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Meridian Surfaces of Elliptic or Hyperbolic Type with Pointwise 1-type

Gauss Map in Minkowski 4-space

Kadri Arslan and Velichka Milousheva*

Abstract. In the present paper we consider a special class of spacelike surfaces in the

Minkowski 4-space which are one-parameter systems of meridians of the rotational

hypersurface with timelike or spacelike axis. They are called meridian surfaces of

elliptic or hyperbolic type, respectively. We study these surfaces with respect to their

Gauss map. We find all meridian surfaces of elliptic or hyperbolic type with harmonic

Gauss map and give the complete classification of meridian surfaces of elliptic or

hyperbolic type with pointwise 1-type Gauss map.

1. Introduction

The study of submanifolds of Euclidean space or pseudo-Euclidean space via the notion

of finite type immersions began in the late 1970’s with the papers [6,8] of B.-Y. Chen and

has been extensively carried out since then. An isometric immersion x : M → Em of a

submanifold M in Euclidean m-space Em (or pseudo-Euclidean space Ems ) is said to be

of finite type [6], if x identified with the position vector field of M in Em (or Ems ) can be

expressed as a finite sum of eigenvectors of the Laplacian ∆ of M , i.e.,

x = x0 +

k∑
i=1

xi,

where x0 is a constant map, x1, x2, . . . , xk are non-constant maps such that ∆xi = λixi,

λi ∈ R, 1 ≤ i ≤ k. If λ1, λ2, . . . , λk are different, then M is said to be of k-type. Many

results on finite type immersions have been collected in the survey paper [9].

The notion of finite type immersion is naturally extended to the Gauss map G on M

by B.-Y. Chen and P. Piccinni [11]. Thus, a submanifold M of an Euclidean (or pseudo-

Euclidean space) is said to have 1-type Gauss map G, if G satisfies ∆G = a(G + C) for

some a ∈ R and some constant vector C (see, for example, [3–5,17]).
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However, the Laplacian of the Gauss map of some well-known surfaces such as the

helicoid, the catenoid, and the right cone in the Euclidean 3-space E3, the helicoids of

1st, 2nd, and 3rd kind, conjugate of Enneper’s surface of 2nd kind and B-scrolls in the

Minkowski 3-space E3
1, the generalized catenoids, and Enneper’s hypersurfaces in En+1

1

takes a somewhat different form, namely, ∆G = λ(G+ C) for some non-constant smooth

function λ and some constant vector C. Therefore, it is worth studying the class of surfaces

satisfying such an equation.

We use the following definition: a submanifold M of the Euclidean space Em (or

pseudo-Euclidean space Ems ) is said to have pointwise 1-type Gauss map if its Gauss map

G satisfies

∆G = λ(G+ C)

for some non-zero smooth function λ on M and some constant vector C. A pointwise

1-type Gauss map is called proper if the function λ is non-constant. A submanifold with

pointwise 1-type Gauss map is said to be of first kind if the vector C is zero. Otherwise,

it is said to be of second kind [10].

Classification results on surfaces with pointwise 1-type Gauss map in Minkowski space

have been obtained in the last few years. For example, in [20] Y. Kim and D. Yoon

studied ruled surfaces with 1-type Gauss map in Minkowski space Em1 and gave a complete

classification of null scrolls with 1-type Gauss map. The classification of ruled surfaces

with pointwise 1-type Gauss map of first kind in Minkowski space E3
1 is given in [18].

Ruled surfaces with pointwise 1-type Gauss map of second kind in Minkowski 3-space

were classified in [12]. The complete classification of flat rotation surfaces with pointwise

1-type Gauss map in the 4-dimensional pseudo-Euclidean space E4
2 is given in [19].

Basic source of examples of surfaces in the four-dimensional Euclidean or Minkowski

space are the meridian surfaces. Meridian surfaces in the Euclidean 4-space R4 are defined

in [13] as special class of surfaces, which are one-parameter systems of meridians of the

standard rotational hypersurface in R4. In [2] we studied the meridian surfaces with

pointwise 1-type Gauss map. We showed that a meridian surface in R4 has a harmonic

Gauss map if and only if it is part of a plane. We gave necessary and sufficient conditions

for a meridian surface to have pointwise 1-type Gauss map and found all meridian surfaces

with pointwise 1-type Gauss map of first and second kind. The meridian surfaces of

Weingarten type are described in [1].

The meridian surfaces of elliptic or hyperbolic type in the Minkowski 4-space R4
1 are

constructed in [14] similarly to the Euclidean case. They are two-dimensional spacelike

surfaces in R4
1 which are one-parameter systems of meridians of the rotational hypersurface

with timelike or spacelike axis, respectively. Recently, some special classes of meridian sur-

faces of elliptic or hyperbolic type have been classified. For example, marginally trapped
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meridian surfaces of elliptic or hyperbolic type are described in [14]. The complete classi-

fication of meridian surfaces of elliptic or hyperbolic type with constant Gauss curvature

or with constant mean curvature is given in [16]. The Chen meridian surfaces and the

meridian surfaces with parallel normal bundle are also classified in [16].

In the present paper we study meridian surfaces of elliptic or hyperbolic type in R4
1 with

respect to their Gauss map. In Theorem 4.1 and Theorem 4.2 we describe all meridian

surfaces of elliptic or hyperbolic type with harmonic Gauss map. We give the complete

classification of meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss

map of first kind in Theorem 5.1 and Theorem 5.2, respectively. The meridian surfaces of

elliptic or hyperbolic type with pointwise 1-type Gauss map of second kind are classified

in Theorem 6.1 and Theorem 6.2, respectively.

2. Preliminaries

Let R4
1 be the four-dimensional Minkowski space endowed with the metric 〈 , 〉 of signa-

ture (3, 1) and Oe1e2e3e4 be a fixed orthonormal coordinate system such that 〈e1, e1〉 =

〈e2, e2〉 = 〈e3, e3〉 = 1, 〈e4, e4〉 = −1. The standard flat metric is given in local coordinates

by dx21 + dx22 + dx23 − dx24.
A surface M in R4

1 is said to be spacelike if 〈 , 〉 induces a Riemannian metric g on M .

