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A Heat Conduction Problem on Some Semi-infinite Regions

Jong-Yi Chen and Yunshyong Chow™*

Abstract. An infinite homogeneous d-dimensional medium initially is at zero tem-
perature. A heat impulse is applied at the origin, raising the temperature there to
a value greater than a constant value ug > 0. The temperature at the origin then
decays, and when it reaches ug, another equal-sized heat impulse is applied at time
t1. Subsequent equal-sized heat impulses are applied at the origin at times t,,, n > 2,
when the temperature there has decayed to ug. The waiting-time sequence {t,, —t,—1}
can be defined recursively by a difference equation and its asymptotic behavior was
first proposed as a conjecture by Myshkis in 1997.

In this paper we study the same heating-time problem set on semi-infinite regions
[-L,L] x R and {(z,y) : 22 + y? < L} x R with insulated boundary condition and all

actions taking place at some point p which needs not be the origin.

1. Introduction

Myshkis [6] studied the following heat conduction problem: let u(x,t) be the temperature
at position & = (x1,x2,...,x4) and time ¢ of a homogeneous medium filling up the whole
R?. Suppose u = 0 at t = 0 and a heat impulse of size b is applied at & = 0. A heat
impulse of the same size is applied again at = 0 at time ¢; when u(0,t1) = uy, i.e., when
the temperature at * = 0 decreases to a given value ug > 0. This process is repeated
indefinitely.

Denote by tg = 0,t1,t2,... the sequence of consecutive times that a heat impulse of

size b is applied at = 0. By solving the heat equation

ou " d 9%u
oy W 9.2
(1.1) Ot — Oz

u(z, t:_l) = u(x,tp—1) + b do(x),

where a is the heat conduction coefficient of the medium and dg(x) the Dirac function at
x = 0, it is easy to show by superposition principle that for n > 0 and t,_1 < t < t,,
u(zx, t) is given by
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(1.2) u(x,t) = be(m,t —t5).

Arat 4at

d 2
Here f(x,t) = ( L )d/ 2 exp ( Liz1 7] ) is the fundamental solution to the heat equation
(1.1) above. The heating condition

(1.3) u(0,ty) =ug formn >1

then implies

n—1 n—1 1 d/2
(1.4) ug = u(0,1,) = bjgo F0,tn = 15) = b;ﬂ (AW) -

For j > 1, define 7; = 4ma(t; — t;_1)(uo/b)*/? as the normalized waiting time between
two consecutive heating times ¢;_; and ¢;. By a simple computation (|1.4]) can be rewritten

as
—d/2

(1.5) 71 =1 and Z ZTS =1 forn>2.

The sequence {7,} is thus recursively defined. Myshkis [6] conjectured that {7,} is in-

creasing and 7, /n &~ constant for d = 1. The following is known.

Theorem 1.1. [1,5] Let d € N. The waiting-time sequence {7} given in (L.5)) is increas-

ing and satisfies
(i) lim, 7, /n = 7%/2 for d =1,
(i) limy, 7,/logn =1 for d =2,
(iii) limy, 7 = {C(d/2)}Y? for d > 3.
Here ((s) = > 7o, k™* is the Riemann-Zeta function.
Since 4ma(ug/b)*/ %, = S"_| 75, We get easily the following result.

Theorem 1.2. The heating-time sequence {t, : n > 0} recursively defined by the heat
equation (1.1)) and the heating condition (1.3) satisfies:

2
(1) limt—" = <b> ford=1,

uo

(ii) lim 1 <b>ford:2,

n nlogn_m uo
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dy\ @
(iii) limt—n -1 <W> ford > 3.

n n dma U

In particular, the conduction coefficient a can be determined without ever leaving the
origin = 0 if one knows the impulse size b, the threshold temperature uy and the heating
times tg = 0,11, to, t3, .. ..

In this paper we will study the same heating problem, but set on a semi-infinite region
with insulated boundary condition and all actions taking place at point p which needs
not be the origin. Two particular regions considered here are a slab in R? and an infinite

cylinder in R? respectively. Let
(1.6) D;=[-L,L]xR and Dy={(z,y):2*+y*> < L?} xR.

