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On the Drinfeld Center of the Category of Comodules over a

Co-quasitriangular Hopf Algebra

Haixing Zhu

Abstract. Let H be a co-quasitriangular Hopf algebra with bijective antipode. We

prove that the Drinfeld center of the category of H-comodules is equivalent to the

category of modules over some braided group. In particular, the equivalence holds not

only for a finite dimensional H, but also for an infinite dimensional one.

1. Introduction

Braided tensor categories have played an important role in various areas such as conformal

field theory, string theory and low-dimensional topology. Some important examples of

braided tensor categories have been constructed by using the theory of Hopf algebras or

quantum groups [4]. For example, there exists the structure of a braided tensor category

in the (co-)representation category of (co-)quasitriangular Hopf algebras (for example,

see [9]).

A categorical construction of a braided tensor category is the well-known Drinfeld’s

center construction, which was given by Drinfeld (unpublished), independently by Joyal

and Street [8] and Majid [11]. In general, one can obtain a braided tensor category Z (C )

from a tensor category C , where Z (C ) is often called the Drinfeld center of C . Drinfeld

centers are very important in the study of braided tensor categories [2,5–7]. For example,

the braided auto-equivalences of Z (C ) were used to classify G-extensions of a given fusion

category [7], and to compute the Brauer group Br(C ) of a braided fusion category [2]. Thus

it would be very interesting to study the Drinfeld center of a (braided) tensor category.

Denote by HM the category of modules over a quasitriangular Hopf algebra (H,R).

To investigate braided auto-equivalences of Z (HM ), we redescribed Z (HM ) in [19] by

showing that Z (HM ) is equivalent to the category HR(HM ) of comodules over some

braided group HR, namely, Z (HM ) ' HR(HM ). Based on this key equivalence, it

was verified that some special braided auto-equivalences can be induced by quantum-

commutative Galois objects and then the Brauer group Br(HM ) was characterized [3,18].
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It is noticed that the notion of co-quasitriangular Hopf algebras was first introduced

in [10] as the dual one of quasitriangular Hopf algebras. Therefore, it would be a natural

idea to take an analogous way to investigate the Drinfeld center Z (MH) of the category

MH of comodules over a co-quasitriangular Hopf algebra (H,σ). An actual but important

problem arises, namely, how to establish the relationship between the Drinfeld center and

the category of comodules over some braided group. When H is finite dimensional, we

have handled it by resorting to the quasitriangular Hopf algebra (H∗, R) (the dual of H)

since the category of H-comodules is equivalent to the category of H∗-modules. Thus

we have Z (MH) ' Z (H∗M ) ' H∗
R(H∗M ). However, when H is infinite dimensional,

it becomes very difficult to obtain such an equivalence because the dual of an infinite-

dimensional Hopf algebra is not a Hopf algebra. To avoid the difficulty, we turn to discuss

the relationship between the Drinfeld center and the category of modules over some braided

group Hσ. We show that there is a braided tensor equivalence between the Drinfeld center

Z (MH) and the category (MH)Hσ of Hσ-modules, i.e.,

Z (MH) ' (MH)Hσ .

In particular, the result not only holds for a finite dimensional H, but also for an infinite

dimensional one. Importantly, the equivalence indicates that the investigation of braided

auto-equivalences of Z (MH) by Galois theory would be, in general, resorted to the study

of Galois co-objects. This is different from the quasitriangular case.

The paper is organized as follows. In Section 2, we recall some necessary definitions

such as a co-quasitriangular Hopf algebra, a Yetter-Drinfeld module and the Drinfeld

center of a tensor category. In Section 3, we verify that there is some braided tensor

equivalence between the Drinfeld center of the category of comodules and the category of

modules over some braided group.

2. Preliminaries

Throughout this paper k is a fixed field. Unless otherwise stated, unadorned tensor prod-

ucts will be over k. For a coalgebra over k, the coproduct will be denoted by ∆. We adopt

Sweedler’s notation for the comultiplication in [15], e.g., ∆(a) = a1 ⊗ a2.
We assume that the reader is familiar with the notion of a (braided) tensor category

and the theory of Hopf algebras [9]. And we make free use of the notions of algebras,

bialgebras and Hopf algebras in a braided tensor category [14]. Throughout this paper a

tensor category always means strict one.