Thus at each point p of a spacelike surface M we have the following decomposition:

R4
1 = TpM ⊕NpM

with the property that the restriction of the metric 〈 , 〉 onto the tangent space TpM is of

signature (2, 0), and the restriction of the metric 〈 , 〉 onto the normal space NpM is of

signature (1, 1).

We denote by ∇′ and ∇ the Levi Civita connections on R4
1 and M , respectively. Let

x and y be vector fields tangent to M and ξ be a normal vector field. The formulas of

Gauss and Weingarten giving the decompositions of the vector fields ∇′xy and ∇′xξ into

tangent and normal components are given, respectively, by

∇′xy = ∇xy + σ(x, y);

∇′xξ = −Aξx+Dxξ,

where σ is the second fundamental tensor, D is the normal connection, and Aξ is the

shape operator with respect to ξ.

The mean curvature vector field H of M is defined as H = 1
2 trσ. A submanifold M

is said to be minimal (respectively, totally geodesic) if H = 0 (respectively, σ = 0). A

surface M in the Minkowski 4-space is called marginally trapped [7], if its mean curvature

vector field H is lightlike at each point, i.e., H 6= 0, 〈H,H〉 = 0.
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The Gauss map G of a submanifold M of Em is defined as follows. Let G(n,m) be

the Grassmannian manifold consisting of all oriented n-planes through the origin of Em

and ∧nEm be the vector space obtained by the exterior product of n vectors in Em. In

a natural way, we can identify ∧nEm with the Euclidean space EN , where N =
(
m
n

)
. Let

{e1, . . . , en, en+1, . . . , em} be a local orthonormal frame field in Em such that e1, e2, . . . , en

are tangent to M and en+1, en+2, . . . , em are normal to M . The map G : M → G(n,m)

defined by G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p) is called the Gauss map of M . It is a smooth

map which carries a point p in M into the oriented n-plane in Em obtained by the parallel

translation of the tangent space of M at p in Em.

In a similar way one can consider the Gauss map of a submanifold M of pseudo-

Euclidean space Ems .

If M is a spacelike submanifold of Ems , then for any function f on M the Laplacian of

f is given by the formula

∆f = −
∑
i

(
∇′ei∇

′
eif −∇

′
∇eiei

f
)
,

where ∇′ is the Levi-Civita connection of Ems and ∇ is the induced connection on M .

3. Meridian surfaces of elliptic or hyperbolic type

Meridian surfaces in the Minkowski space E4
1 are special families of two-dimensional space-

like surfaces lying on rotational hypersurfaces in R4
1 with timelike or spacelike axis, which

are constructed as follows.

Let f = f(u), g = g(u) be smooth functions, defined on an interval I ⊂ R, such that

(f ′(u))2 − (g′(u))2 > 0, u ∈ I. We assume that f(u) > 0, u ∈ I. The standard rotational

hypersurfaceM′ in R4
1, obtained by the rotation of the meridian curve m : u→ (f(u), g(u))

about the Oe4-axis, is parameterized as follows:

M′ : Z(u,w1, w2) = f(u) cosw1 cosw2 e1 + f(u) cosw1 sinw2 e2

+ f(u) sinw1 e3 + g(u) e4.

The rotational hypersurface M′ is a two-parameter system of meridians. If w1 = w1(v),

w2 = w2(v), v ∈ J , J ⊂ R, we can consider the two-dimensional surfaceM′m lying onM′,
constructed in the following way:

M′m : z(u, v) = Z(u,w1(v), w2(v)), u ∈ I, v ∈ J.

Since M′m is a one-parameter system of meridians of M′, it is called a meridian surface

of elliptic type [14].
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If we denote l(w1, w2) = cosw1 cosw2 e1 + cosw1 sinw2 e2 + sinw1 e3, then the surface

M′m is parameterized by

(3.1) M′m : z(u, v) = f(u) l(v) + g(u) e4, u ∈ I, v ∈ J.

Note that l(w1, w2) is the unit position vector of the 2-dimensional sphere S2(1) lying in

the Euclidean space R3 = span {e1, e2, e3} and centered at the origin O.

We assume that the smooth curve c : l = l(v) = l(w1(v), w2(v)), v ∈ J on S2(1) is

parameterized by the arc-length, i.e., 〈l′(v), l′(v)〉 = 1. Let t(v) = l′(v) be the tangent

vector field of c. Since 〈t(v), t(v)〉 = 1, 〈l(v), l(v)〉 = 1, and 〈t(v), l(v)〉 = 0, there exists a

unique (up to a sign) vector field n(v), such that {l(v), t(v), n(v)} is an orthonormal frame

field in R3. With respect to this frame field we have the following Frenet formulas of c on

S2(1):

l′ = t;

t′ = κn− l;

n′ = −κ t,

(3.2)

where κ(v) = 〈t′(v), n(v)〉 is the spherical curvature of c.

Without loss of generality we assume that (f ′(u))2 − (g′(u))2 = 1. The tangent space

of M′m is spanned by the vector fields:

zu = f ′ l + g′ e4; zv = f t,

so, the coefficients of the first fundamental form ofM′m are E = 1; F = 0; G = f2(u) > 0.

Hence, the first fundamental form is positive definite, i.e., M′m is a spacelike surface.

Denote x = zu, y = zv
f = t and consider the following orthonormal normal frame field:

n1 = n(v); n2 = g′(u) l(v) + f ′(u) e4.

Thus we obtain a frame field {x, y, n1, n2} of M′m, such that 〈n1, n1〉 = 1, 〈n2, n2〉 = −1,

〈n1, n2〉 = 0.

Taking into account (3.2) we get the following derivative formulas [16]:

(3.3)

∇′xx = κm n2; ∇′xn1 = 0;

∇′xy = 0; ∇′yn1 = −κ
f
y;

∇′yx =
f ′

f
y; ∇′xn2 = κm x;

∇′yy = −f
′

f
x+

κ

f
n1 +

g′

f
n2; ∇′yn2 =

g′

f
y,
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where κm(u) = f ′(u)g′′(u) − g′(u)f ′′(u) is the curvature of the meridian curve m, and

κ = κ(v) is the spherical curvature of c.