By symmetry we may set p = (u,0) for Dy and p = (p,0,0) for Do respectively. As
above, let tg = 0,11, t9, ... the sequence of consecutive times that a heat impulse of size b

is applied at p. For t,_1 < t < t,, the temperature function u satisfies the following heat

equation
ou
ot —(z,t) = a- Au(z,t) for (x,t) € D; x R,
1.7
(1.7) g—u(m,t) =0 and u(m,t:_l) = u(x,ty_1) +b-6p(x).
n oD;

Then t,, is determined by the heating condition
(1.8) u(p,t,) =up forn>1.

Equation (1.2)) still holds except the fundamental solution f changes. In both cases, we

require
(1.9) f(-,t) is bounded for any ¢t > 0 and tli}m 1 f(, )]l = 0.

We start with D;. The method of separation of variables and the superposition prin-

ciple imply

(110) f(gj yjt _/ d,B Z Zﬁye_ ( 4L2 +62> COSM'

2L

Using the impulse condition f(z,0") = 6,(2)dy(y), we can verify easily that

2—0mo mm(p+ L)
A1 = .
(1.11) em(B) il cos 5T

Here, 0y, 0 is the well-known Kronecker symbol. Putting it back to (1.10) and integrating
out 3, we get [7]

, which is independent of .

¢ dar mn(p+ L)  mm(x+ L) _ﬁft
f@ ) 4L\/7WZ Jeos T T e o
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Here and in the derivation of (|1.11]) we have used the following formulas

2
oo _Lt o0 ’
(1.12) / ePy=af’t gg — ‘/Teﬁa: and / e B=BW dy = 2760(8 — B)

from the inverse Fourier transform. Let v(t) = f(u,0,¢). Then

2 mT{'('LL + L) am27r2t

1.1 ) (2= Gmo) ?
(1.13) olt) 4L\/ﬁZ 0) oL ¢

The heating condition (|1.8)) then implies that for n > 1,

n—1 n—1
(1.14) uo = u(, 0,tn) =Y f(11,0,tn — ;) =b > _v(tn — ;).
j=0 j=0

Remember ¢y = 0. This is the defining recursive relation for the heating times {¢,,n > 0}
of set in D;.

As to Dy = {(Jr,y) ca? 42 < L} x R C R3, its fundamental solution f to can
be derived similarly. Using the cylindrical coordinate (7,0, z) and symmetry, we expect f
on D5 to be independent of 6. Hence,

0f_a<62f 10f 62f)

(1.15) for 0 <r < L with ? = 0.

T lr=L

ot~ Naz oo T a2

By the method of separation of variables, we seek for particular solutions to ([1.15)) in the
form R(r)Z(z)T'(t). Substituting into (1.15)), we get

R'(r)+ %R’(r) +a?R(r)=0 and R/ (L)=0

(1.16) ) D
Z"(z2)+ °Z(z) =0 and T'(t) = —a(a® + B2)T(t),

where «, 8 are real constants. Hence, Z(z) = €97, T(t) = e~%(@*+5))t and R(r) = Jo(ar).
Here J,, means the Bessel function of order n. Note that the Weber function Yy(ar) does

not appear as R(r) is required to be continuous at = 0. The insulated boundary condition
in (1.16) implies that o satisfies Jj(aL) = 0. Note that Jj(z) = —Ji(2), J1(0) = 0 and
Ji(—z) = —=J1(2). It is well-known [§] that all the zeros of Ji(z) are real and simple. Let

S:{/\0:0<)\1</\2<"'}

be all the nonnegative zeros of Ji(z). Then R(r) = Jo(Ar/L) with A € S. By the

superposition principle,

(1.17) F(r,0,2,t) = / dﬁch lﬁze_“(%%“#)% (A”>

L
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where the constant cx(5) is to be determined by the impulse condition

(1.18) 5#(35)50(3/)(50( )= f(r,0,z, 0"' /_ dﬂzck zBZJO (2@/7‘) .

Multiplying both sides of - 1.18) by exp(— zﬁ’ ) and then integrating over z,

(1.19) 8 —2chk (AW),

where the second formula in was used. Now we multiply both sides of ((1.19)
by Jo(Aer/L) and then integrate over {(:c,y) ca? 4y < L}. First changing to polar
coordinate (r,0) for the right-hand side integral and then using the following orthogonal

relation for Dini’s expansion [8] p. 580]

L 2
ALT Ao L7
/0 TJo( 7 >J(] < I > dr = 9 JO ()\k) 61@,57

we obtain Jo(Agu/L) = 272 L%cy(B')JZ(A\¢). Hence,
Jo(P42)

2021202 (\)

Putting it back to (1.17) and repeating the same procedure as in D case,

cx(B) = which is independent of 3’.