2.1. Braided tensor categories and Drinfeld centers

Definition 2.1. [9, Definition XIII.1.1] Let (C ,⊗, I) be a tensor category. A braiding in

(C ,⊗, I) consists of a family of natural isomorphisms

CU,V : U ⊗ V → V ⊗ U
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defined for all objects U, V of C such that

CU⊗V,W = (CU,W ⊗ idV )(idU ⊗CV,W ),

CU,V⊗W = (idV ⊗CU,W )(CU,V ⊗ idW ),

for all U, V and W of C . A braided tensor category is a tensor category (C ,⊗, I) equipped

with a braiding. In particular, if C−,− is a braiding, then for any object V we have

(idV ⊗CV,V )(CV,V ⊗ idV )(idV ⊗CV,V ) = (CV,V ⊗ idV )(idV ⊗CV,V )(idV ⊗CV,V ).

Namely, CV,V is a solution to the quantum Yang-Baxter equation.

The most fundamental example of a braided tensor category is the Drinfeld center of

a tensor category.

Definition 2.2. Let (C ,⊗, I) be a tensor category. By [9, Sec. XIII.4] the right Drinfeld

center Zr(C ) of the tensor category C is the category, whose objects are pairs (U, ν−,U ),

where U is an object of C and ν−,U is a natural family of isomorphisms, called half-

braidings:

νM,U : M ⊗ U → U ⊗M, ∀M ∈ C

satisfying the Hexagon Axioms. Similarly, one can define the left Drinfeld center of C .

2.2. Co-quasitriangular Hopf algebras

Definition 2.3. A co-quasitriangular Hopf algebra is a pair (H,σ), where H is a Hopf

algebra, and a k-linear map σ : H ⊗H → k satisfies:

(ab, c) = σ(a, c1)σ(b, c2), σ(a, bc) = σ(a1, c)σ(a2, b),

σ(a1, b1)a2b2 = b1a1σ(a2, b2), σ(a, 1) = ε(a) = σ(1, a)

for any a, b, c ∈ H, and there exists σ−1 : H ⊗H → k such that

σ(a1, b1)σ
−1(a2, b2) = ε(a)ε(b) = σ−1(a1, b1)σ(a2, b2)

for all a, b, c ∈ H, where σ−1 is called the inverse of σ, see [9].

In the sequence, (H,σ) will always denote a co-quasitriangular Hopf algebra with a

k-linear map σ.
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2.3. The category of comodules over a Hopf algebra

Let H be a Hopf algebra. Denote by MH the category of right H-comodules. Let M and

N be two right H-comodules. Define the following H-comodule on M ⊗N :

ρR(m⊗ n) = m[0] ⊗ n[0] ⊗m[1]n[1]

for all m ∈ M and n ∈ N . Then we have a tensor category (MH ,⊗, k), where k is the

unit object.

In particular, if H is co-quasitriangular, then MH can be equipped with a braiding C:

CM,N (m⊗ n) = n[0] ⊗m[0]σ(m[1], n[1]), for all m ∈M and n ∈ N,

where M and N are any two objects in MH .

2.4. Yetter-Drinfeld modules and the Drinfeld center

Definition 2.4. [16] Let H be a Hopf algebra. A right H-module M is called a right

Yetter-Drinfeld module if (M,ρ) is a right H-comodule satisfying the following condition:

(2.1) (m · h)[0] ⊗ (m · h)[1] = m[0] · h2 ⊗ S(h1)m[1]h3,

for all h ∈ H and m ∈M . Here ρ(m) = m[0] ⊗m[1] for all m ∈M .

Denote by Y DH
H the category of right Yetter-Drinfeld modules. A Yetter-Drinfeld

morphism is both right H-linear and right H-colinear. If the antipode of H is bijective,

then Y DH
H is a braided tensor category with the braiding given by

CM,N (m⊗ n) = n[0] ⊗m[0] · n[1],

where m ∈M ∈ Y DH
H and n ∈ N ∈ Y DH

H . In particular, if (H,σ) is a co-quasitriangular

Hopf algebra, then every right H-module M is automatically a right Yetter-Drinfeld mod-

ule with the following right action:

m · h = m[0]σ(m[1], h), ∀ m ∈M, h ∈ H.

It is clear that the category MH is a braided tensor subcategory of Y DH
H .

