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On Vectorized Weighted Sum Formulas of Multiple Zeta Values

Chan-Liang Chung and Yao Lin Ong*

Abstract. In this paper, we introduce the vectorization of shuffle products of two sums

of multiple zeta values, which generalizes the weighted sum formula obtained by Ohno

and Zudilin. Some interesting weighted sum formulas of vectorized type are obtained,

such as ∑
α+β=k
|α|:even

M(α)M(β)
∑

|c|=|k|+r+3

2c|α|+1ζ(c0, c1, . . . , c|α|, . . . , c|k|+1 + 1)

=
1

2
(2|k|+ r + 5)M(k)ζ(|k|+ r + 4),

where α, β and k are n-tuples of nonnegative integers with |k| = k1 + k2 + · · · + kn

even; M(u) is the multinomial coefficient defined by
(
u1+u2+···+un

u1,u2,...,un

)
with the value

|u|!
u1!u2!···un!

; and r is a nonnegative integer. Moreover, some newly developed combina-

torial identities of vectorized types involving multinomial coefficients by extending the

shuffle products of two sums of multiple zeta values in their vectorizations are given

as well.

1. Introduction and statements of results

A multiple zeta value (see e.g. [1, p. 189]) is defined for a string α = (α1, α2, . . . , αr) of

positive integers with αr ≥ 2 by a convergent series

(1.1) ζ(α) = ζ(α1, α2, . . . , αr) :=
∑

1≤n1<n2<···<nr

n−α1
1 n−α2

2 · · ·n−αr
r .

The numbers |α| = α1 + α2 + · · · + αr and r are called the weight and depth of ζ(α),

respectively.

For convenience, we let {1}k be k repetitions of 1. For example,

ζ({1}2 , 3) = ζ(1, 1, 3) and ζ(2, {1}4 , 5) = ζ(2, 1, 1, 1, 1, 5).
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The following two formulas are well known. The first is the celebrated sum formula

(see [6, p. 95] or [2, p. 74]) and the second is a weighted sum formula of Y. Ohno and

W. Zudilin [7, p. 329]:

(1.2)
∑
|α|=m

ζ(α1, . . . , αr−1, αr + 1) = ζ(m+ 1),

(1.3)
∑
|α|=m

2α2ζ(α1, α2 + 1) =
1

2
(m+ 2)ζ(m+ 1),

for any positive integers m ≥ r. Hereafter we restrict all variables α1, α2, . . . , αr appearing

in a multiple zeta value to be positive integers.

There is an integral representation, due to Kontsevich (see e.g. [9, p. 510]) for multiple

zeta values in terms of iterated integrals (or Drinfel’d integrals) as a weight-dimensional

integral:

(1.4) ζ(α) =

∫
I

Ω1Ω2 · · ·Ω|α| =
∫ 1

0
· · ·
(∫ t3

0

(∫ t2

0
Ω1

)
Ω2

)
· · ·Ω|α|,

where the integral is taken over the simplex I : 0 < t1 < t2 < · · · < t|α| < 1, the differential

1-forms Ωj = dtj/(1− tj) if j ∈ {1, α1 + 1, α1 + α2 + 1, . . . , α1 + α2 + · · ·+ αr−1 + 1} and

Ωj = dtj/tj otherwise. An elementary consideration yields a depth-dimensional integral

representation as

ζ(α1, . . . , αr−1, αr + 1)

=
1

(α1 − 1)! · · · (αr−1 − 1)!αr!

∫
0<t1<t2<···<tr<1

dt1
1− t1

(
log

t2
t1

)α1−1

× dt2
1− t2

(
log

t3
t2

)α2−1
· · · dtr

1− tr

(
log

1

tr

)αr

.

(1.5)

In particular, for positive integers m and n, we have

(1.6) ζ({1}m−1 , n+ 1) =

∫
0<t1<t2<···<tm+n<1

m∏
j=1

dtj
1− tj

m+n∏
k=m+1

dtk
tk
,

from which the so-called Drinfel’d duality theorem [9, p. 510] follows easily:

(1.7) ζ({1}m−1 , n+ 1) = ζ({1}n−1 ,m+ 1).

It is worth to note that we are able to express the product of two sums of multiple

zeta values as a linear combination of multiple zeta values through the shuffle product of

sums of multiple zeta values by their Drinfel’d integral representations.
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The shuffle product of two multiple zeta values is defined as

(1.8)

∫
Ω1Ω2 · · ·Ωm

∫
Ωm+1Ωm+2 · · ·Ωm+n =

∑
σ

∫
Ωσ(1)Ωσ(2) · · ·Ωσ(m+n),

where the sum is taken over all
(
m+n
m

)
permutations σ of the set {1, 2, . . . ,m+ n}, which

preserve the orders of strings of differential forms Ω1Ω2 · · ·Ωm and Ωm+1Ωm+2 · · ·Ωm+n.

