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Bifurcation and Stability for the Unstirred Chemostat Model with

Beddington-DeAngelis Functional Response

Shanbing Li*, Jianhua Wu and Yaying Dong

Abstract. In this paper, we consider a basic N -dimensional competition model in the

unstirred chemostat with Beddington-DeAngelis functional response. The bifurcation

solutions from a simple eigenvalue and a double eigenvalue are obtained respectively.

In particular, for the double eigenvalue, we establish the existence and stability of

coexistence solutions by the techniques of space decomposition and Lyapunov-Schmidt

procedure. Moreover, we describe the global structure of these bifurcation solutions.

1. Introduction

The chemostat is a piece of laboratory apparatus, which captures the essentials of exploita-

tive competition in an open system, such as a simple lake, a system of waste treatment and

a commercial reactor of fermentation processes. Moreover, the chemostat is a standard

kind of mathematical models that has been extensively applied in ecology to model bio-

logical behavior of a simple lake and in biotechnology to model bioreaction in commercial

bioreactors. Generally, the chemostat consists of a nutrient input-with all nutrients needed

for growth in abundance except one-pumped at a constant rate into a well-stirred culture

vessel whose volume is kept constant by pumping the contents out at the same rate, and

therefore its contents are spatially homogeneous. A detailed mathematical description of

competition in the chemostat can be found in [19] and [22].

Current continuous culture theory is mainly based on the relationship between limit-

ing substrate concentration and growth rate as originally introduced by Monod in [14].

A detailed theoretical derivation of the chemostat equations with Monod function can be

found in [19, 22]. A lot of works for the chemostat models with Monod functions have

been done in the past decades, one can refer to [6, 7, 9, 10, 15, 16, 23, 29, 30]. In particular,

the basic unstirred chemostat model has received considerable attention. Hsu and Walt-

man [9] analyzed the asymptotic behavior of solutions by theory of uniform persistence in
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infinite-dimensional dynamical system and the theory of strongly order-preserving semi-

dynamical system. Dung and Smith [6] discussed the co-existence states of the general

unstirred chemostat model with one nutrient by degree theory. In [23], the local coexis-

tence of positive solutions was obtained by the standard bifurcation theorems in the one

dimensional case. Later, Wu [29] obtained the corresponding results in the N -dimensional

case. Moreover, the local stability for the local coexistence solutions and global structure

of the coexistence solutions were established. Furthermore, Nie and Wu [16] studied the

uniqueness and stability of coexistence solutions by Lyapunov-Schmidt procedure and per-

turbation technique. Recently, Guo et al. derived the bifurcation solution from a double

eigenvalue in [7].

Unfortunately, as it has been pointed out in [2,18,28], the Monod relationship cannot

be valid for substrates which are growth limiting at low concentrations but are inhibitory

for the species at higher concentrations, and the functional response should depend not

only on the prey density but also on the predator density. Beddington [1] and DeAngelis et

al. [5] proposed a functional response that depends on the prey density and the predator

density, i.e., Beddington-DeAngelis functional response. On the Beddington-DeAngelis

functional response, a mathematical model of competition between two species in the

unstirred chemostat was considered in [25–27]. However, they only focus on the reaction-

diffusion system in one-dimensional domain case. There, the local and global coexistence

solutions were derived and local stability for the coexistence solutions was established.

Moreover, the effect of the parameter was considered in detailed in [27]. For more studies

on the chemostat model with the Beddington-DeAngelis functional response, one can refer

to [17,20,24,33–35].