Lemma 2.5. [9, Theorem XIII. 5.1] Let H be a Hopf algebra with bijective antipode. Then

Zr(MH) is equivalent to Y DH
H as a braided tensor category.
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3. The Drinfeld center and the category of modules over a braided group

In this section, let (H,σ) be a co-quasitriangular Hopf algebra. We investigate the rela-

tionship between Yetter-Drinfeld modules and modules over some braided group. We first

recall Majid’s transmutation theory in [13].

Lemma 3.1. [13, Theoremm 4.1] Let (H,σ) be a co-quasitriangular Hopf algebra. Then

there is a Hopf algebra Hσ in the braided tensor category MH , where Hσ = H as a linear

vector space and as an object in MH by

(3.1) ρ(b) = b2 ⊗ S(b1)b3, for all b ∈ Hσ.

The coalgebra structure and unit in Hσ coincide with those of H. The multiplication is

defined by

a ? b = a2b2σ(S(a1)a3, S(b1)),

for all a, b ∈ Hσ. The antipode of Hσ is given by

S(a) = SH(a2)σ(S(a1), a5)σ(S2(a3), a4).

A Hopf algebra in a braided tensor category is usually called a braided group, see

[11, 13]. In the sequel, Hσ will always denote the Hopf algebra Hσ in MH , and be called

braided group.

Many examples of braided groups can be found in [12, 13]. Here we give one simple

example.

Example 3.2. Let k be a field with ch(k) 6= 2. Let H4 be the Sweedler 4-dimensional

Hopf algebra over k. Namely, H4 is generated by two elements g and h satisfying

g2 = 1, h2 = 0, gh+ hg = 0.

The comultiplication, the counit and the antipode are given as follows:

∆(g) = g ⊗ g, ∆(h) = 1⊗ h+ h⊗ g,

ε(g) = 1, S(g) = g, ε(h) = 0, S(h) = gh.

It is known that the co-quasitriangular structure in the basis {1, g, h, gh} is the bilinear

form σ 
1 1 0 0

1 −1 0 0

0 0 α −α

0 0 α α
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Then the braided group H4σ has the following algebraic structure:

g ? h = gh = h ? g, h ? h = α(1− g), g ? g = 1.

The braided group H4σ was discussed in [12].

By [14] a right H-comodule M is called a right Hσ-module in the category MH if

(M,↼) is a right Hσ-module such that ↼ is right H-colinear, i.e.,

(3.2) ρ(m↼ b) = m[0] ↼ b[0] ⊗m[1]b[1], ∀ b ∈ Hσ, m ∈M,

where ρ(b) = b[0] ⊗ b[1] = b2 ⊗ S(b1)b3 (see Lemma 3.1).

Similarly, one can define a left Hσ-module in the category MH . In the sequel, a right

Hσ-module in the category MH will be called a right Hσ-module for short.

Let (M,↼) and (N,↼) be two right Hσ-modules. It is not hard to see that the tensor

product M ⊗N is a right Hσ-module with the right coaction ρ and action ↼:

ρ(m⊗ n) = m[0] ⊗ n[0] ⊗m[1]n[1],

(m⊗ n) ↼ a = m↼ a2 ⊗ n[0] ↼ a4σ(n[1], S(a1)a3),

for all m⊗n ∈M⊗N and a ∈ Hσ. Denote by (MH)Hσ the category of right Hσ-modules.

Here a morphism in (MH)Hσ is both right H-colinear and right Hσ-linear.

By [14] the category (MH)Hσ is a tensor category with the unit object k. Now we

discuss the relationship between right Hσ-modules and Yetter-Drinfeld modules.

Lemma 3.3. Let (H,σ) be a co-quasitriangular Hopf algebra. If (M,↼) is a right Hσ-

module, then M is a right Yetter-Drinfeld module with the following H-module structure

·̃:
m ·̃ a = m[0] ↼ a2σ(m[1], a1),

for all m ∈M and a ∈ H.