More precisely, the permutation σ satisfies the condition

σ−1(i) < σ−1(j)

for all 1 ≤ i < j ≤ m and m + 1 ≤ i < j ≤ m + n. Unfortunately, it is typically painful

and laborious to produce shuffle relations from shuffle products. We, therefore, restrict

our attention to the so-called height-one multiple zeta value

ζ({1}m−1 , n+ 1),

or sums of multiple zeta values which can be further expressed as integrals (in one variable)

or double integrals (in two variables).

The following two propositions are essential to transform multiple zeta values into

integrals, and vice versa.

Proposition 1.1. [3, 4] For nonnegative integers m and n, we have

ζ({1}m , n+ 2) =
1

m!(n+ 1)!

∫ 1

0

(
log

1

1− t

)m(
log

1

t

)n+1 dt

1− t

=
1

m!n!

∫
0<t1<t2<1

(
log

1

1− t1

)m(
log

1

t2

)n dt1dt2
(1− t1)t2

.

(1.9)

Proposition 1.2. [3, 4] For nonnegative integers p, q, r and n, we have

∑
|α|=q+r+1

ζ({1}p , α0, . . . , αq−1, αq + n+ 1)

=
1

p!q!r!n!

∫
0<t1<t2<1

(
log

1

1− t1

)p(
log

1− t1
1− t2

)q (
log

t2
t1

)r (
log

1

t2

)n dt1dt2
(1− t1)t2

.

(1.10)

Some generalizations of the weighted sum formula has already been given. For example,

the integral

(1.11)
1

k!r!

∫∫
R1×R2

(
log

1− t1
1− t2

− log
1− u1
1− u2

)k (
log

t2
t1

+ log
u2
u1

)r dt1dt2
(1− t1)t2

du1du2
(1− u1)u2

with R1 : 0 < t1 < t2 < 1, R2 : 0 < u1 < u2 < 1; and a pair of nonnegative integers k, r

with k even, leads to the following.
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Theorem 1.3. [8, p. 1189] For a pair of positive integers m and k with m ≥ k, we have

(1.12)
∑
|α|=m

k∑
j=1,
j:even

2αjζ(α1, . . . , αk−1, αk + 1) =
m+ k

2
ζ(m+ 1).

On the other hand, to deal with the case when k is odd, the integral with a parameter

µ as

(1.13)

1

k!r!

∫∫
R1×R2

(
µ log

1− t1
1− t2

+ log
1− u1
1− u2

)k (
log

t2
t1

+ log
u2
u1

)r dt1dt2
(1− t1)t2

du1du2
(1− u1)u2

leads to the following.

Theorem 1.4. [8, pp. 1195–1196] For a pair of positive integers n, k with k odd and

n > k ≥ 3, we have

(k − 2)
k∑

j=2,
j:even

∑
|α|=n

2αjζ(α1, . . . , αk−1, αk + 1)

+
k∑
j=1

(j − 1)(−1)j
∑
|α|=n

2αjζ(α1, . . . , αk−1, αk + 1)

+
k∑

j=2,
j:even

∑
|α|=n

2αj (2αj+1 − 2)ζ(α1, . . . , αk−1, αk + 1)

=
(k − 1)(n+ k − 2)

2
ζ(n+ 1).

(1.14)

In this paper, a general procedure of the vectorization of the relations among multi-

ple zeta values, such as the weighted sum formula, is completely developed. We obtain

the vectorized weighted sum formula in Sections 2 and 3 simply by changing the specific

exponent of the integrand of the integral such as (1.13) into a vector. Finally, several

applications of the shuffle relations for two families of multiple zeta values in the com-

binatorial identities involving multinomial coefficients will be given in the final section.

2. Vectorized weighted sum formulas

Let R1 : 0 < t1 < t2 < 1 and R2 : 0 < u1 < u2 < 1. For an n-tuple of nonnegative

integers k = (k1, k2, . . . , kn) and another nonnegative integer r, we consider the integral

with parameters µ1, µ2, . . . , µn given by

1

k1!k2! · · · kn!r!

∫∫
R1×R2

n∏
i=1

(
µi log

1− t1
1− t2

+ log
1− u1
1− u2

)ki
×
(

log
t2
t1

+ log
u2
u1

)r dt1dt2
(1− t1)t2

du1du2
(1− u1)u2

.

(2.1)
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For convenience, we employ some vectorized notations

µα = µα1
1 µα2

2 · · ·µ
αn
n ; k! = k1!k2! · · · kn!; k + 1 = (k1 + 1, k2 + 1, . . . , kn + 1)

and the multinomial coefficient

M(α) =

(
α1 + α2 + · · ·+ αn
α1, α2, . . . , αn

)
=

|α|!
α1!α2! · · ·αn!

for an n-tuple of nonnegative integers α = (α1, α2, . . . , αn) with |α| = α1 +α2 + · · ·+αn.