In a similar way one can consider meridian surfaces lying on the rotational hypersur-

face in R4
1 with spacelike axis. Let f = f(u), g = g(u) be smooth functions, defined in

an interval I ⊂ R, such that (f ′(u))2 + (g′(u))2 > 0, f(u) > 0, u ∈ I. The rotational hy-

persurfaceM′′ in R4
1, obtained by the rotation of the meridian curve m : u→ (f(u), g(u))

about the Oe1-axis is parameterized as follows:

M′′ : Z(u,w1, w2) = g(u) e1 + f(u) coshw1 cosw2 e2

+ f(u) coshw1 sinw2 e3 + f(u) sinhw1 e4.

If w1 = w1(v), w2 = w2(v), v ∈ J , J ⊂ R, we consider the surface M′′m in R4
1 defined by

M′′m : z(u, v) = Z(u,w1(v), w2(v)), u ∈ I, v ∈ J.

M′′m is a one-parameter system of meridians of M′′ and is called a meridian surface of

hyperbolic type [14].

If we denote l(w1, w2) = coshw1 cosw2 e2 + coshw1 sinw2 e3 + sinhw1 e4, then the

surface M′′m is given by

(3.4) M′′m : z(u, v) = f(u) l(v) + g(u) e1, u ∈ I, v ∈ J,

l(w1, w2) being the unit position vector of the timelike sphere S2
1(1) in the Minkowski space

R3
1 = span {e2, e3, e4}, i.e., S2

1(1) =
{
V ∈ R3

1 : 〈V, V 〉 = 1
}

. S2
1(1) is a timelike surface in

R3
1 known also as the de Sitter space.

Assume that the curve c : l = l(v) = l(w1(v), w2(v)), v ∈ J on S2
1(1) is parameterized

by the arc-length, i.e., 〈l′(v), l′(v)〉 = 1. Similarly to the elliptic case we consider an

orthonormal frame field {l(v), t(v), n(v)} in R3
1, such that t(v) = l′(v) and 〈n(v), n(v)〉 =

−1. With respect to this frame field we have the following decompositions of the vector

fields l′(v), t′(v), n′(v):

l′ = t;

t′ = −κn− l;

n′ = −κ t,

(3.5)

which can be considered as Frenet formulas of c on S2
1(1). The function κ(v) = 〈t′(v), n(v)〉

is the spherical curvature of c on S2
1(1).

We assume that (f ′(u))2 + (g′(u))2 = 1. Denote x = zu = f ′ l + g′ e1, y = zv
f = t and

consider the orthonormal normal frame field defined by:

n1 = g′(u) l(v)− f ′(u) e1; n2 = n(v).
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Thus we obtain a frame field {x, y, n1, n2} of M′′m, such that 〈n1, n1〉 = 1, 〈n2, n2〉 = −1,

〈n1, n2〉 = 0.

Using (3.5) we get the following derivative formulas [16]:

(3.6)

∇′xx = −κm n1; ∇′xn1 = κm x;

∇′xy = 0; ∇′yn1 =
g′

f
y;

∇′yx =
f ′

f
y; ∇′xn2 = 0;

∇′yy = −f
′

f
x− g′

f
n1 −

κ

f
n2; ∇′yn2 = −κ

f
y,

where κm(u) = f ′(u)g′′(u) − g′(u)f ′′(u) is the curvature of the meridian curve m, and

κ = κ(v) is the spherical curvature of c.

4. Meridian surfaces of elliptic or hyperbolic type with harmonic Gauss map

In the present section we give the classification of the meridian surfaces of elliptic or

hyperbolic type with harmonic Gauss map.

Let M′m and M′′m be meridian surfaces of elliptic and hyperbolic type, respectively,

and {x, y, n1, n2} be the frame field of M′m (resp. M′′m) defined in Section 3. This frame

field generates the following frame of the Grassmannian manifold:

{x ∧ y, x ∧ n1, x ∧ n2, y ∧ n1, y ∧ n2, n1 ∧ n2} .

The indefinite inner product on the Grassmannian manifold is given by

〈ei1 ∧ ei2 , fj1 ∧ fj2〉 = det (〈eik , fjl〉) .

Thus we have

〈x ∧ y, x ∧ y〉 = 1; 〈x ∧ n1, x ∧ n1〉 = 1; 〈x ∧ n2, x ∧ n2〉 = −1;

〈y ∧ n1, y ∧ n1〉 = 1; 〈y ∧ n2, y ∧ n2〉 = −1; 〈n1 ∧ n2, n1 ∧ n2〉 = −1,

and all other scalar products are equal to zero.

The Gauss map G of M′m (resp. M′′m) is defined by G(p) = (x ∧ y)(p), p ∈ M′m
(resp. p ∈M′′m). Then the Laplacian of the Gauss map is given by the formula

(4.1) ∆G = −∇′x∇′xG+∇′∇xxG−∇
′
y∇′yG+∇′∇yyG.

Using (3.3), (3.6) and (4.1), we obtain that in the elliptic case the Laplacian of the

Gauss map is expressed as

(4.2) ∆G =
κ2 − g′2 − f2κ2m

f2
x ∧ y − κ′

f2
x ∧ n1 −

κf ′

f2
y ∧ n1 +

f(fκm)′ − f ′g′

f2
y ∧ n2,
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and in the hyperbolic case the Laplacian of the Gauss map is given by

(4.3) ∆G =
−κ2 + g′2 + f2κ2m

f2
x ∧ y +

κ′

f2
x ∧ n2 +

f ′g′ − f(fκm)′

f2
y ∧ n1 +

κf ′

f2
y ∧ n2,

where κ′ =
d

dv
(κ).

Theorem 4.1. LetM′m be a meridian surface of elliptic type, defined by (3.1). The Gauss

map of M′m is harmonic if and only if M′m is part of a plane.

Proof. First, we suppose that the Gauss map of M′m is harmonic, i.e., ∆G = 0. Then,

from (4.2) it follows that

κ2 − g′2 − f2κ2m = 0;

κ′ = 0;

κf ′ = 0;

f(fκm)′ − f ′g′ = 0.

In the elliptic case we have f ′2 ≥ 1, since f ′2 − g′2 = 1. Hence, the above equalities imply

κ = 0; g′ = 0; κm = 0.

Using (3.3) we get that M′m is totally geodesic, i.e., M′m is part of a plane.

Conversely, if M′m is totally geodesic, then ∆G = 0.