A common feature of all these studies on the chemostat model with the Beddington-

DeAngelis functional response has been that the existence of the coexistence solutions is

obtained by the simple eigenvalue bifurcation theorem. Naturally, we hope to know what

happens to the existence of coexistence states when m1, m2 are some critical points where

double eigenvalue appears. To our knowledge, there are few works about the bifurcation

from a double eigenvalue in the unstirred chemostat with Beddington-DeAngelis functional

response. Therefore, in this paper, we investigate the bifurcation from a double eigenvalue

and establish the existence and stability of coexistence states on the unstirred chemostat

model with Beddington-DeAngelis functional response, that is, we consider the basic N -

dimensional competition model in the unstirred case:

(1.1)


St = ∆S −m1uf(S, u)−m2vg(S, v), x ∈ Ω, t > 0,

ut = ∆u+m1uf(S, u), x ∈ Ω, t > 0,

vt = ∆v +m2vg(S, v), x ∈ Ω, t > 0
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with boundary conditions
∂S

∂n
+ d(x)S = h(x), x ∈ ∂Ω, t > 0,

∂u

∂n
+ d(x)u = 0,

∂v

∂n
+ d(x)v = 0, x ∈ ∂Ω, t > 0,

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω; S(x, t) denotes

the nutrient concentration at time t, and u(x, t), v(x, t) denote the concentrations of the

two organisms in the culture vessel, respectively; f(S, u) = S
1+k1S+β1u

and g(S, v) =
S

1+k2S+β2v
are the Beddington-DeAngelis functions. Here, the parameters mi, ki, βi (i =

1, 2) are positive constants, where mi (i = 1, 2) are the maximal growth rates of the two

competitors (without an inhibitor), respectively; ki (i = 1, 2) are the Michaelis-Menten

constants; βi (i = 1, 2) model mutual interference between predators u, v respectively;

d(x), h(x) are continuous and non-negative on ∂Ω. Let Υ1 = {x ∈ ∂Ω : d(x) = 0}. We

assume that Υ1 6= ∅, Υ1 6= ∂Ω and h(x) is positive on Υ1.

In this paper, we are interested in the steady-state problem corresponding to the system

(1.1):

(1.2)



∆S −m1uf(S, u)−m2vg(S, v) = 0, x ∈ Ω,

∆u+m1uf(S, u) = 0, x ∈ Ω,

∆v +m2vg(S, v) = 0, x ∈ Ω,
∂S

∂n
+ d(x)S = h(x), x ∈ ∂Ω,

∂u

∂n
+ d(x)u = 0,

∂v

∂n
+ d(x)v = 0, x ∈ ∂Ω.

Let z = S + u+ v. Then z satisfies

∆z = 0, x ∈ Ω,
∂z

∂n
+ d(x)z = h(x), x ∈ ∂Ω.

It follows from [29] that z(x) exists uniquely and z(x) > 0 on Ω. Thus, any steady-state

solutions of system (1.2) satisfies

S(x) + u(x) + v(x) = z(x), x ∈ Ω.

We shall use this identity to eliminate S and concentrate on the following boundary value

problem:

(1.3)


∆u+m1uf(z − u− v, u) = 0, x ∈ Ω,

∆v +m2vg(z − u− v, v) = 0, x ∈ Ω,
∂u

∂n
+ d(x)u = 0,

∂v

∂n
+ d(x)v = 0, x ∈ ∂Ω,
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where

f(z − u− v, u) =
z − u− v

1 + k1(z − u− v) + β1u
, g(z − u− v, v) =

z − u− v
1 + k2(z − u− v) + β2v

.

Since we only consider the case that S, u, v are nonnegative, we redefine the response

functions as follows:

f̂(S, u) =

f(S, u), S ≥ 0, u ≥ 0,

0, otherwise,
ĝ(S, u) =

g(S, u), S ≥ 0, u ≥ 0,

0, otherwise.

For convenience, we still denote f̂(S, u), ĝ(S, u) by f(S, u), g(S, u) respectively.

The contents of this paper is organized as follows. In Section 2, some preliminary

results are given, which are used in the later sections. In Section 3, we investigate the

stability of trivial and semitrivial solutions by spectral analysis. Moreover, some properties

of the functions m2(m1) and m1(m2) are provided. Finally, in Section 4, we establish the

existence and stability of coexistence solutions to (1.3) bifurcating from a simple eigenvalue

and a double eigenvalue.