Proof. We first verify that (M, ·̃) is a right H-module. For a, b ∈ H, we have:

(m ·̃ a) ·̃ b = [m[0] ↼ a2σ(m[1], a1)] ·̃ b

= [m[0] ↼ a2][0] ↼ b2σ([m[0] ↼ a2][1], b1)σ(m[1], a1)

= [m[0] ↼ a2[0] ] ↼ b2σ(m[1]a2[1] , b1)σ(m[2], a1)

= [m[0] ↼ a3] ↼ b2σ(m[1]S(a2)a4, b1)σ(m[2], a1)

= [m[0] ↼ (a3 ? b2)σ(m[1]S(a2)a4, b1)σ(m[2], a1)

= [m[0] ↼ (a4b3)σ(S(a3)a5, S(b2))σ(m[1]S(a2)a6, b1)σ(m[2], a1)

= [m[0] ↼ (a4b4)σ(S(a3)a5, S(b3))σ(m[1], b1)σ(S(a2)a6, b2)σ(m[2], a1)

= [m[0] ↼ (a2b2)σ(m[1], b1)σ(m[2], a1)

= [m[0] ↼ (a2b2)σ(m[1], a1b1) = m ·̃ (ab).
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It is easy to see that m ·̃ 1 = m.

Now we check that the compatible condition holds. In fact,

ρ(m ·̃ a) = ρ(m[0] ↼ a2)σ(m[1], a1)

= m[0] ↼ a3 ⊗m[1]S(a2)a4σ(m[2], a1)

= m[0] ↼ a5σ(m[1], a4)σ(m[2], S(a3))⊗m[3]S(a2)a6σ(m[4], a1)

= m[0] ·̃ a4σ(m[1], S(a3))⊗m[2]S(a2)a5σ(m[3], a1)

= m[0] ·̃ a4σ(m[2], S(a2))⊗ S(a3)m[1]a5σ(m[3], a1)

= m[0] ·̃ a2 ⊗ S(a1)m[1]a3,

for all m ∈M and a ∈ H.

The following lemma says that the converse of Lemma 3.3 also holds.

Lemma 3.4. Let (H,σ) be a co-quasitriangular Hopf algebra. If (N, ·) is a right Yetter-

Drinfeld module, then N is a right Hσ-module with the following structure ↼̃:

n ↼̃ a = n[0] · a2σ(n[1], S(a1)),

where ρ(n) = n[0] ⊗ n[1] for all n ∈ N , and S is the antipode of H.

Proof. We first check that the action ↼̃ is H-colinear. For all a ∈ Hσ and n ∈ N , we have

ρ(n ↼̃ a) = ρ(n[0] · a2)σ(n[1], S(a1))

= n[0] · a3 ⊗ S(a2)n[1]a4σ(n[2], S(a1))

= n[0] · a3 ⊗ n[2]S(a1)a4σ(n[1], S(a2))

= n[0] ↼̃ a2 ⊗ n[2]S(a1)a3.

Now we show that (N, ↼̃) is a right Hσ-module. For any n ∈ N ,

n ↼̃ (a ? b) = n ↼̃ (a2b2)σ(S(a1)a3, S(b1))

= n[0] · (a3b3)σ(n[1], S(a2b2))σ(S(a1)a4, S(b1))

= n[0] · (a3b3)σ(n[1], S(b2)S(a2))σ(S(a1)a4, S(b1))

= n[0] · (a3b3)σ(n[1], S(a2))σ(n[2], S(b2)))σ(S(a1)a4, S(b1))

= n[0] · (a3b2)σ(n[1], S(a2))σ(n[2]S(a1)a4, S(b1))

= (n[0] · a3) · b2σ(n[2], S(a1))σ(S(a2)n[1]a4, S(b1))

= (n[0] · a2)[0] · b2σ(n[2], S(a1))σ((n[0] · (a2)[1], S(b1))

= (n[0] · a2)[0] ↼̃ bσ(n[1], S(a1)) = (n ↼̃ a) ↼̃ b.

Hence the associativity holds. It is clear that n ↼̃ 1 = n.

Therefore, (N, ↼̃) is a right module over the braided group Hσ.
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Now we formulate the main theorem in this paper.

Theorem 3.5. Let (H,σ) be a co-quasitriangular Hopf algebra. Then there is a tensor

equivalence F from the category (MH)Hσ of right Hσ-modules to the category Y DH
H of

right Yetter-Drinfeld modules:

F : (MH)Hσ → Y DH
H , (M,↼) 7→ (M, ·̃ ),

where ·̃ is defined in Lemma 3.3. The quasi-inverse of F is

G : Y DH
H → (MH)Hσ , (N, ·) 7→ (N, ↼̃),

where ↼̃ is defined in Lemma 3.4.