If we replace each component(
µi log

1− t1
1− t2

+ log
1− u1
1− u2

)ki
and (

log
t2
t1

+ log
u2
u1

)r
of the integrand of the integral (2.1) by their binomial expansions as

(2.2)
∑

αi+βi=ki

ki!

αi!βi!
µαi
i

(
log

1− t1
1− t2

)αi
(

log
1− u1
1− u2

)βi
,

for i = 1, 2, . . . , n, and

(2.3)
r∑
`=0

(
r

`

)(
log

t2
t1

)r−`(
log

u2
u1

)`
,

respectively, then the value of the integral (2.1) is given by

(2.4)
∑

α+β=k

µαM(α)M(β)
r∑
`=0

ζ(|α|+ r − `+ 2)ζ(|β|+ `+ 2)

in light of Proposition 1.2 and the sum formula (1.2). On the other hand, the domain R1×
R2 of the integral is decomposed into six simplices produced from all possible interlacings

of variables t1, t2, u1, u2 in the following:

D1 : 0 < t1 < t2 < u1 < u2 < 1, D2 : 0 < u1 < u2 < t1 < t2 < 1,

D3 : 0 < t1 < u1 < t2 < u2 < 1, D4 : 0 < t1 < u1 < u2 < t2 < 1,

D5 : 0 < u1 < t1 < u2 < t2 < 1, D6 : 0 < u1 < t1 < t2 < u2 < 1.

For the simplexD1, substituting the integrands
(
µi log 1−t1

1−t2 + log 1−u1
1−u2

)ki
and

(
log t2

t1
+

log u2
u1

)r
by their binomial expansions as (2.2) and (2.3), respectively. Then the value of

the integral (2.1) over D1 in terms of multiple zeta values leads to∑
α+β=k

µαM(α)M(β)

r∑
`=0

ζ(|α|+ r − `+ 2, |β|+ `+ 2).
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Similarly, the value of the integral (2.1) over D2 in terms of multiple zeta values is given

by ∑
α+β=k

µαM(α)M(β)
r∑
`=0

ζ(|β|+ `+ 2, |α|+ r − `+ 2).

Hence, the the total value of the integral (2.1) minus the values of the integrals over D1

and D2 is ∑
α+β=k

µαM(α)M(β)(r + 1)ζ(|k|+ r + 4),

in light of (2.2) and the reflection formula [5, p. 71]:

ζ(p, q) + ζ(q, p) = ζ(p)ζ(q)− ζ(p+ q), p, q ≥ 2.

For the simplexD3, substituting the integrands
(
µi log 1−t1

1−t2 + log 1−u1
1−u2

)ki
and

(
log t2

t1
+

log u2
u1

)r
by their multinomial expansions as

∑
αi+βi+γi=ki

µαi
i (µi + 1)βi

ki!

αi!βi!γi!

(
log

1− t1
1− u1

)αi
(

log
1− u1
1− t2

)βi (
log

1− t2
1− u2

)γi
,

and ∑
m+n+p=r

2n
r!

m!n!p!

(
log

u1
t1

)m(
log

t2
u1

)n(
log

u2
t2

)p
,

respectively. Then the value of the integral (2.1) over D3 turns out to be∑
α+β+γ=k

M(α)M(β)M(γ)

×
∑

m+n+p=r

2n
∑

|c|=|α|+m+1
|d|=|β|+n+1
|g|=|γ|+p+1

ζ(c0, c1, . . . , c|α|, d0, d1, . . . , d|β| + g0, g1, . . . , g|γ| + 1)

× µα(µ+ 1)β.

In the similar manner, we evaluate the values of the integral (2.1) over D4, D5 and D6.

Then by adding together all these values of the integrals from D3 to D6, we obtain the

following shuffle relation:∑
α+β+γ=k

M(α)M(β)M(γ)
∑

m+n+p=r

2n

×
∑

|c|=|α|+m+1
|d|=|β|+n+1
|g|=|γ|+p+1

ζ(c0, c1, . . . , c|α|, d0, d1, . . . , d|β| + g0, g1, . . . , g|γ| + 1)

×
[
(µ+ 1)β(µα + µγ + µα+γ + 1)

]
=

∑
α+β=k

µαM(α)M(β)(r + 1)ζ(|k|+ r + 4).

(2.5)
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When |k| is even, setting µ1 = µ2 = · · · = µn = −1 in (2.5) leads to the following shuffle

relation ∑
α+β=k
|α|:even

M(α)M(β)
∑

|c|=|k|+r+3

(2c|α|+1 − 2)ζ(c0, . . . , c|k|, c|k|+1 + 1)

=
1

2
M(k)(r + 1)ζ(|k|+ r + 4).

(2.6)

In light of the sum formula∑
|c|=|k|+r+3

ζ(c0, . . . , c|k|, c|k|+1 + 1) = ζ(|k|+ r + 4)

and the identity

2
∑

α+β=k
|α|:even

M(α)M(β) =
∑

α+β=k

{
1 + (−1)|α|

}
M(α)M(β)

= (|k|+ 2)M(k),

the shuffle relation (2.6) could be rewritten as follows.