2. Preliminaries

In this section, we primarily introduce some basic notations and known results which will

be used in this paper. For p > N , we denoteX0 =
{
u ∈W 2,p(Ω) : ∂u∂n + d(x)u = 0 on ∂Ω

}
,

X = X0×X0, Y0 = Lp(Ω), Y = Y0× Y0. We denote the inner product by (·, ·)2 in L2(Ω).

Consider the following eigenvalue problem

(2.1) ∆ϕ+ λq(x)ϕ = 0, x ∈ Ω,
∂ϕ

∂n
+ d(x)ϕ = 0, x ∈ ∂Ω.

Then it is well known that

Lemma 2.1. [29,32] Suppose that q(x) ∈ C(Ω) and q(x) > 0 on Ω. Then the eigenvalues

of problem (2.1) can be listed in order

0 < λ1(q) < λ2(q) ≤ · · · → ∞

with the corresponding eigenfunctions ϕ1, ϕ2, . . ., where the principal eigenvalue λ1(q) is

given by

λ1(q) = inf
ϕ

∫
Ω |∇ϕ|

2 dx+
∫
∂Ω d(x)ϕ2 ds∫

Ω q(x)ϕ2 dx

and the principal eigenfunction ϕ1 is positive on Ω. Here, ds represents the unit element on

∂Ω. Moreover, the comparison principle holds: λj(q1) ≤ λj(q2) for j ≥ 1 if q1(x) ≥ q2(x)

on Ω and the strict inequality holds if q1(x) 6≡ q2(x).
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Consider the eigenvalue problem

(2.2) ∆ϕ+ q(x)ϕ = µϕ, x ∈ Ω,
∂ϕ

∂n
+ d(x)ϕ = 0, x ∈ ∂Ω,

where q(x) ∈ C(Ω). Let µ1(q) be the principal eigenvalue of problem (2.2). Then it is well

known that

Lemma 2.2. [32] µ1(q) is strictly increasing with q(x) in the sense that if q1(x) ≤ q2(x)

and q1(x) 6≡ q2(x), then µ1(q1) < µ1(q2).

Let λ1, σ1 be, respectively, the principal eigenvalues of the problems (2.3) and (2.4):

(2.3) ∆φ+ λf(z, 0)φ = 0, x ∈ Ω,
∂φ

∂n
+ d(x)φ = 0, x ∈ ∂Ω,

(2.4) ∆ψ + σg(z, 0)ψ = 0, x ∈ Ω,
∂ψ

∂n
+ d(x)φ = 0, x ∈ ∂Ω

with the corresponding principal eigenfunctions φ1, ψ1 > 0 on Ω, which are uniquely

determined by the normalization ‖φ1‖22 = 1 and ‖ψ1‖22 = 1.

In (1.3), we let v = 0 and u = 0 respectively. Then we obtain two scaler equations:

(2.5) ∆u+m1uf(z − u, u) = 0, x ∈ Ω,
∂u

∂n
+ d(x)u = 0, x ∈ ∂Ω,

(2.6) ∆v +m2vg(z − v, v) = 0, x ∈ Ω,
∂v

∂n
+ d(x)v = 0, x ∈ ∂Ω.

For (2.5), the following results are proved in [27]:

Lemma 2.3. [27] Suppose that m1 ≤ λ1. Then 0 is the unique nonnegative solution of

(2.5). Suppose that m1 > λ1. Then (2.5) has a unique positive solution, denoted by θ,

satisfying the following properties:

(1) 0 < θ < z, x ∈ Ω.

(2) θ is continuously differentiable with respect to m1 ∈ (λ1,+∞), and is pointwisely

increasing with respect to m1.