)\
Z HORCE) -t

7TL2\/47TCL J2 (Ak)

This is the fundamental solution to (L.15)). Let w(t) = f(p,t). Then

f(r,0,z,t) =

L
A)

0 02(>‘ kM a)\it
Q 7TL2\/47T(1 Z
Note that Jo(Ax) # 0. The heating condition ) then implies that

n—

(1.20)

—_

(1.21) ug = u(p,ty) = be Dty wa(tn —t;) forn>1,

j=0
which is the defining recursive relation for the heating times {t,,n > 0} of (1.7)) set on
D,.

In comparison with (|1.4)), the heating times problem for semi-infinite regions D and

D5 is more complicated than that for an infinite rod. It seems an awful task to verify the

monotonicity of the waiting-time sequence {t,+1 — tn;n > 0} defined in (1.14]) and (1.21]).

Fortunately, this can be done by using a result in [2], which can be applied to many similar
problems in auto-regulated systems. Moreover, we will show that lim(¢,4+1 — t,) = oo.
Since A\g = 0 and Jy(0) = 1, the first term 1 of the infinite series in both and
is the leading term as t — co. By using lim, (¢, — t;) = oo, for 0 < j < n, to ignore all
non-leading terms, both difference equations (|1.14]) and ([1.21]) look like with d = 1.
The following result, similar to Theorem [I.2)i), will be proved in Section
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Theorem 1.3. For the heating times {t, : n > 0} recursively defined by the heat equation
(1.7) and the heating condition (1.8)), the waiting-time sequence {tp4+1 —tn :n >0} is
increasing. Moreover,

2
(1.22) L < b ) ,

n n2 B @ uoy;

where, depending on j = 1 or 2, «v; = 2L or wL? and is the cross-section area of the
semi-infinite region D given in (1.6)).

When viewed from a faraway place, each D; looks like an infinite rod. It is therefore
expected that the order estimate of {¢,,} in is consistent with that in Theorem [L.2](i),
even if the temperature measurement is taken at a point different from the explosion point.
See |4]. Certainly, constants b, uy and a should appear on the right-hand side of .
The factor «; is of interest as it is the cross-section area of Dj. We believe holds
for general regions like G' x R, where G is a smooth bounded domain in R4,

In contrast with the remark after Theorem is less satisfactory from the
physical viewpoint as it fails to determine the conduction coefficient a which is now mixed
up with the cross-section area 7; of the semi-infinite region D ;. Moreover, it is independent
of the parameter u in the action site p. We wonder whether there is some way to determine
the conduction coefficient a, the parameter ;1 and the geometric quantity «y; from the heat-
time sequence {t,}.

Finally we remark that Theorem is proved by modifying the method used in [5].
We first show that the waiting-time sequence {¢, 1 — t,;n > 0} is increasing. By using
some inequality shown in Lemma below, we obtain that lim(t,4+1 — t,,)/n exists by
verifying liminf(¢, 41 — t,)/n = imsup(t,4+1 — tn)/n. It is then easy to find the limiting

constant from the defining recursive formulas ([1.14)) and ((1.21]) respectively.

2. Proof of Theorem
For j > 1, define 7; = t; —t;_1 as the waiting time between two consecutive heatings. We
first show {7, : n > 1} is increasing via the following result.

Lemma 2.1. [2] Let sequence {1,} be recursively defined by

n n
(2.1) Zg ZTS =1 forn>1,
i=1 \s=j

where g is a continuous, strictly decreasing function on (0, 00) with g(0%) > 1 and g(o0) =
0. Iflogg € C' and is conver, then the sequence {7,} is increasing. Moreover, lim 1, =

B < oo iff Yool g(n) < co. In that case, the constant [ is uniquely determined by the
equation Y o> g(nB) = 1.
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Since t, —t; = > ¢ i, Ts, both the difference equations (L.14) for Dy and (1.21]) for
D5 can be rewritten in the form of (2.1) with

(2.2) g(t) =Y _gr(t), where gy(t) = cxt™'/2e” Nt
k=0

and all the constants c; and dj are positive except dy = 0. In particular,
b
(2.3) co = QLUO\Z{‘%
7L2ugv/4ma

Note that g(oo) = 0 by (1.9). For each k > 0, gy, is strictly decreasing on (0, 00) as g, < 0.