Main Theorem 2.1. Suppose that k = (k1, k2, . . . , kn) is an n-tuple of nonnegative

integers and r is a nonnegative integer. When |k| = k1 + k2 + · · ·+ kn is even, we have∑
α+β=k
|α|:even

M(α)M(β)
∑

|c|=|k|+r+3

2c|α|+1ζ(c0, . . . , c|α|, . . . , c|k|, c|k|+1 + 1)

=
1

2
(2|k|+ r + 5)M(k)ζ(|k|+ r + 4).

When |k| is odd, then at least one of k1, k2, . . . , kn should be odd. Without lost

of generality, we suppose that k1 is odd. Multiply both sides of (2.5) by µ1 and then

differentiate (2.5) with respect to µ1. Setting µ1 = µ2 = · · · = µn = −1 leads to the

following.

Theorem 2.2. Suppose that k = (k1, k2, . . . , kn) is an n-tuple of nonnegative integers

with both |k| and k1 odd, and r is a nonnegative integer. Then we have

k1
∑

α+β=k
|α|:even

M(α)M(β)
∑

|c|=|k|+r+3

(2c|α|+1 − 2)ζ(c0, . . . , c|α|, . . . , c|k|, c|k|+1 + 1)

+
∑

α+β=k

α1(−1)|α|M(α)M(β)
∑

|c|=|k|+r+3

(2c|α|+1 − 2)ζ(c0, . . . , c|α|, . . . , c|k|, c|k|+1 + 1)

+
∑

α+β=k
|α|:even
α1≤k1−1

M(α)M(β)
∑

|c|=|k|+r+3

2c|α|+1(2c|α|+2 − 2)ζ(c0, . . . , c|α|, . . . , c|k|, c|k|+1 + 1)

=
∑

α+β=k

(α1 + 1)(−1)|α|+1M(α)M(β)(r + 1)ζ(|k|+ r + 4).
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Also if we set µ1 = µ2 = · · · = µn = 1 in (2.5), then we obtain another vectorized

shuffle relation in the following.

Theorem 2.3. Suppose that k = (k1, k2, . . . , kn) is an n-tuple of nonnegative integers and

r is a nonnegative integer. Then∑
α+β+γ=k

M(α)M(β)M(γ)
∑

|c|=|k|+r+3

w(|α|, |β|)ζ(c0, . . . , c|α|, . . . , c|k|, c|k|+1 + 1)

=
1

2
(|k|+ 1)(r + 1)M(k)ζ(|k|+ r + 4)

with w(u, v) = 2αu+1+αu+2+···+αu+v(2αu+v+1 − 2).

3. A special case of vectorized version

We need to pay a special attention to the integral (2.1) when k = (p, q) and µ1 = 1,

µ2 = −1. This is equivalent to carry out the shuffle product beginning with the integral

1

p!q!r!

∫∫
R1×R2

(
log

1− t1
1− t2

+ log
1− u1
1− u2

)p(
− log

1− t1
1− t2

+ log
1− u1
1− u2

)q
×
(

log
t2
t1

+ log
u2
u1

)r dt1dt2
(1− t1)t2

du1du2
(1− u1)u2

.

The value of such integral is∑
a+b=p

∑
c+d=q

(−1)c
(
a+ c

a

)(
b+ d

b

) r∑
`=0

ζ(a+ c+ r − `+ 2)ζ(b+ d+ `+ 2)

under the same argument mentioned in (2.2). However, we need the following identity to

cope with this special case.

Proposition 3.1. For a pair of nonnegative integers p, q with q even, we have

(3.1)
∑
a+b=p

∑
c+d=q

(−1)c
(
a+ c

a

)(
b+ d

b

)
=

(
p+ q + 1

p

)
.

Proof. We interpret the sum of products of binomial coefficient of (3.1) as the coefficient

of xq of the rational function

(3.2)
∑
a+b=p

1

(1 + x)a+1(1− x)b+1

when it was expanded into power series at x = 0. Note that the rational function (3.2) is

equal to
1

2x

[
1

(1− x)p+1
− 1

(1 + x)p+1

]
,

which has the coefficient of xq as

1

2

[(
p+ q + 1

p

)
− (−1)q+1

(
p+ q + 1

p

)]
=

(
p+ q + 1

p

)
.
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Therefore, when q is even, the resulted shuffle relation is given as∑
a+b+c=p

2b+1
∑
g+h=q
g:even

(
a+ g

a

)(
c+ h

c

) ∑
m+n+`=r

2n

×
∑

|α|=a+g+m+1
|β|=b+n+1
|γ|=c+h+`+1

ζ(α0, α1, . . . , αa+g, β0, β1, . . . , βb + γ0, γ1, . . . , γc+h + 1)

=
1

2

(
p+ q + 1

p

)
ζ(p+ q + r + 4).