(3) limm1→λ1 θ(m1) = 0 uniformly for x ∈ Ω, and limm1→+∞ θ(m1) = z for almost every

x ∈ Ω.

(4) Let L1 = ∆ +m1(f(z− θ, θ)− θf ′1(z− θ, θ) + θf ′2(z− θ, θ)) be the linearized operator

of (2.5) at θ. Then all the eigenvalues of L1 are strictly negative.
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Remark 2.4. The results in [27] are only proved in the one-dimensional case, but the

results still hold in the N -dimensional case by the similar analysis.

Remark 2.5. For (2.6), we have the same conclusion as Lemma 2.3. If m2 ≤ σ1, then 0

is the unique nonnegative solution of (2.6). If m2 > σ1, then (2.6) has a unique positive

solution, denoted by Θ. Let L2 = ∆+m2(g(z−Θ,Θ)−Θg′1(z−Θ,Θ)+Θg′2(z−Θ,Θ)) be

the linearized operator of (2.6) at Θ. Then all the eigenvalues of L2 are strictly negative.

3. Semitrivial solutions

In this section, we investigate the stability of trivial and semitrivial solutions by examining

the spectrum of the corresponding linearized operator. By Theorems 5.1.1 and 5.1.3 in [8],

one sees that any solution (u, v) of (1.3) is said to be asymptotically stable if the spectrum

of the linearized operator of (1.3) at (u, v) lies in the left-hand side of the imaginary axis.

If there are some points in the spectrum with positive real parts, we say that (u, v) is

unstable.

The linearized operator of (1.3) at (0, 0) is given by

T0(m1,m2) =

∆ +m1f(z, 0) 0

0 ∆ +m2g(z, 0)

 .

Thus, we easily obtain

Theorem 3.1. The trivial solution (0, 0) is asymptotically stable if m1 < λ1 and m2 < σ1,

and unstable if m1 > λ1 or m2 > σ1.

The linearized operator of (1.3) at (θ, 0) is given by

T1(m1,m2) =

∆ +m1(f(z − θ, θ)− θf ′1(z − θ, θ) + θf ′2(z − θ, θ)) −m1θf
′
1(z − θ, θ)

0 ∆ +m2g(z − θ, 0)


=

L1 −m1θf
′
1(z − θ, θ)

0 ∆ +m2g(z − θ, 0)

 .

It follows from the Riesz-Schauder theory that the spectrum σ(T1(m1,m2)) of T1(m1,m2)

consists of real eigenvalues. Moreover, we see that σ(T1(m1,m2)) = σ(L1)∪σ(∆+m2g(z−
θ, 0)) by Lemma 3.5 in [11]. By Lemma 2.3, one finds that σ(L1) lies on the negative real

axis. On the other hand, by Lemma 2.2, σ(∆ + m2g(z − θ, 0)) lies on the negative real

axis when m2 < m2(m1) (note that: µ1(m2(m1)g(z − θ, 0)) = 0), where m2(m1) is the

principal eigenvalue of the following problem

(3.1) ∆ψ +m2g(z − θ, 0)ψ = 0, x ∈ Ω,
∂ψ

∂n
+ d(x)ψ = 0, x ∈ ∂Ω.

Therefore, we have
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Theorem 3.2. Suppose that m1 > λ1. Then the semitrivial solution (θ, 0) is asymptoti-

cally stable if m2 < m2(m1) and unstable if m2 > m2(m1).

Next, we follow the ideas used in [11, 31] to analyze some properties of m2(m1). It

follows from Lemma 2.1 that

(3.2) m2(m1) = inf
ψ

∫
Ω |∇ψ|

2 dx+
∫
∂Ω d(x)ψ2 ds∫

Ω g(z − θ, 0)ψ2 dx
.