Theorem 4.2. Let M′′m be a meridian surface of hyperbolic type, defined by (3.4). The

Gauss map of M′′m is harmonic if and only if one of the following cases holds:

(i) M′′m is part of a plane;

(ii) the curve c has spherical curvature κ = ±1 and the meridian curve m is determined

by f(u) = a; g(u) = ±u + b, where a = const, b = const. In this case M′′m is a

marginally trapped developable ruled surface in E4
1.

Proof. Suppose that the Gauss map of M′′m is harmonic, i.e., ∆G = 0. Then, from (4.3)

it follows that

κ2 − g′2 − f2κ2m = 0;

κ′ = 0;

κf ′ = 0;

f(fκm)′ − f ′g′ = 0.

(4.4)

In the hyperbolic case we have f ′2 ≤ 1, since f ′2 + g′2 = 1. Hence, from the third equality

of (4.4) we get the following two cases:
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Case (i): κ = 0. Then, the first equality of (4.4) implies g′ = 0; κm = 0. Using (3.6)

we get that M′′m is totally geodesic, i.e., M′′m is part of a plane.

Case (ii): κ 6= 0. Then f ′ = 0, i.e., f(u) = a = const, and g′2 = 1, i.e., g(u) = ±u+ b,

b = const. In this case κm = 0. The second equality of (4.4) implies κ = const. From

the first equality of (4.4) we obtain κ2 = g′2. Hence, κ = εg′, where ε = ±1. In this case

derivative formulas (3.6) take the form:

(4.5)

∇′xx = 0; ∇′xn1 = 0;

∇′xy = 0; ∇′yn1 = ±1

a
y;

∇′yx = 0; ∇′xn2 = 0;

∇′yy = ∓1

a
(n1 + εn2); ∇′yn2 = ∓ ε

a
y.

M′′m is a ruled surface, since the meridian curve m is a straight line. From (4.5) we

have that ∇′xn1 = 0; ∇′xn2 = 0, i.e., the normal space is constant at the points of each

generator. Hence, M′′m is developable. Moreover, the mean curvature vector field H is

given by

H = ∓ 1

2a
(n1 + εn2),

which implies that 〈H,H〉 = 0. Hence, M′′m is a marginally trapped surface.

Conversely, if one of the cases (i) or (ii) holds, then by straightforward calculations we

get ∆G = 0, i.e., M′′m has harmonic Gauss map.

Remark 4.3. In the Euclidean space E4 planes are the only surfaces with harmonic Gauss

map. However, in the Minkowski space E4
1 there are surfaces with harmonic Gauss map

which are not planes. Theorems 4.1 and 4.2 show that in the class of the meridian surfaces

of elliptic type there are no surfaces with harmonic Gauss map other than planes, while

in the class of the meridian surfaces of hyperbolic type we obtain surfaces with harmonic

Gauss map, which are not planes.

5. Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss

map of first kind

In this section we classify the meridian surfaces of elliptic or hyperbolic type with pointwise

1-type Gauss map of first kind, i.e., the Gauss map G satisfies the condition

∆G = λG

for some non-zero smooth function λ.

First, let us consider the meridian surface of elliptic type M′m, defined by (3.1). So,

the Laplacian of the Gauss map is given by formula (4.2).
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Theorem 5.1. LetM′m be a meridian surface of elliptic type, defined by (3.1). ThenM′m
has pointwise 1-type Gauss map of first kind if and only if the curve c has zero spherical

curvature and the meridian curve m is determined by a solution f(u) of the following

differential equation

(5.1) f

(
ff ′′√
f ′2 − 1

)′
− f ′

√
f ′2 − 1 = 0,

g(u) is defined by g′(u) =
√
f ′2(u)− 1.

Proof. From (4.2) it follows that ∆G = λG if and only if

κ′ = 0;

κf ′ = 0;

f(fκm)′ − f ′g′ = 0.

(5.2)

Let M′m be of pointwise 1-type Gauss map of first kind. Since f ′ 6= 0, from the second

equality of (5.2) we get that κ = 0. If we suppose that g′ = 0, then κm = 0 and (4.2)

implies ∆G = 0, which contradicts the assumption λ 6= 0. Hence, g′ 6= 0. Then using that

f ′2 − g′2 = 1 we obtain κm = f ′′√
f ′2−1

. So, the third equality of (5.2) takes the form (5.1).

Conversely, if κ = 0 and f(u) is a solution of (5.1), then ∆G = λG.

In the next theorem we give the classification of the meridian surfaces of hyperbolic

type with pointwise 1-type Gauss map of first kind.

Theorem 5.2. Let M′′m be a meridian surface of hyperbolic type, defined by (3.4). Then

M′′m has pointwise 1-type Gauss map of first kind if and only if one of the following cases

holds:

(i) the curve c has zero spherical curvature and the meridian curve m is determined by

a solution f(u) of the following differential equation

(5.3) f

(
ff ′′√
1− f ′2

)′
+ f ′

√
1− f ′2 = 0,

g(u) is defined by g′(u) =
√

1− f ′2(u);

(ii) the curve c has non-zero constant spherical curvature k (κ 6= ±1) and the meridian

curve m is determined by f(u) = a; g(u) = ±u + b, where a = const, b = const.

Moreover, M′′m is a developable ruled surface lying in a constant hyperplane E3
1 (if

κ2 − 1 > 0) or E3 (if κ2 − 1 < 0) of E4
1.
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Proof. LetM′′m be a meridian surface of hyperbolic type, defined by (3.4). So, the Lapla-

cian of the Gauss map is given by formula (4.3). From (4.3) it follows that ∆G = λG if

and only if

κ′ = 0;

κf ′ = 0;

f ′g′ − f(fκm)′ = 0.

(5.4)

LetM′′m be of pointwise 1-type Gauss map of first kind. From the second equality of (5.4)

we get the following two cases:

Case (i): κ = 0. If we suppose that g′ = 0, then κm = 0 and (4.3) implies ∆G = 0,

which contradicts the assumption λ 6= 0. Hence, g′ 6= 0. Then using that f ′2 + g′2 = 1 we

obtain κm = − f ′′√
1−f ′2

. Thus, the third equality of (5.4) takes the form (5.3).