With some refinements in notations, the following identity is obtained.

Theorem 3.2. For a pair of nonnegative integers p, q with q is even, we have∑
a+b+c=p
g+h=q
g:even

(
a+ g

a

)(
c+ h

c

) ∑
|α|=p+q+r+3

w(a+ g, b)ζ(α0, α1, . . . , αa+g, . . . , αp+q+1 + 1)

=
1

2

(
p+ q + 1

p

)
ζ(p+ q + r + 4),

with w(u, v) = 2αu+1+αu+2+···+αu+v(2αu+v+1 − 2).

For the case when q is odd, we begin with the integral with a parameter

1

p!q!r!

∫∫
R1×R2

(
log

1− t1
1− t2

+ log
1− u1
1− u2

)p(
µ log

1− t1
1− t2

+ log
1− u1
1− u2

)q
×
(

log
t2
t1

+ log
u2
u1

)r dt1dt2
(1− t1)t2

du1du2
(1− u1)u2

.

(3.3)

Again, under the same argument mentioned in (2.2) as well as the shuffle product process

mentioned in [8, pp. 1190–1193], (3.3) is equal to∑
a+b=p

∑
c+d=q

µc
∑

m+n=r

(
a+ c

a

)(
b+ d

b

)
ζ(a+ c+m+ 2)ζ(b+ d+m+ 2),

and the resulted shuffle relation is given by∑
a+b=p

∑
c+d=q

µc
(
a+ c

a

)(
b+ d

b

)
(r + 1)ζ(p+ q + r + 4)

=
∑

a+b+c=p

2b
∑

g+h+k=q

∑
m+n+`=r

2n
(
a+ g

a

)(
b+ h

b

)(
c+ k

c

)
×

∑
|α|=a+g+m+1
|β|=b+h+n+1
|γ|=c+k+`+1

ζ(α0, α1, . . . , αa+g, β0, β1, . . . , βb+h + γ0, γ1, . . . , γc+k + 1)

×
[
(µ+ 1)h(µg + µk + µg+k + 1)

]
.

(3.4)
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The following basic identity is necessary to our exploration.

Proposition 3.3. For a pair of nonnegative integers p, q with q odd, we have

(3.5)
∑
a+b=p

∑
c+d=q

(c+ 1)(−1)c
(
a+ c

a

)(
b+ d

b

)
= −1

2
(p+ 1)

(
p+ q + 1

p+ 1

)
.

Proof. The sum involving the binomial coefficients on the left hand side of (3.5)

(3.6)
∑
a+b=p

∑
c+d=q

(c+ 1)(−1)c
(
a+ c

a

)(
b+ d

b

)
could be obtained by multiplying the double sum

(3.7)
∑
a+b=p

∑
c+d=q

µc
(
a+ c

a

)(
b+ d

b

)
by µ; differentiating with respect to µ and then setting µ = −1. However, the double sum

(3.7) is the coefficient of xq of the Taylor expansion at x = 0 of the rational function

(3.8)
∑
a+b=p

1

(1− µx)a+1(1− x)b+1
,

which is equal to the following rational function

(3.9)
∑
a+b=p

[
1

(1 + x)a+1(1− x)b+1
− (a+ 1)x

(1 + x)a+2(1− x)b+1

]
after executing the same procedure as shown in the derivation of (3.6). Since the coefficient

of xq of the rational function (3.9) is given by

−1

2
(p+ 1)

(
p+ q + 1

p+ 1

)
,

our assertion is done.

In light of Proposition 3.3, the following identity is obtained.

Theorem 3.4. For a pair of nonnegative integers p, q with q odd, we have

q
∑

a+b+c=p

∑
g+h=q
g:even

(
a+ g

a

)(
c+ h

c

)

×
∑

|α|=p+q+r+3

w(a+ g, b)ζ(α0, α1, . . . , αa+g, . . . , αp+q, αp+q+1 + 1)

+
∑

a+b+c=p

∑
g+h=q

g(−1)g
(
a+ g

a

)(
c+ h

c

)
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×
∑

|α|=p+q+r+3

w(a+ g, b)ζ(α0, α1, . . . , αa+g, . . . , αp+q, αp+q+1 + 1)

+
∑

a+b+c=p

∑
g+h=q−1
g:even

(
a+ g

a

)(
b+ 1

b

)(
c+ h

c

)

×
∑

|α|=p+q+r+3

w(a+ g, b+ 1)ζ(α0, α1, . . . , αa+g, . . . , αp+q, αp+q+1 + 1)

=
1

2

(
p+ q + 1

p

)
(p+ 1)(r + 1)ζ(p+ q + r + 4),

with w(u, v) = 2αu+1+αu+2+···+αu+v(2αu+v+1 − 2).