Lemma 3.3. The function m2(m1) defined by (3.2) satisfies

(1) m2(m1) ∈ C([λ1,+∞)) and m2(λ1) = σ1;

(2) m2(m1) ∈ C1((λ1,+∞)) and m′2(m1) > 0;

(3) limm1→λ1 m
′
2(m1) = σ1

λ1

∫
Ω f(z,0)φ2

1 dx∫
Ω(f ′1(z,0)−f ′2(z,0))φ3

1 dx

∫
Ω g

′
1(z,0)φ1ψ2

1 dx∫
Ω g(z,0)ψ2

1 dx
.

Proof. Since m2(m1) is the principal eigenvalue of problem (3.1), we may take the corre-

sponding principal eigenfunction by ψ(m1) such that
∥∥ψ(m1)

∥∥2

2
= 1 and ψ(m1) > 0 on Ω.

Then, the infimum in (3.2) is attained by ψ(m1), and so

m2(m1) =

∫
Ω

∣∣∇ψ(m1)
∣∣2 dx+

∫
∂Ω d(x)ψ

2
(m1) ds∫

Ω g(z − θm1 , 0)ψ
2
(m1) dx

≤
∫

Ω

∣∣∇ψ(m1 + h)
∣∣2 dx+

∫
∂Ω d(x)ψ

2
(m1 + h) ds∫

Ω g(z − θm1 , 0)ψ
2
(m1 + h) dx

=
m2(m1 + h)

∫
Ω g(z − θm1+h, 0)ψ

2
(m1 + h) dx∫

Ω g(z − θm1 , 0)ψ
2
(m1 + h) dx

,

where θm1 = θ. This implies

m2(m1)
∫

Ω g(z − θm1 , 0)ψ
2
(m1 + h) dx∫

Ω g(z − θm1+h, 0)ψ
2
(m1 + h) dx

≤ m2(m1 + h).

Similarly, if m1 and m1 + h are exchanged, then we get

m2(m1 + h) =

∫
Ω

∣∣∇ψ(m1 + h)
∣∣2 dx+

∫
∂Ω d(x)ψ

2
(m1 + h) ds∫

Ω g(z − θm1+h, 0)ψ
2
(m1 + h) dx

≤
∫

Ω

∣∣∇ψ(m1)
∣∣2 dx+

∫
∂Ω d(x)ψ

2
(m1) ds∫

Ω g(z − θm1+h, 0)ψ
2
(m1) dx

=
m2(m1)

∫
Ω g(z − θm1 , 0)ψ

2
(m1) dx∫

Ω g(z − θm1+h, 0)ψ
2
(m1) dx

.
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Let h → 0. Then we obtain m2(m1) ∈ C([λ1,+∞)). Furthermore, by Lemma 2.3(3), we

easily check that m2(m1)→ σ1 as m1 → λ1 since

m2(m1) =

∫
Ω

∣∣∇ψ(m1)
∣∣2 dx+

∫
∂Ω d(x)ψ

2
(m1) ds∫

Ω g(z − θm1 , 0)ψ
2
(m1) dx

.

Therefore, we complete the proof of (1).

Continuing the calculation above, we find

m2(m1 + h)
∫

Ω(g(z − θm1 , 0)− g(z − θm1+h, 0))ψ
2
(m1 + h) dx∫

Ω g(z − θm1 , 0)ψ
2
(m1 + h) dx

≤ m2(m1 + h)−m2(m1)

≤
m2(m1)

∫
Ω(g(z − θm1 , 0)− g(z − θm1+h, 0))ψ

2
(m1) dx∫

Ω g(z − θm1+h, 0)ψ
2
(m1) dx

.

(3.3)

Dividing both two sides of the inequality (3.3) by h and letting h→ 0, we derive

(3.4) m′2(m1) = m2(m1)

∫
Ω g
′
1(z − θm1 , 0)θ′m1

ψ
2
(m1) dx∫

Ω g(z − θm1 , 0)ψ
2
(m1) dx

for almost every m1 ∈ (λ1,∞), where θ′m1
is the differential of θm1 with respect to m1.