Case (ii): κ 6= 0. Then f ′ = 0, i.e., f(u) = a = const, and g′ = ±1, i.e., g(u) = ±u+ b,

b = const. In this case κm = 0. The first equality of (5.4) implies κ = const. Then the

Laplacian of the Gauss map takes the form:

∆G =
1− κ2

a2
x ∧ y,

which implies that the surface M′′m has 1-type Gauss map, since λ = 1−κ2
a2

= const. If

κ2 = 1 then ∆G = 0, which contradicts the assumption λ 6= 0. Hence, κ2 6= 1, i.e.,

κ 6= ±1. In this case derivative formulas (3.6) take the form:

(5.5)

∇′xx = 0; ∇′xn1 = 0;

∇′xy = 0; ∇′yn1 = ±1

a
y;

∇′yx = 0; ∇′xn2 = 0;

∇′yy = ∓1

a
n1 −

κ

a
n2; ∇′yn2 = −κ

a
y.

M′′m is a developable ruled surface, since the meridian curve m is a straight line and

∇′xn1 = 0; ∇′xn2 = 0. Now we shall prove that M′′m lies in a constant hyperplane of E4
1.

An arbitrary orthonormal frame
{
n, n⊥

}
of the normal bundle is determined by

n = cosh θ n1 + sinh θ n2,

n⊥ = sinh θ n1 + cosh θ n2,
(5.6)

for some smooth function θ. Note that n is spacelike and n⊥ is timelike. Using (5.5) and

(5.6) we get

(5.7)
∇′xn = θ′u n

⊥; ∇′yn =
θ′v
a
n⊥ − 1

a
(∓ cosh θ + κ sinh θ)y;

∇′xn⊥ = θ′u n; ∇′yn⊥ =
θ′v
a
n− 1

a
(∓ sinh θ + κ cosh θ)y.
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In the case κ2 − 1 > 0 we choose θ = ±1
2 ln

(
κ+1
κ−1

)
. Then ∓ cosh θ + κ sinh θ = 0.

Hence, from (5.5) and (5.7) it follows that

∇′xx = 0; ∇′xn = 0;

∇′xy = 0; ∇′yn = 0;

∇′yx = 0; ∇′xn⊥ = 0;

∇′yy = −κ
2 − 1

aκ
cosh ln

(
κ+ 1

κ− 1

)± 1
2

n⊥; ∇′yn⊥ = −κ
2 − 1

aκ
cosh ln

(
κ+ 1

κ− 1

)± 1
2

y.

The last equalities imply that n = const and the surface M′′m lies in the constant hyper-

plane E3
1 = span

{
x, y, n⊥

}
of E4

1.

In the case κ2 − 1 < 0 we choose θ = ±1
2 ln

(
κ+1
1−κ

)
. Then ∓ sinh θ + κ cosh θ = 0.

Hence, formulas (5.5) and (5.7) imply that

∇′xx = 0; ∇′xn = 0;

∇′xy = 0; ∇′yn = −κ
2 − 1

aκ
sinh ln

(
κ+ 1

1− κ

)± 1
2

y;

∇′yx = 0; ∇′xn⊥ = 0;

∇′yy =
κ2 − 1

aκ
sinh ln

(
κ+ 1

1− κ

)± 1
2

n; ∇′yn⊥ = 0.

From the last equalities we get that n⊥ = const and the surface M′′m lies in the constant

hyperplane E3 = span {x, y, n} of E4
1.

Conversely, if one of the cases (i) or (ii) holds, then by straightforward calculations it

can be seen that ∆G = λG, i.e., M′′m has pointwise 1-type Gauss map of first kind.

6. Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss

map of second kind

In this section we give the classification of the meridian surfaces of elliptic or hyperbolic

type with pointwise 1-type Gauss map of second kind, i.e., the Gauss map G satisfies the

condition

(6.1) ∆G = λ(G+ C)

for some non-zero smooth function λ and a constant vector C 6= 0.

First we consider meridian surfaces of elliptic type with pointwise 1-type Gauss map

of second kind. They are classified by the following theorem.
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Theorem 6.1. Let M′m be a meridian surface of elliptic type, defined by (3.1). Then

M′m has pointwise 1-type Gauss map of second kind if and only if one of the following

cases holds:

(i) the curve c has non-zero constant spherical curvature κ and the meridian curve m

is determined by f(u) = ±u+ a; g(u) = b, where a = const, b = const. In this case

M′m is a developable ruled surface lying in a constant hyperplane E3 of E4
1.

(ii) the curve c has constant spherical curvature κ and the meridian curve m is deter-

mined by f(u) = au+a1; g(u) = bu+b1, where a, a1, b and b1 are constants, a2 ≥ 1,

a2 − b2 = 1. In this case M′m is either a marginally trapped developable ruled sur-

face (if κ2 = b2) or a developable ruled surface lying in a constant hyperplane E3 (if

κ2 − b2 > 0) or E3
1 (if κ2 − b2 < 0) of E4

1.

(iii) the curve c has zero spherical curvature and the meridian curve m is determined by

the solutions of the following differential equation(
ln

√
f ′2 − 1

(
f(f ′2 − 1)(ff ′′)′ − f2f ′f ′′2 − f ′(f ′2 − 1)2

)
(f ′2 − 1)2 + f2f ′′2 − ff ′(f ′2 − 1)(ff ′′)′

)′
=

f ′f ′′

f ′2 − 1
.

g(u) is defined by g′(u) =
√
f ′2(u)− 1.

Proof. LetM′m be a meridian surface of elliptic type, defined by (3.1). Suppose thatM′m
has pointwise 1-type Gauss map of second kind. Then equations (4.2) and (6.1) imply

(6.2)

(
κ2 − g′2 − f2κ2m

f2
− λ
)
x∧y− κ′

f2
x∧n1−

κf ′

f2
y∧n1+

f(fκm)′ − f ′g′

f2
y∧n2 = λC.

Since λ 6= 0, from (6.2) we get

(6.3)

〈C, x ∧ y〉 =
κ2 − g′2 − f2κ2m

λf2
− 1; 〈C, x ∧ n1〉 = − κ′

λf2
; 〈C, y ∧ n1〉 = − κf

′

λf2
;

〈C, y ∧ n2〉 = −f(fκm)′ − f ′g′

λf2
; 〈C, x ∧ n2〉 = 0; 〈C, n1 ∧ n2〉 = 0.

Differentiating the last two equalities of (6.3) with respect to u and v we obtain

κm 〈C, x ∧ n1〉 = 0;

g′ 〈C, x ∧ y〉+ f ′ 〈C, y ∧ n2〉 = 0;

g′ 〈C, y ∧ n1〉+ κ 〈C, y ∧ n2〉 = 0.