4. Further generalizations

Let k = (k1, k2, . . . , km) and r = (r1, r2, . . . , rn) be m-tuple and n-tuple of nonnegative

integers, respectively. We shall give the evaluation of the triple product(
|j|+ |r − `|

|j|

)(
|k − j|+ |`|

|`|

)(
|k|+ |r|+ 4

|j|+ |r − `|+ 2

)
in the following, where

j = (j1, j2, . . . , jm), 0 ≤ ji ≤ ki, i = 1, 2, . . . ,m

and

` = (`1, `2, . . . , `n), 0 ≤ `g ≤ rg, g = 1, 2, . . . , n.

We begin with the integral

1

k!r!

∫∫
R1×R2

m∏
i=1

(
µi log

1− t1
1− t2

+ log
1− u1
1− u2

)ki n∏
g=1

(
log

t2
t1

+ λg log
u2
u1

)rg
× dt1dt2

(1− t1)t2
du1du2

(1− u1)u2
,

(4.1)

which has the value

(4.2)
∑

α+β=k

∑
γ+δ=r

µαλδM(α)M(γ)M(β)M(δ)ζ(|α|+ |γ|+ 2)ζ(|β|+ |δ|+ 2)

after the binomial expansions based on the similar argument given in (2.2). However, we

need some particular notations in order to develop the generating function of the number

of multiple zeta values produced from (4.2).

Given nonnegative integer m, and two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . ,

vn) with nonnegative integer components, we denote M(u,m) and M(u,v) by(
u1 + u2 + · · ·+ un +m

u1, u2, . . . , un,m

)
=

(u1 + u2 + · · ·+ un +m)!

u1!u2! · · ·un!m!
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and (
|u|+ |v|

u1, u2, . . . , un, v1, v2, . . . , vn

)
=

(|u|+ |v|)!
u1!u2! · · ·un!v1!v2! · · · vn!

,

respectively.

Since the number of multiple zeta values regarding to ζ(|α|+|γ|+2) in (4.2) is
(|α|+|γ|
|γ|

)
whereas that regarding to ζ(|β| + |δ| + 2) in (4.2) is

(|β|+|δ|
|δ|

)
due to the applications of

the sum formula (1.2) in (4.2), we conclude that the generating function for the number

of multiple zeta values produced from the shuffle product process is

(4.3)
∑

α+β=k

∑
γ+δ=r

µαλδM(α,γ)M(β, δ)

(
|k|+ |r|+ 4

|α|+ |γ|+ 2

)

with the help of the trivial identity

M(u,v) =

(
|u|+ |v|
|v|

)
M(u)M(v).

We introduce two useful propositions before entering the shuffle process.

Proposition 4.1. For nonnegative integers m,n, k and µ, let

(4.4) P (m,n, k;µ) =
∑
a+b=k

(µ+ 1)b
(
m+ a

m

)(
n+ b

n

)
.

Then for 0 ≤ j ≤ k, the coefficient of µj of P (m,n, k;µ) is(
n+ j

j

)(
m+ n+ k + 1

k − j

)
.

That is,

P (m,n, k;µ) =
k∑
j=0

(
n+ j

j

)(
m+ n+ k + 1

k − j

)
µj .

Proof. As

1

(1− x)m+1
=
∞∑
a=0

(
m+ a

m

)
xa

and
1

[1− (µ+ 1)x]n+1
=

∞∑
b=0

(µ+ 1)b
(
n+ b

n

)
xb

so that P (m,n, k;µ) is just the coefficient of xk of the product

1

(1− x)m+1

1

[1− (µ+ 1)x]n+1
.
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The coefficient of µj of the above product is

1

j!

(
∂

∂µ

)j [ 1

(1− x)m+1

1

[1− (µ+ 1)x]n+1

]∣∣∣∣
µ=0

=

(
n+ j

j

)
xj

(1− x)m+n+j+2
.

Note that the coefficient of µj in P (m,n, k;µ) is equal to the coefficient of xk in(
n+ j

j

)
xj

(1− x)m+n+j+2

which is (
n+ j

j

)(
m+ n+ k + 1

k − j

)
.

For nonnegative integers m,n, k and µ, let

Q(m,n, k;µ) =
∑
a+b=k

µa(µ+ 1)b
(
m+ a

m

)(
n+ b

n

)
= µk

∑
a+b=k

(µ−1 + 1)b
(
m+ a

m

)(
n+ b

n

)
.

(4.5)

Corollary 4.2. Notation as above, then the coefficient of µj of Q(m,n, k;µ) for 0 ≤ j ≤ k
is (

n+ k − j
k − j

)(
m+ n+ k + 1

j

)
.

The vectorized version of the above conclusion is given as follows.

Proposition 4.3. Let m be a nonnegative integer and k = (k1, k2, . . . , kn), j = (j1, j2, . . . ,

jn) with 0 ≤ ji ≤ ki, i = 1, 2, . . . , n be n-tuples of nonnegative integers. Then the coeffi-

cient of µj of the polynomial

(4.6)
∑

α+β=k

(µ+ 1)αM(α)M(β,m)

is (
m+ |k|+ 1

|k − j|

)
M(j)M(k − j).