Since m1 → θm1 is continuously differentiable in C(Ω) by Lemma 2.3(2) and m1 → ψ(m1)

is continuous in L2(Ω) by the perturbation result of Kato [12] (see Chap. 4, §5), the right

hand of (3.4) is continuous with respect to m1. So (3.4) holds for all m1 ∈ (λ1,∞). By

Lemma 2.3(2) and the expression of g(z−θm1 , 0), the positivity of m′2(m1) is easily derived

from (3.4). So the assertion (2) holds.

Finally, by using the identity of (3.4), we shall prove (3). It follows from Lemma 2.3(3)

that

(3.5) lim
m1→λ1

g′1(z − θm1 , 0) = g′1(z, 0) in C1(Ω).

Moreover, it follows from the results of Kato [12] (see Chap. 4, §5) that

(3.6) lim
m1→λ1

ψ(m1) = ψ1 in L2(Ω).

It remains to show the dependence of θ′m1
on m1. By Lemma 2.3, we see that θm1 is the

unique nontrivial solution of (2.5) for m1 > λ1. We can apply the Crandall-Rabinowitz

bifurcation theory [3] to derive the expression of θm1 near m1 = λ1. For this, we define

the operator F : R×X0 → Y0 by

F (m1;u) = ∆u+m1uf(z − u, u).
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It is clear that F (λ1; 0) = 0, Fu(λ1; 0) = ∆ + λ1f(z, 0) and N(Fu(λ1; 0)) = span {φ1}.
Since F ∗u (λ1; 0) = Fu(λ1; 0), where F ∗u (λ1; 0) is the adjoint operator of Fu(λ1; 0), we

obtain dimN(Fu(λ1; 0)) = codimR(Fu(λ1; 0)) = 1. Moreover, Fm1uφ1 = f(z, 0)φ1 6∈
R(Fu(λ1; 0)). Therefore, by the Crandall-Rabinowitz bifurcation theory [3], there ex-

ists a function (w(s),m1(s)) ∈ C1([−s0, s0];Y0 × R) for sufficiently small s0 > 0 satis-

fying w(0) = 0, m1(0) = λ1 and F (m1(s);u(s)) = 0 , where u(s) = s(φ1 + w(s)) and

w(s) ∈ R(Fu(λ1; 0)) ∩ X0. Due to the uniqueness of nontrivial solution of (2.5) near

m1 = λ1, we derive

θm1(s) = s(φ1 + w(s)).

Substituting (m1(s); θm1(s)) into (2.5), dividing by s, differentiating with respect to s and

setting s = 0, we have

∆w′(0) +m′1(0)φ1f(z, 0) + λ1w
′(0)f(z, 0)− λ1φ

2
1(f ′1(z, 0)− f ′2(z, 0)) = 0.

Multiplying by φ1 and integrating over Ω by parts, we get

(3.7) m′1(0)

∫
Ω
f(z, 0)φ2

1 dx = λ1

∫
Ω

(f ′1(z, 0)− f ′2(z, 0))φ3
1 dx.

Due to
dθm1

ds
=
dθm1

dm1
· dm1

ds
,

we obtain

(3.8)
dθm1

dm1

∣∣∣∣
m1=λ1

=

dθm1
ds

∣∣
s=0

dm1
ds

∣∣
s=0

=
φ1

m′1(0)
.

Hence, it follows from (3.4), (3.5), (3.6), (3.7) and (3.8) that the assertion (3) holds.

The stability for (0,Θ) can be obtained in the same way as that for (θ, 0). The

linearized operator of (1.3) at (0,Θ) is given by

T2(m1,m2) =

∆ +m1f(z −Θ, 0) 0

−m2Θg′1(z −Θ,Θ) L2

 ,

where L2 = ∆ +m2(g(z −Θ,Θ)−Θg′1(z −Θ,Θ) + Θg′2(z −Θ,Θ)). Moreover,

σ(T2(m1,m2)) = σ(∆ +m1f(z −Θ, 0)) ∪ σ(L2).