(6.4)

Hence, equalities (6.3) and (6.4) imply

κ′κm = 0;

κ(fκm)′ = 0;

g′(1 + κ2 − f2κ2m)− ff ′(fκm)′ = λf2g′.

(6.5)
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We distinguish the following cases.

Case I: g′ = 0. Then κ 6= 0 (otherwise the Gauss map is harmonic). From (6.2) we get

(6.6) C =

(
κ2

λf2
− 1

)
x ∧ y − κ′

λf2
x ∧ n1 −

κf ′

λf2
y ∧ n1.

Using (3.3) and (6.6) we obtain

∇′xC = κ2
(

1

λf2

)′
u

x ∧ y − κ′
(

1

λf2

)′
u

x ∧ n1 − κ
(
f ′

λf2

)′
u

y ∧ n1;

∇′yC =
κ

λ2f3
(
3κ′λ− κλ′v

)
x ∧ y +

1

λ2f3
(
−κ′′λ+ k′λ′v + κ3λ+ κλ− κλ2f2

)
x ∧ n1

+
f ′

λ2f3
(
−2κ′λ+ κλ′v

)
y ∧ n1.

The last formulas imply that C = const if and only if κ = const and λ = κ2+1
f2

. In this

case

∆G =
κ2 + 1

f2
(G+ C),

where C = − 1
κ2+1

(x∧y+κf ′ y∧n1). From g′ = 0 it follows that κm = 0 and the meridian

curve m is determined by f(u) = ±u + a; g(u) = b, where a = const, b = const. The

surface M′m is a developable ruled surface lying in the hyperplane E3 = span {x, y, n1},
since ∇′xn2 = 0; ∇′yn2 = 0.

Case II: g′ 6= 0. Then the last equality of (6.5) implies

λ =
1

g′f2
(
g′(1 + κ2 − f2κ2m)− ff ′(fκm)′

)
.

It follows from the first two equalities of (6.5) that there are three subcases.

1. κm = 0. In this subcase the Laplacian of G is given by

(6.7) ∆G =
κ2 − g′2

f2
x ∧ y − κ′

f2
x ∧ n1 −

κf ′

f2
y ∧ n1 −

f ′g′

f2
y ∧ n2

and the function λ is expressed as λ = κ2+1
f2

. Now, equalities (6.1) and (6.7) imply

(6.8) C = − 1

1 + κ2
(
f ′2 x ∧ y + κ′ x ∧ n1 + κf ′ y ∧ n1 + f ′g′ y ∧ n2

)
.

Using formulas (3.3) in the case κm = 0 and (6.8) we obtain

∇′xC = − 1

1 + κ2
(
2f ′f ′′ x ∧ y + κf ′′ y ∧ n1 + (f ′g′′ + g′f ′′) y ∧ n2

)
;

∇′yC =
κκ′

f(1 + κ2)2
(2f ′2 + 1 + κ2)x ∧ y +

1

f(1 + κ2)2
(
2κκ′2 − κ′′(1 + κ2)

)
x ∧ n1

− 2κ′f ′

f(1 + κ2)2
y ∧ n1 +

2κκ′f ′g′

f(1 + κ2)2
y ∧ n2.
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The last formulas imply that C = const if and only if κ = const and f ′′ = 0. Hence,

the meridian curve m is determined by f(u) = au + a1; g(u) = bu + b1, where a, a1, b

and b1 are constants, a2 ≥ 1, a2 − b2 = 1. Hence, M′m is a developable ruled surface,

since ∇′xn1 = 0; ∇′xn2 = 0. We shall prove that in the case κ2 = b2 the surface M′m is

marginally trapped and in the case κ2 6= b2 the surfaceM′m lies in a constant hyperplane

E3 or E3
1 of E4

1. Indeed, if κ = εb, ε = ±1, then from (3.3) we get that H = b
2f (εn1 + n2)

and hence, 〈H,H〉 = 0, which implies that M′m is a marginally trapped surface. In the

case κ2 − b2 6= 0 we consider an orthonormal frame
{
n, n⊥

}
of the normal bundle which

is determined by equalities (5.6) for some function θ. Hence, the derivatives of n and n⊥

satisfy

∇′xn = θ′u n
⊥; ∇′yn =

θ′v
f
n⊥ +

1

f
(b sinh θ − κ cosh θ)y;

∇′xn⊥ = θ′u n; ∇′yn⊥ =
θ′v
f
n+

1

f
(b cosh θ − κ sinh θ)y.

In the case κ2 − b2 > 0 we choose θ = 1
2 ln

(
κ+b
κ−b

)
. Then b cosh θ − κ sinh θ = 0 and

∇′xn⊥ = 0, ∇′yn⊥ = 0. In this case the surface M′m lies in the constant hyperplane

E3 = span {x, y, n} of E4
1. In the case κ2 − b2 < 0 we choose θ = 1

2 ln
(
b+κ
b−κ

)
. Then

b sinh θ − κ cosh θ = 0 and ∇′xn = 0, ∇′yn = 0. In this case the surface M′m lies in the

constant hyperplane E3
1 = span

{
x, y, n⊥

}
of E4

1.

2. κ = 0. In this subcase the Laplacian of G is given by

(6.9) ∆G = −g
′2 + f2κ2m

f2
x ∧ y +

f(fκm)′ − f ′g′

f2
y ∧ n2

and the function λ is expressed as λ = 1
g′f2

(
g′(1− f2κ2m)− ff ′(fκm)′

)
. Hence, from

equalities (6.1) and (6.9) we get

(6.10) C = −
(
g′2 + f2κ2m

λf2
+ 1

)
x ∧ y +

f(fκm)′ − f ′g′

λf2
y ∧ n2.

Denote ψ = −g′2+f2κ2m
λf2

−1; ϕ = f(fκm)′−f ′g′
λf2

. Then C = ψ x∧y+ϕy∧n2. Using formulas

(3.3) in the case κ = 0 and (6.10) we obtain

∇′xC = (ψ′ − ϕκm)x ∧ y + (ϕ′ − ψκm) y ∧ n2;

∇′yC = 0.
(6.11)

Using the expression of λ we calculate that ψ = ϕf
′

g′ ; ψ
′ − ϕκm = f ′

g′ (ϕ
′ − ψκm). Hence,

formulas (6.11) take the form

∇′xC =
f ′

g′
(ϕ′ − ψκm)x ∧ y + (ϕ′ − ψκm) y ∧ n2;

∇′yC = 0.
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The last formulas imply that C = const if and only if

(6.12) (lnϕ)′ =
f ′

g′
κm.