Proof. Note that

M(α) =

(
|α|
α1

)
M ((α2, . . . , αn))

and

M(β,m) =

(
|β|+m

β1

)
M ((β2, . . . , βn),m)
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and the coefficient of µj11 of the polynomial∑
α1+β1=k1

(
|α|
α1

)(
|β|+m

β1

)
(µ1 + 1)α1

is (
α2 + · · ·+ αn + j1

j1

)(
m+ |k|+ 1

k1 − j1

)
.

Therefore the coefficient of µj11 in the polynomial (4.6) is(
m+ |k|+ 1

k1 − j1

)∑
(µ2 + 1)α2 · · · (µn + 1)αnM ((α2, . . . , αn), j1)M ((β2, . . . , βn),m) ,

where the summation is taking over αi + βi for i = 2, 3, . . . , n. By repeating same process

(n− 1) times, we obtain the coefficient of µj of the polynomial (4.6) is(
m+ |k|+ 1

k1 − j1, k2 − j2, . . . , kn − jn,m+ |j|+ 1

)
M(j)

or

M(j)M(k − j)

(
m+ |k|+ 1

|k − j|

)
.

Corollary 4.4. If m and n are two nonnegative integers and α, β, k are three vectors

with nonnegative integer components, then we have the followings.

(1) The coefficient of µj of the polynomial∑
α+β=k

(µ+ 1)βM(α,m)M(β, n)

is (
n+ |j|
|j|

)(
m+ n+ |k|+ 1

|k − j|

)
M(j)M(k − j).

(2) The coefficient of µj of the polynomial∑
α+β=k

µα(µ+ 1)βM(α,m)M(β, n)

is (
n+ |k − j|
|k − j|

)(
m+ n+ |k|+ 1

|j|

)
M(j)M(k − j).

Now, let’s begin the shuffle process of the integration (4.1) over the following six

simplices:

D1 : 0 < t1 < t2 < u1 < u2 < 1, D2 : 0 < u1 < u2 < t1 < t2 < 1,

D3 : 0 < t1 < u1 < t2 < u2 < 1, D4 : 0 < t1 < u1 < u2 < t2 < 1,

D5 : 0 < u1 < t1 < u2 < t2 < 1, D6 : 0 < u1 < t1 < t2 < u2 < 1.
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On the first simplex D1 : 0 < t1 < t2 < u1 < u2 < 1, replace the factors(
µi log

1− t1
1− t2

+ log
1− u1
1− u2

)ki
and (

log
t2
t1

+ λg log
u2
u1

)rg
by ∑

αi+βi=ki

ki!

αi!βi!

(
µi log

1− t1
1− t2

)αi
(

log
1− u1
1− u2

)βi
, i = 1, 2, . . . ,m

and ∑
ρj+υj=rj

rj !

ρj !υj !

(
log

t2
t1

)ρi (
λg log

u2
u1

)υj
, g = 1, 2, . . . , n,

respectively, then the generating function for the number of multiple zeta values is

(4.7)
∑

α+β=k

∑
ρ+υ=r

µαλυM(α,ρ)M(β,υ),

and the coefficient of µjλ` is

M(j,γ − `)M(k − j, `),

which is equal to

M(j)M(k − j)M(`)M(r − `)

(
|j|+ |r − `|
|r − `|

)(
|k − j|+ |`|

|`|

)
.

Since the integration (4.1) over D2 produces the same generating function of the integra-

tion over D1, we conclude that the coefficient of µjλ` of (4.7) over D1 and D2 is given

as

(4.8) 2M(j)M(k − j)M(`)M(r − `)

(
|j|+ |r − `|
|r − `|

)(
|k − j|+ |`|

|`|

)
.

Similarly, the integration over D5 also produces the same generating function of the

integration over D3, so we only consider the partial generating function over D3 in what

follows.

On the simplex D3 : 0 < t1 < u1 < t2 < u2 < 1, replace the factors(
µi log

1− t1
1− t2

+ log
1− u1
1− u2

)ki
and (

log
t2
t1

+ λg log
u2
u1

)rg



258 Chan-Liang Chung and Yao Lin Ong

by ∑
αi+βi+γi=ki

ki!

αi!βi!γi!

(
µi log

1− t1
1− u1

)αi
(

(µi + 1) log
1− u1
1− t2

)βi (
log

1− t2
1− u2

)γi
for i = 1, 2, . . . ,m and∑

ρj+υj+ωj=rj

rj !

ρj !υj !ωj !

(
log

u1
t1

)ρj (
(λg + 1) log

t2
u1

)υj (
λg log

u2
t2

)ωj

for g = 1, 2, . . . , n, respectively. Then the generating function for the number of multiple

zeta values is

(4.9)
∑

α+β+γ=k

µα(µ+ 1)β
∑

ρ+υ+ω=r

(λ+ 1)υλωM(α,ρ)M(β,υ)M(γ,ω),

which is equal to∑
α+β+γ=k

µα(µ+ 1)β
∑

ρ+υ+ω=r

(λ+ 1)υλωM(ρ, |α|)M(υ, |β|)M(ω, |γ|)

×M(α)M(β)M(γ).