Hence, g is strictly decreasing as well. It remains to show that log g is convex on (0, 00).

for Dy,

for Ds.

First, each log g is convex as

99k — 95, 1
(2.4) % = (log gi)" = §t—2 > 0.

9k
: /" _ 2 1 3 : 3
Since gj/(t) = gr(t) [di + dri + 2] > 0, it follows from (2.4) and Cauchy-Schwarz in-
equality that (gx + g;)" (9 + 95) — (g + g;)"”
9195 + 97 9k — 291,95 > 21/ 919;97 9 — 29197 > 2(191.95] — gkg}) > 0.

Hence, log(gx+g;) is convex on (0, 00) and then so does log (D" gx). Because Y ;" gi T
1/2

is no less than

g, log g is convex as desired. Moreover, > 2 1 g(n) > > > 1 go(n) = > " con~
We have from Lemma [2.1] that

= Q.

(2.5) {7} is an increasing sequence and nh_)rrolo Tp = 00.

In order to show (|1.22]), we need to find an estimate for 7,, better than (2.5)). In fact,
we claim that under (2.1)) and (2.2)),

(2.6) lim " =

where ¢ is given in (2.3). Then (1.22)) follows easily by using t,, = > o 7s.
We are going to mimic the proof in Theorem (i), where the following inequality

plays a crucial role:

n n -1/ n+1l [n+1 -1/
(2.7) Z ZS SZ Zs for n > 1.
=1 \s=j j=1 \s=j3

The required counterpart for the present case is stated as follows. Its proof is left to the

end of this section.
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Lemma 2.2. Let g be as given in and (| .
- —-1/2
() Forn=1, X0 (20 s) ~r (Tys) Tz /0207,

(ii) For any ¢ > 0, there exists an integer ng such that {z;‘:l gled e s)} is an in-

creasing sequence in n for n > ng.

Assume temporarily that Lemma [2.2[ holds. Let Tk Z ;i Tss Tk Zk _; s and for

any ¢ > 0,
(2.8) Se={k €Nk =ngand Tf > eTf for 1 < j <k},

where ng is given in Lemma ii). We now verify (2.6) in the following three steps by
modifying the proof of Theorem 1.1(i) in [5):

(a) If n € S. then m € S, for all m > n.
(b) liminf7,/n > sup{c>0:S. # 0} > limsup7,/n. Hence, lim,, 7,,/n exists in (0, co].
(c) limT,/n = 72c3/2.

Step (a). It suffices to show n+1 € S, as we will have successively n+2 € S.,n+3 €
Se¢, ..., and so on. Since n € S, by assumption, (2.8]) shows that

(2.9) Tj” > ch” holds for 1 < j < n.

it suffices to show that T +1 =Tpt1 > c(n+1) = cTs_tll Adding it to (2.9), we will get
Tj”Jrl > cT;LJrl for 1 < j <n as well and then n+ 1 € S.. Suppose the contrary. So

(2.10) To+1 < c¢(n+1) and then g(c(n+1)) < g(Tn+1)
as g is strictly decreasmg on (0,00). By 1)), g(tn41) =1- 37 g(T”H) =>7 g(f’]”) —
(T;”l). Using (2.10)),
c(n+1) +T"

(2.11) 9(Tni1) Z/ ()] dt < Z/ g/ ()] dt.

Because ¢ is convex and g’ < 0 on (0,00), |¢'| is decreasing. For any 0 < z < y and v > 0,

Tn+1

we have

(2.12) /;+U g ()| dt — /yyﬂ lg'(t)| dt = </:—/1:U) lg'(t)| dt > 0.

Letting z = T}, y = ZIN’]” and v = ¢(n + 1) in (2.12)) and then combining (2.10)), (2.11))
and (2.12) together,

cT"+1
e(n+1)) Z/ 1§/ dt = chTn_ (),
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Rearranging the terms, we have » ) g(cT}") > St g(cT]’f”H). This contradicts to Lemma
(ii). The proof of Step (a) is thus completed. In particular, 7, = T > ¢I"™ = ¢m for

all m > n. Hence,

(2.13) liminf 7, /n > sup {c: S, # 0} ¥ a.