Proof. We first show that GF(M,↼) = (M,↼) for any object M in (MH)Hσ . It is enough

to verify that m ↼̃ a = m↼ a for all a ∈ Hσ and m ∈M . Indeed,

m ↼̃ a = m[0] ·̃ a2σ(m[1], S(a1))

= m[0] ↼ a3σ(m[1], a2)σ(m[2], S(a1)) = m↼ a.

Next we show that FG(N, ·) = (N, ·) for any object of H
HY D . For all n ∈ N and

h ∈ H,

n ·̃ b = n[0] ↼̃ b2σ(n[1], b1)

= n[0] · b3σ(n[1], S(b2))σ(n[2], b1) = n · b.

Finally, we verify that the triple (G, Id, Id) is a tensor functor. It is clear that G(k) = k.

Note that for any two Yetter-Drinfeld modules U and V , we have the right Hσ-module

structure on G(U)⊗ G(V ):

(u⊗ v) ↼ a = u ↼ a2 ⊗ v[0] ↼ a4σ(v[1], S(a1)a3),

where u ∈ U and v ∈ V . Now we have

(u⊗ v) ↼̃ a = (u[0] ⊗ v[0]) · a2σ(u[1]v[1], S(a1))

= u[0] · a2 ⊗ v[0] · a3σ(u[1]v[1], S(a1))

= u[0] · a3 ⊗ v[0] · a4σ(u[1], S(a2))σ(v[1], S(a1))

= u[0] ↼̃ a2 ⊗ v[0] · a3σ(v[1], S(a1))

= u[0] ↼̃ a2 ⊗ v[0] · a5σ(v[1], a3S(a4))σ(v[2], S(a1))

= u[0] ↼̃ a2 ⊗ v[0] ↼̃ a4σ(v[1], a3)σ(v[2], S(a1))

= u[0] ↼̃ a2 ⊗ v[0] ↼̃ a4σ(v[1], S(a1)a3).

Hence G(U ⊗ V ) = G(U)⊗ G(V ). The other axioms for a tensor functor are obvious.
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Note that the category of Yetter-Drinfeld modules is braided if H has bijective an-

tipode. The equivalence G in Theorem 3.5 induces a braiding in the category of right

Hσ-modules such that the equivalence becomes braided.

Corollary 3.6. Let (H,σ) be a co-quasitriangular Hopf algebra with bijective antipode.

Then the category of right Hσ-modules is a braided tensor category with a braiding C̃ given

by

C̃(u⊗ v) = v[0] ⊗ u[0] ↼ v[2]σ(u[1], v[1]), ∀ u ∈ U, v ∈ V,

where U and V are any two right Hσ-modules. Moreover, the functor G in Theorem 3.5

gives a braided tensor equivalence.

Proof. It is not hard to check that C̃ satisfies the axioms of a braiding, and has the inverse

C ′ defined as follows

C ′(u⊗ v) = v[0] ↼̃ S−1(u[1])⊗ u[0]σ(v[1], S
−1(u[2])),

for all u⊗ v ∈ U ⊗ V , where S−1 denotes the inverse of the antipode S.

Corollary 3.7. Let (H,σ) be a co-quasitriangular Hopf algebra with bijective antipode.

Then the Drinfeld center of the category of right H-comodules is equivalent to the category

of right Hσ-modules with a braiding C̃ in Corollary 3.6 as a braided tensor category.

Proof. Following Corollary 3.6 and Lemma 2.5.

Example 3.8. Let k be a field with ch(k) 6= 2. Let H4 be the Sweedler 4-dimensional

Hopf algebra over k. In Example 3.2 the corresponding braided group H4σ was given.

By Corollary 3.7 the Drinfeld center of the category of H4-comodules is equivalent to the

category of H4σ -modules. This equivalence played crucial role in the computation of the

Brauer group of H4 [17].

Example 3.9. By [1, Example 3.5], we have the infinite dimensional co-quasitriangular

Hopf algebra H. Here H is generated as an algebra by the grouplike element g and the

(1, g)-primitive element x with

gx = −xg, x2 = 0.

The co-quasitriangular strucutre σ of H is defined by

σ(gixj , gtxs) = δs,0δj,0(−1)it.