(4.10)

For the coefficient of µjλ` of the polynomial (4.9), we consider the coefficient of λ`−ω of

the polynomial

(4.11)
∑

ρ+υ+ω=r

(λ+ 1)υM(ρ, |α|)M(υ, |β|)

first. Merge the dummy variables r and ω via Corollary 4.4 leads to the coefficient of

λ`−ω of (4.11) in what follows

(4.12)

(
|β|+ |`− ω|
|`− ω|

)(
|α|+ |β|+ |r − ω|+ 1

|r − `|

)
M(`− ω)M(r − `),

which is the coefficient of λ` of the polynomial

(4.13)
∑

ρ+υ+ω=r

(λ+ 1)υλωM(ρ, |α|)M(υ, |β|).

Therefore, the coefficient of λ` of the polynomial

(4.14)
∑

ρ+υ+ω=r

(λ+ 1)υλωM(ρ, |α|)M(υ, |β|)M(ω, |γ|)

is given by

(4.15)∑
m+n=|`|

(
m+ |β|
m

)(
n+ |r|
n

)(
|α|+ |β|+ |r − `|+m+ 1

|r − `|

)
M(`− ω)M(ω)M(r − `)
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if we set m = |`− ω| and n = |ω|.
On the other hand, the coefficient of µj of the polynomial

(4.16)
∑

α+β+γ=k

µα(µ+ 1)βM(β,m)M(α)

is given by

(4.17)

(
m+ |k − γ − j|
|k − γ − j|

)(
|k − γ|+m+ 1

|j|

)
M(j)M(k − γ − j)

in light of Corollary 4.4 after merging two dummy variables k and γ. Consequently, the

coefficient of µjλ` of the polynomial (4.9) is given by

M(j)M(k − j)M(`)M(r − `)

×
∑

a+b=|k−j|

∑
m+n=|`|

(
a+m

a

)(
b+ n

b

)(
a+m+ |j|+ |r − `|+ 1

|r − `|, |j|, a+m+ 1

)
(4.18)

if we set a = |k − γ − j| and b = |γ|.
In the same manner, we obtain the generating functions over D4 : 0 < t1 < u1 < u2 <

t2 < 1 and D6 : 0 < u1 < t1 < t2 < u2 < 1 as

(4.19)
∑

α+β+γ=k

µα+γ(µ+ 1)β
∑

ρ+υ+ω=r

(λ+ 1)υM(α,ρ)M(β,υ)M(γ,ω),

and

(4.20)
∑

α+β+γ=k

(µ+ 1)β
∑

ρ+υ+ω=r

(λ+ 1)υλυ+ωM(α,ρ)M(β,υ)M(γ,ω),

respectively. With the help of Corollary 4.4, the coefficients of µjλ` of (4.19) and (4.20)

are given as

(4.21) M(j)M(k − j)M(`)M(r − `)
(
|k|+ |r|+ 2

|j|

)(
|k − j|+ |`|

|`|

)(
|r|+ |k − j|+ 2

|r − `|

)
and

(4.22) M(j)M(k − j)M(`)M(r − `)
(
|k|+ |r|+ 2

|k − j|

)(
|j|+ |r − `|
|r − `|

)(
|r|+ |j|+ 2

|`|

)
,

respectively. It is evident that (4.3) = 2× (4.7)+2× (4.9)+(4.19)+(4.20). By comparing

the coefficient of µjλ` on both sides of the above identity, we conclude the following

theorem.
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Theorem 4.5. For nonnegative integers a, b,m and n, and the vectors with nonnegative

integer components k = (k1, k2, . . . , km), r = (r1, r2, . . . , rn),

j = (j1, j2, . . . , jm), 0 ≤ ji ≤ ki, i = 1, 2, . . . ,m

and

` = (`1, `2, . . . , `n), 0 ≤ `g ≤ rg, g = 1, 2, . . . , n,

we have (
|j|+ |r − `|

|j|

)(
|k − j|+ |`|

|`|

){(
|k|+ |r|+ 4

|j|+ |r − `|+ 2

)
− 2

}
=

(
|k|+ |r|+ 2

|j|

)(
|k − j|+ |`|

|`|

)(
|r|+ |k − j|+ 2

|r − `|

)
+

(
|k|+ |r|+ 2

|k − j|

)(
|j|+ |r − `|
|r − `|

)(
|r|+ |j|+ 2

|`|

)
+ 2

∑
a+b=|k−j|

∑
m+n=|`|

(
a+m

a

)(
b+ n

b

)(
a+m+ 1 + |j|+ |r − `|
a+m+ 1, |j|, |r − `|

)
.

(4.23)
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