and (1.21) for

D2 can be rewritten in the form of (2.1) with

(2.2) g(t) =

∞∑
k=0

gk(t), where gk(t) = ckt
−1/2e−dkt

and all the constants ck and dk are positive except d0 = 0. In particular,

(2.3) c0 =


b

2Lu0

√
4πa

for D1,

b

πL2u0

√
4πa

for D2.

Note that g(∞) = 0 by (1.9). For each k ≥ 0, gk is strictly decreasing on (0,∞) as g′k < 0.

Hence, g is strictly decreasing as well. It remains to show that log g is convex on (0,∞).

First, each log gk is convex as

(2.4)
g′′kgk − g′k

2

g2
k

= (log gk)
′′ =

1

2
t−2 > 0.

Since g′′k(t) = gk(t)
[
d2
k + dk

1
t + 3

4t2

]
> 0, it follows from (2.4) and Cauchy-Schwarz in-

equality that (gk + gj)
′′(gk + gj)− (gk + gj)

′2 is no less than

g′′kgj + g′′j gk − 2g′kg
′
j ≥ 2

√
g′′kgjg

′′
j gk − 2g′kg

′
j ≥ 2(|g′kg′j | − g′kg′j) ≥ 0.

Hence, log(gk+gj) is convex on (0,∞) and then so does log (
∑m

k=0 gk). Because
∑m

k=0 gk ↑
g, log g is convex as desired. Moreover,

∑∞
n=0 g(n) ≥

∑∞
n=0 g0(n) =

∑∞
n=0 c0n

−1/2 = ∞.

We have from Lemma 2.1 that

(2.5) {τn} is an increasing sequence and lim
n→∞

τn =∞.

In order to show (1.22), we need to find an estimate for τn better than (2.5). In fact,

we claim that under (2.1) and (2.2),

(2.6) lim
n→∞

τn
n

=
π2c2

0

2
,

where c0 is given in (2.3). Then (1.22) follows easily by using tn =
∑n

s=1 τs.

We are going to mimic the proof in Theorem 1.1(i), where the following inequality

plays a crucial role:

(2.7)
n∑
j=1

 n∑
s=j

s

−1/2

≤
n+1∑
j=1

n+1∑
s=j

s

−1/2

for n ≥ 1.

The required counterpart for the present case is stated as follows. Its proof is left to the

end of this section.
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Lemma 2.2. Let g be as given in (2.1) and (2.2).

(i) For n ≥ 1,
∑n+1

j=1

(∑n+1
s=j s

)−1/2
−
∑n

j=1

(∑n
s=j s

)−1/2
≥ 1/(12n2).

(ii) For any c > 0, there exists an integer n0 such that
{∑n

j=1 g(c
∑n

s=j s)
}

is an in-

creasing sequence in n for n ≥ n0.

Assume temporarily that Lemma 2.2 holds. Let T̃ kj =
∑k

s=j τs, T
k
j =

∑k
s=j s and for

any c > 0,

(2.8) Sc =
{
k ∈ N : k ≥ n0 and T̃ kj ≥ c T kj for 1 ≤ j ≤ k

}
,

where n0 is given in Lemma 2.2(ii). We now verify (2.6) in the following three steps by

modifying the proof of Theorem 1.1(i) in [5]:

(a) If n ∈ Sc then m ∈ Sc for all m ≥ n.

(b) lim inf τn/n ≥ sup {c > 0 : Sc 6= ∅} ≥ lim sup τn/n. Hence, limn τn/n exists in (0,∞].

(c) lim τn/n = π2c2
0/2.

Step (a). It suffices to show n+1 ∈ Sc as we will have successively n+2 ∈ Sc, n+3 ∈
Sc, . . ., and so on. Since n ∈ Sc by assumption, (2.8) shows that

(2.9) T̃nj ≥ c Tnj holds for 1 ≤ j ≤ n.

it suffices to show that T̃n+1
n+1 = τn+1 ≥ c(n+ 1) = c Tn+1

n+1 . Adding it to (2.9), we will get

T̃n+1
j ≥ c Tn+1

j for 1 ≤ j ≤ n as well and then n+ 1 ∈ Sc. Suppose the contrary. So

(2.10) τn+1 < c(n+ 1) and then g(c(n+ 1)) < g(τn+1)

as g is strictly decreasing on (0,∞). By (2.1), g(τn+1) = 1 −
∑n

1 g(T̃n+1
j ) =

∑n
1 g(T̃nj ) −

g(T̃n+1
j ). Using (2.10),

(2.11) g(τn+1) =
n∑
1

∫ T̃n+1
j

T̃nj

∣∣g′(t)∣∣ dt ≤ n∑
1

∫ c(n+1)+T̃nj

T̃nj

∣∣g′(t)∣∣ dt.
Because g is convex and g′ < 0 on (0,∞), |g′| is decreasing. For any 0 < x ≤ y and v > 0,

we have

(2.12)

∫ x+v

x

∣∣g′(t)∣∣ dt− ∫ y+v

y

∣∣g′(t)∣∣ dt =

(∫ y

x
−
∫ y+v

x+v

) ∣∣g′(t)∣∣ dt ≥ 0.

Letting x = cTnj , y = T̃nj and v = c(n + 1) in (2.12) and then combining (2.10), (2.11)

and (2.12) together,

g(c(n+ 1)) <
n∑
1

∫ c Tn+1
j

c Tnj

∣∣g′(t)∣∣ dt =
n∑
1

g(c Tnj )− g(c Tn+1
j ).
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Rearranging the terms, we have
∑n

1 g(cTnj ) >
∑n+1

1 g(cTn+1
j ). This contradicts to Lemma

2.2(ii). The proof of Step (a) is thus completed. In particular, τm = T̃mm ≥ cTmm = cm for

all m ≥ n. Hence,

(2.13) lim inf
n

τn/n ≥ sup {c : Sc 6= ∅}
def
= α.