By Lemma 3.1, we have the braided group Hσ. By Corollary 3.7 the Drinfeld center of

the category of H-comodules is equivalent to the category of Hσ-modules.
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Example 3.10. Let R be a solution of the quantum Yang-Baxter equation. One can

obtain a co-quasitriangular Hopf algebra (H(R), σ) by the celebrated FRT construction

(see [9]). By Corollary 3.7 the Drinfeld center of the category of H(R)-comodules is

equivalent to the category of modules over the braided Hopf algebra H(R)σ.

Remark 3.11. Let (H,σ) be a co-quasitriangular Hopf algebra with bijective antipode. The

equivalence in Corollary 3.7 suggests that the construction of braided auto-equivalences

of the Drinfeld center Z (MH) by braided Galois theory would be, in general, resorted

to the study of some special Galois co-objects. This is different from the quasitriangular

case.

Next we will end this paper by investigating the commutative and cocommutative

case. In the sequel, (H,σ) always denotes a co-quasitriangular Hopf algebra such that H

is commutative and cocommutative. We first consider the braided group Hσ in Lemma 3.1.

Note that H is commutative and cocommutative. We have for all a, b ∈ Hσ

ρ(b) = b[0] ⊗ b[1] = b2 ⊗ S(b1)b3 = b⊗ 1,

a ? b = a2b2σ(S(a1)a3, S(b1)) = ab2σ(1, S(b1)) = ab.

So the right H-coaction ρ of Hσ is trivial and the multiplication of Hσ coincides that with

H. Similarly, one can get S = SH . Thus H = Hσ.

Lemma 3.12. Let (H,σ) be a co-quasitriangular Hopf algebra such that H is commutative

and cocommutative. The category Y DH
H and (MH)Hσ are the same.

Proof. We first have that the compatible condition (1) of a Yetter-Drinfeld module (M,ρ, ·)
reduces to be ρ(m · h) = m[0] · h⊗m[1] for all h ∈ H and m ∈M since

ρ(m · h) = m[0] · h2 ⊗ S(h1)m[1]h3 = m[0] · h2 ⊗ S(h1)h3m[1] = m[0] · h⊗m[1].

At the same time, the compatible condition (3) of a right Hσ-module (N, ρ,↼) becomes

to be

ρ(m↼ b) = m[0] ↼ b[0] ⊗m[1]b[1]

= m[0] ↼ b2 ⊗m[1]S(b1)b3

= m[0] ↼ b⊗m[1]

for all b ∈ Hσ and n ∈ N . Note that H = Hσ. Hence, these two compatible conditions

are the same. Therefore, we have the following identity functor:

Id : Y DH
H = (MH)Hσ , (M,ρ, ·)←→ (M,ρ, ·).
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Corollary 3.13. Let (H,σ) be a co-quasitriangular Hopf algebra with bijective antipode

such that H is commutative and cocommutative. Then the functor G in Theorem 3.5 is a

braided auto-equivalence of the category Y DH
H of Yetter-Drinfeld modules. In particular,

if σ is not trivial (i.e., ε⊗ε), then the functor G is, in general, not trivial (i.e., the identity

functor).

Proof. By Lemma 3.12, Y DH
H = (MH)Hσ . It follows from Corollary 3.6 that the functor

G is a braided auto-equivalence of the category Y DH
H of Yetter-Drinfeld modules. Assume

that σ is not trivial. It is not hard to see that the induced action ↼̃ in Lemma 3.4 is, in

general, not trivial. Thus the functor G is, in general, not the identity functor.

Example 3.14. Let k be a field. Let G be an Abelian group. A function α : G⊗G→ k∗

is a bicharacter of G if

α(xy, z) = α(x, z)α(y, z), α(x, yz) = α(x, y)α(x, z)

for all x, y, z ∈ G. It is easy to see that α(x, 1) = 1 = (1, x). The group algebra kG is a

Hopf algebra with the following comultiplication and antipode:

∆(g) = g ⊗ g, S(g) = g−1, ∀ g ∈ G.

Assume that α is a bicharacter of G. The group algebra kG with the linear extension

of α to kG is co-quasitriangular. Note that kG is commutative and cocommutative. By

Corollary 3.13, a bicharacter α of G induces an auto-equivalence G of the category Y DkG
kG

of Yetter-Drinfeld modules. If α is not trivial, the induced functor G is, in general, not

the identity functor.
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