Note that (2.5) implies that S, # () for some ¢ > 0. Hence, a > 0.
Step (b). Once Step (a) is done, Step (b) is routine. It suffices to show

(2.14) a>p 4 Jim sup 7, /n.
n

Suppose the contrary that S > «. In the following we only consider 8 < oco. The case
B8 = oo can be dealt with similarly. By continuity, first choose # > 1 and then € > 0 such
that

(2.15) f—al >0 and ((B—¢)—(a+€)0)(0—1)>c.

In particular, 8 — e > (a + €)f. From and Step (a), there exists n; > ng such that
(2.16) f]m > (a—=e)T;" forallm >mng and 1 < j <m.

By definition of 8 and , there is an n > ny such that

(2.17) Tm > Tn > (B — €)n holds for m > n.

We claim that
(o]
(2.18) ﬂen] > (a+¢) Zs for all 1 < j < [0n]
5=j
which implies So1c # ¢ as [In] > n > ny. It is a contradiction to and thus
is verified. Since § — € > (a + €)0, for n < j holds trivially by (2.17). Moreover,

(0]
T — (o +€) Z s> ((B—€en—(a+e)bn)([fn] —n+1)

S=n

(2.19)
>n((B—€) — (a+e)f)(0 — )n > en’

by (2.15). We have from (2.16|) that for 1 < j < n,
n—1 _ n—1 n—1
(a—l—e)Zs—TJn_l < 2628 < 2628 < en?.
=7 s=j s=1

Adding up with (2.19), (2.18) for 1 < j < n follows immediately. This completes the proof
of (2.18) and thus Step (b) as well. In particular, lim,, 7,,/n exists.
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Step (c). Let lim, 7,/n = a € (0,00]. Then 7, =~ an for n no less than some number
M > ng. Hence,

(2.20) ZTS ~ QZS =an+5)n—-j+1)/2~a(n®—j%)/2 forj>M.

By (1.14)) and (1.21)), we have d, > d; > 0 = dj for all k > 1. Obviously, lim;_, the—drt/2 =
0. By (2.2) and (1.9) we have that for ¢ large,

(2.21) 3 () < D (t/2) < g(t/2) =X 0.
k=1

k=1

It follows from ([2.1)), (2.2), (2.5) and (2.21)) that

(2.22) L= g0 | dom|=cd | Dm]
j=1 s=j j=1 \s=j
which is almost the same as ((1.5)). We proceed as in [5]. Since

max (Tvn)_l/2 <7712 %9
1<j<M 7 - "

by ., we get from (2.20]) and ( - ) that
[2 1 n 2 (11 com
1= coy/— —>co\/7/ dr = :
Oéj_zgnx/l—(j/n)2 aJo V1—2? V2a

It follows that not only a < co but also a = (com)?/2 as claimed in (2.6)).

~1/2
Proof of Lemma 2.2, Part (i). Let D, =37, (Z?:j s) . Define

J
Ap=0 and Aj:Zs for j > 1.

s=1
By the Binomial Theorem,
. ~1/2 o )
ZS _ (An - Aj—l -1/2 _ Z < 2) I/AZJrl/Z'
s=j k=0

Hence,

n o0

Dn:Z(An_A -1/2 _ Z ( 5) ZAk_ Ak+1/2
7=1

j=1 k=0
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For each k > 0, the sum inside the bracket above is increasing in n by Lemma 1.2(vii) in
1
[3]. Since (—l)k(_lf) > 0 for k > 0, we get (2.7). By keeping only the term k = 0,

n+1 n
Dypy1— Dy > T:L/fl - e
B n+1 n
(2.23) \/n+1)(n+2)/2 vn( n+1 )/2

fn+1 (n+2)(n+1)
n+2 n+1 [ntl [ T 12n2
n+2 n+1

Part (ii). Let H, = Y77 , g(c>_¢_;s). Since dyp = 0 and all g in are positive,
a simple rearrangement after singling out the function gg shows H,41 > Hn holds if

(2.24) co(Dny1 — Dp) > Z ng cz

71=1 k=1

By (2.21)), the right-hand side above is bounded by 37, (¢ > 5{_; )™ <n(en) ™t =c 43

s=j

when 7 is large. In view of (2.23)), (2.24) holds for n large. The conclusion follows. O
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