Using that fκm = ff ′′√
f ′2−1

, we get

(6.13) ϕ =

√
f ′2 − 1

(
f(f ′2 − 1)(ff ′′)′ − f2f ′f ′′2 − f ′(f ′2 − 1)2

)
(f ′2 − 1)2 + f2f ′′2 − ff ′(f ′2 − 1)(ff ′′)′

.

Now, formulas (6.12) and (6.13) imply that C = const if and only if the function f(u) is

a solution of the following differential equation(
ln

√
f ′2 − 1

(
f(f ′2 − 1)(ff ′′)′ − f2f ′f ′′2 − f ′(f ′2 − 1)2

)
(f ′2 − 1)2 + f2f ′′2 − ff ′(f ′2 − 1)(ff ′′)′

)′
=

f ′f ′′

f ′2 − 1
.

3. κ = const 6= 0 and fκm = a = const, a 6= 0. In this subcase the Laplacian of G is

given by

(6.14) ∆G =
κ2 − a2 − g′2

f2
x ∧ y − κf ′

f2
y ∧ n1 −

f ′g′

f2
y ∧ n2

and the function λ is expressed as λ = 1+κ2−a2
f2

. Since λ 6= 0, we get a2 6= 1 + κ2. Now,

equalities (6.1) and (6.14) imply

C =
1

1 + κ2 − a2
(
−f ′2 x ∧ y − κf ′ y ∧ n1 − f ′g′ y ∧ n2

)
.

Then the derivatives of C are expressed as

∇′xC = − 1

1 + κ2 − a2
(
f ′f ′′ x ∧ y + κf ′′ y ∧ n1 + g′f ′′ y ∧ n2

)
;

∇′yC = 0.

(6.15)

It follows from formulas (6.15) that C = const if and only if f ′′ = 0. But the condition

f ′′ = 0 implies κm = 0, which contradicts the assumption that fκm 6= 0.

Consequently, in this subcase there are no meridian surfaces of elliptic type with point-

wise 1-type Gauss map of second kind.

Conversely, if one of the cases (i), (ii) or (iii) holds, then it can easily be seen that

∆G = λ(G+ C), i.e., M′m has pointwise 1-type Gauss map of second kind.

The next theorem classifies the meridian surfaces of hyperbolic type with pointwise

1-type Gauss map of second kind.

Theorem 6.2. Let M′′m be a meridian surface of hyperbolic type, defined by (3.4). Then

M′′m has pointwise 1-type Gauss map of second kind if and only if one of the following

cases holds:
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(i) the curve c has non-zero constant spherical curvature κ 6= ±1 and the meridian curve

m is determined by f(u) = ±u + a; g(u) = b, where a = const, b = const. In this

case M′′m is a developable ruled surface lying in a constant hyperplane E3
1 of E4

1.

(ii) the curve c has constant spherical curvature κ and the meridian curve m is deter-

mined by f(u) = au + a1; g(u) = bu + b1, where a, a1, b and b1 are constants,

a2 + b2 = 1. In this case M′′m is either a marginally trapped developable ruled sur-

face (if κ2 = b2) or a developable ruled surface lying in a constant hyperplane E3
1 (if

κ2 − b2 > 0) or E3 (if κ2 − b2 < 0) of E4
1.

(iii) the curve c has zero spherical curvature and the meridian curve m is determined by

the solutions of the following differential equation(
ln

√
1− f ′2

(
f(1− f ′2)(ff ′′)′ + f2f ′f ′′2 + f ′(1− f ′2)2

)
(1− f ′2)2 + f2f ′′2 + ff ′(1− f ′2)(ff ′′)′

)′
= − f ′f ′′

1− f ′2
.

g(u) is defined by g′(u) =
√

1− f ′2(u).

Proof. Let M′′m be a meridian surface of hyperbolic type, defined by (3.4). Suppose that

M′′m has pointwise 1-type Gauss map of second kind. Then equations (4.3) and (6.1)

imply

(6.16)

(
g′2 − κ2 + f2κ2m

f2
− λ
)
x∧y+

κ′

f2
x∧n2+

f ′g′ − f(fκm)′

f2
y∧n1+

κf ′

f2
y∧n2 = λC.

Since λ 6= 0, from (6.16) we get

(6.17)

〈C, x ∧ y〉 =
g′2 − κ2 + f2κ2m

λf2
− 1; 〈C, x ∧ n2〉 = − κ′

λf2
;

〈C, y ∧ n1〉 =
f ′g′ − f(fκm)′

λf2
; 〈C, y ∧ n2〉 = − κf

′

λf2
;

〈C, x ∧ n1〉 = 0; 〈C, n1 ∧ n2〉 = 0.

Differentiating the last two equalities of (6.17) with respect to u and v we obtain

κ′κm = 0;

κ(fκm)′ = 0;

g′(1− κ2 + f2κ2m)− ff ′(fκm)′ = λf2g′.

(6.18)

Similarly to the elliptic case, we distinguish the following cases.

Case I: g′ = 0. Then κ 6= 0 (otherwise the Gauss map is harmonic). From (6.16) we

get

C = −
(
κ2

λf2
+ 1

)
x ∧ y +

κ′

λf2
x ∧ n2 +

κf ′

λf2
y ∧ n2,
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which implies

∇′xC = −κ2
(

1

λf2

)′
u

x ∧ y + κ′
(

1

λf2

)′
u

x ∧ n2 + κ

(
f ′

λf2

)′
u

y ∧ n2;

∇′yC = − κ

λ2f3
(
3κ′λ− κλ′v

)
x ∧ y +

1

λ2f3
(
κ′′λ− κ′λ′v + κ3λ− κλ+ κλ2f2

)
x ∧ n2

+
f ′

λ2f3
(
2κ′λ− κλ′v

)
y ∧ n2.

It follows from the last formulas that C = const if and only if κ = const and λ = 1−κ2
f2

.