Note that (2.5) implies that Sc 6= ∅ for some c > 0. Hence, α > 0.

Step (b). Once Step (a) is done, Step (b) is routine. It suffices to show

(2.14) α ≥ β def
= lim sup

n
τn/n.

Suppose the contrary that β > α. In the following we only consider β < ∞. The case

β =∞ can be dealt with similarly. By continuity, first choose θ > 1 and then ε > 0 such

that

(2.15) β − αθ > 0 and ((β − ε)− (α+ ε)θ)(θ − 1) ≥ ε.

In particular, β − ε ≥ (α+ ε)θ. From (2.13) and Step (a), there exists n1 ≥ n0 such that

(2.16) T̃mj ≥ (α− ε)Tmj for all m ≥ n1 and 1 ≤ j ≤ m.

By definition of β and (2.5), there is an n > n1 such that

(2.17) τm ≥ τn ≥ (β − ε)n holds for m ≥ n.

We claim that

(2.18) T̃
[θn]
j ≥ (α+ ε)

[θn]∑
s=j

s for all 1 ≤ j ≤ [θn]

which implies Sα+ε 6= φ as [θn] ≥ n ≥ n0. It is a contradiction to (2.13) and thus (2.14)

is verified. Since β − ε ≥ (α+ ε)θ, (2.18) for n ≤ j holds trivially by (2.17). Moreover,

T̃ [θn]
n − (α+ ε)

[θn]∑
s=n

s ≥ ((β − ε)n− (α+ ε)θn)([θn]− n+ 1)

≥ n((β − ε)− (α+ ε)θ)(θ − 1)n ≥ εn2

(2.19)

by (2.15). We have from (2.16) that for 1 ≤ j < n,

(α+ ε)
n−1∑
s=j

s− T̃n−1
j ≤ 2ε

n−1∑
s=j

s ≤ 2ε
n−1∑
s=1

s ≤ εn2.

Adding up with (2.19), (2.18) for 1 ≤ j < n follows immediately. This completes the proof

of (2.18) and thus Step (b) as well. In particular, limn τn/n exists.
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Step (c). Let limn τn/n = α ∈ (0,∞]. Then τn ≈ αn for n no less than some number

M ≥ n0. Hence,

(2.20)
n∑
s=j

τs ≈ α
n∑
s=j

s = α(n+ j)(n− j + 1)/2 ≈ α(n2 − j2)/2 for j ≥M.

By (1.14) and (1.21), we have dk ≥ d1 > 0 = d0 for all k ≥ 1. Obviously, limt→∞ t
4e−dkt/2 =

0. By (2.2) and (1.9) we have that for t large,

(2.21) t4
∞∑
k=1

gk(t) ≤
∞∑
k=1

gk(t/2) ≤ g(t/2)
t→∞−→ 0.

It follows from (2.1), (2.2), (2.5) and (2.21) that

(2.22) 1 ≈
n∑
j=1

g0

 n∑
s=j

τs

 = c0

n∑
j=1

 n∑
s=j

τs

−1/2

,

which is almost the same as (1.5). We proceed as in [5]. Since

max
1≤j<M

(T̃nj )−1/2 ≤ τ−1/2
n

n−→ 0

by (2.5), we get from (2.20) and (2.22) that

1 ≈ c0

√
2

α

n∑
j=L

1

n
√

1− (j/n)2

n−→ c0

√
2

α

∫ 1

0

1√
1− x2

dx =
c0π√

2α
.

It follows that not only α <∞ but also α = (c0π)2/2 as claimed in (2.6).

Proof of Lemma 2.2. Part (i). Let Dn =
∑n

j=1

(∑n
s=j s

)−1/2
. Define

A0 = 0 and Aj =

j∑
s=1

s for j ≥ 1.

By the Binomial Theorem, n∑
s=j

s

−1/2

= (An −Aj−1)−1/2 =
∞∑
k=0

(−1)k
(
−1

2

k

)
Akj−1/A

k+1/2
n .

Hence,

Dn =
n∑
j=1

(An −Aj−1)−1/2 =
∞∑
k=0

(−1)k
(
−1

2

k

) n∑
j=1

Akj−1/A
k+1/2
n

 .
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For each k ≥ 0, the sum inside the bracket above is increasing in n by Lemma 1.2(vii) in

[3]. Since (−1)k
(− 1

2
k

)
> 0 for k ≥ 0, we get (2.7). By keeping only the term k = 0,

Dn+1 −Dn ≥
n+ 1

A
1/2
n+1

− n

A
1/2
n

=
n+ 1√

(n+ 1)(n+ 2)/2
− n√

n(n+ 1)/2

≥
√
n+ 1

n+ 2
−
√

n

n+ 1
=

1
(n+2)(n+1)√
n+1
n+2 +

√
n
n+1

≥ 1

12n2
.

(2.23)

Part (ii). Let Hn =
∑n

j=1 g(c
∑n

s=j s). Since d0 = 0 and all gk in (2.2) are positive,

a simple rearrangement after singling out the function g0 shows Hn+1 ≥ Hn holds if

(2.24) c0(Dn+1 −Dn) ≥
n∑
j=1

∞∑
k=1

gk

c n∑
s=j

s

 .

By (2.21), the right-hand side above is bounded by
∑n

j=1(c
∑n

s=j s)
−4 ≤ n(cn)−4 = c−4n−3

when n is large. In view of (2.23), (2.24) holds for n large. The conclusion follows.
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