Since λ 6= 0 we get κ 6= ±1. The Laplacian of the Gauss map is expressed as

∆G =
1− κ2

f2
(G+ C),

where C = 1
κ2−1(x ∧ y − κf ′ y ∧ n2). The condition g′ = 0 implies that κm = 0 and the

meridian curve m is determined by f(u) = ±u+ a; g(u) = b, where a = const, b = const.

The surfaceM′′m is a developable ruled surface lying in the hyperplane E3
1 = span {x, y, n2}.

Case II: g′ 6= 0. Then the last equality of (6.18) implies

λ =
1

g′f2
(
g′(1− κ2 + f2κ2m)− ff ′(fκm)′

)
.

Similarly to the elliptic case we have to consider the following three subcases.

1. κm = 0. In this subcase λ = 1−κ2
f2

, κ 6= ±1 and the Laplacian of G is given by

(6.19) ∆G =
g′2 − κ2

f2
x ∧ y +

κ′

f2
x ∧ n2 +

f ′g′

f2
y ∧ n1 +

κf ′

f2
y ∧ n2.

So, equalities (6.1) and (6.19) imply

(6.20) C =
1

1− κ2
(
−f ′2 x ∧ y + κ′ x ∧ n2 + f ′g′ y ∧ n1 + κf ′ y ∧ n2

)
.

Using (3.3) and (6.20) we obtain

∇′xC =
1

1− κ2
(
−2f ′f ′′ x ∧ y + (f ′g′′ + g′f ′′) y ∧ n1 + κf ′′ y ∧ n2

)
;

∇′yC =
−κκ′

f(1− κ2)2
(
2f ′2 + 1− κ2

)
x ∧ y +

1

f(1− κ2)2
(
2κκ′2 + κ′′(1− κ2)

)
x ∧ n2

+
2κκ′f ′g′

f(1− κ2)2
y ∧ n1 +

2κ′f ′

f(1− κ2)2
y ∧ n2.

From the last formulas we get that C = const if and only if κ = const and f ′′ = 0.

Then the meridian curve m is determined by f(u) = au + a1; g(u) = bu + b1, where a,

a1, b and b1 are constants, a2 + b2 = 1. Hence, M′′m is a developable ruled surface, since

∇′xn1 = 0; ∇′xn2 = 0. Analogously to the elliptic case we prove that if κ2 = b2 thenM′′m is
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a marginally trapped surface, and if κ2−b2 6= 0, thenM′′m lies in a constant hyperplane E3

or E3
1 of E4

1. Indeed, in the case κ = εb, ε = ±1, from (3.6) we obtain H = − b
2f (n1 + εn2),

which implies that 〈H,H〉 = 0, i.e., M′′m is a marginally trapped surface. If κ2 − b2 > 0

we choose θ = 1
2 ln

(
κ+b
κ−b

)
and find a suitable normal frame field

{
n, n⊥

}
such that M′′m

lies in the constant hyperplane E3
1 = span

{
x, y, n⊥

}
of E4

1. If κ2 − b2 < 0 we choose

θ = 1
2 ln

(
b+κ
b−κ

)
and get that M′′m lies in the constant hyperplane E3 = span {x, y, n}.

2. κ = 0. In this subcase the Laplacian of G is given by

(6.21) ∆G =
g′2 + f2κ2m

f2
x ∧ y +

f ′g′ − f(fκm)′

f2
y ∧ n1

and the function λ is expressed as λ = 1
g′f2

(
g′(1 + f2κ2m)− ff ′(fκm)′

)
. Hence, equalities

(6.1) and (6.21) imply that

C =

(
g′2 + f2κ2m

λf2
− 1

)
x ∧ y +

f ′g′ − f(fκm)′

λf2
y ∧ n1.

Denoting ψ = g′2+f2κ2m
λf2

− 1; ϕ = f ′g′−f(fκm)′

λf2
, as in the elliptic case we obtain that

C = const if and only if

(lnϕ)′ =
f ′

g′
κm.

In the hyperbolic case we have fκm = − ff ′′√
1−f ′2

and the function ϕ is expressed as follows:

ϕ =

√
1− f ′2

(
f(1− f ′2)(ff ′′)′ + f2f ′f ′′2 + f ′(1− f ′2)2

)
(1− f ′2)2 + f2f ′′2 + ff ′(1− f ′2)(ff ′′)′

.

Consequently, C = const if and only if the function f(u) is a solution of the following

differential equation(
ln

√
1− f ′2

(
f(1− f ′2)(ff ′′)′ + f2f ′f ′′2 + f ′(1− f ′2)2

)
(1− f ′2)2 + f2f ′′2 + ff ′(1− f ′2)(ff ′′)′

)′
= − f ′f ′′

1− f ′2
.

3. κ = const 6= 0 and fκm = a = const, a 6= 0. In this subcase we have

(6.22) ∆G =
g′2 − κ2 + a2

f2
x ∧ y +

f ′g′

f2
y ∧ n1 +

κf ′

f2
y ∧ n2

and λ = 1−κ2+a2
f2

. Since λ 6= 0 we get a2 6= κ2 − 1. Equalities (6.1) and (6.22) imply

C =
1

1− κ2 + a2
(
−f ′2 x ∧ y + f ′g′ y ∧ n1 + κf ′ y ∧ n2

)
.

Then the derivatives of C are expressed as

∇′xC =
1

1− κ2 + a2
(
−f ′f ′′ x ∧ y + g′f ′′ y ∧ n1 + κf ′′ y ∧ n2

)
;

∇′yC = 0.

(6.23)
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Formulas (6.23) imply that C = const if and only if f ′′ = 0. But the condition f ′′ = 0

implies κm = 0, which contradicts the assumption fκm 6= 0.

Consequently, in this subcase there are no meridian surfaces of hyperbolic type with

pointwise 1-type Gauss map of second kind.

Conversely, if one of the cases (i), (ii) or (iii) holds, then it can be seen that ∆G =

λ(G+ C), i.e., M′′m has pointwise 1-type Gauss map of second kind.

Meridian surfaces of parabolic type in E4
1 are defined as one-parameter systems of

meridians of the rotational hypersurface with lightlike axis analogously to the meridian

surfaces of elliptic and hyperbolic type [15]. Similarly to the elliptic and hyperbolic type

one can classify the meridian surfaces of parabolic type with pointwise 1-type Gauss map.
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