Denote m1(m2) be the principal eigenvalue of the following problem

∆φ+m1f(z −Θ, 0)φ = 0, x ∈ Ω,
∂φ

∂n
+ d(x)φ = 0, x ∈ ∂Ω.
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By Lemma 2.1, we see that

(3.9) m1(m2) = inf
φ

∫
Ω |∇φ|

2 dx+
∫
∂Ω d(x)φ2 ds∫

Ω f(z −Θ, 0)φ2 dx
.

Hence, the stability of (0,Θ) is stated as follows.

Theorem 3.4. Let m2 > σ1. Then the semitrivial solution (0,Θ) is asymptotically stable

if m1 < m1(m2) and unstable if m1 > m1(m2).

Finally, we can prove some properties of the function m1(m2) in the same way as

Lemma 3.3.

Lemma 3.5. The function m1(m2) defined by (3.9) satisfies

(1) m1(m2) ∈ C([σ1,+∞)) and m1(σ1) = λ1;

(2) m1(m2) ∈ C1((σ1,+∞)) and m′1(m2) > 0;

(3) limm2→σ1 m
′
1(m2) = λ1

σ1

∫
Ω f

′
1(z,0)ψ1φ2

1 dx∫
Ω f(z,0)φ2

1 dx

∫
Ω g(z,0)ψ2

1 dx∫
Ω(g′1(z,0)−g′2(z,0))ψ3

1 dx
.

4. Existence and stability of positive solutions

In this section, we establish the existence and stability of positive solutions to (1.3) bifur-

cating from a simple eigenvalue and a double eigenvalue, respectively.

4.1. Bifurcation from a simple eigenvalue

Wang et al. [25] obtained the local bifurcation result from a simple eigenvalue, and estab-

lished the global structure of positive solutions [27]. Unfortunately, Dancer [4] pointed out

the existence of some gaps in the proofs of Rabinowitz’s Theorems 1.27 and 1.40 in [21].

Hence, we reconstruct the proof of global structure of positive solutions by the revised

global bifurcation theory developed by López-Gómez in [13].

We first introduce the local bifurcation result from [25]:

Theorem 4.1. Suppose that m1 > λ1. Then (m2(m1); θ, 0) is a bifurcation point for

(1.3). Moreover, there exists a curve of non-constant positive solutions (m2(s);u(s), v(s))

for sufficiently small s > 0, where m2(s) = m2(m1) + o(s), u(s) = θ − s(ω1 + o(s)),

v(s) = s(ψ(m1) + o(s)). Here, ω1 satisfies L1ω1 = −m1θf
′
1(z − θ, θ)ψ(m1). Moreover, let

I =

∫
Ω

[
g′1(z − θ, 0)(ψ(m1)− ω1)− g′2(z − θ, 0)ψ(m1)

]
ψ

2
(m1) dx.

Then the bifurcating solution (u(s), v(s)) is local asymptotically stable if I > 0.
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Let Γ1 be the positive solution branch bifurcating from (m2(m1); θ, 0) (note that the

detail definition of Γ1 can be found in p. 829 of [29]). Then

Theorem 4.2. Suppose that m1 > λ1. Then Γ1 joins with the semitrivial branch {(m2; 0,

Θm2) | m2 > σ1} at the point (m̂2; 0,Θm̂2
), where m̂2 is given uniquely by m1 = m1(m2).

Proof. As the argument of Theorem 1 in [27], one finds that the conditions of The-

orem 6.4.3 in [13] hold. We define Z =
{

(u, v) ∈ X :
∫

Ω−∆ψ(m1) · v dx = 0
}

, that

is, Z is the complement of span
{

(ω1, ψ(m1))
}

in X. Therefore, the continuum Γ1 −
{(m2(m1); θ, 0)} must satisfy one of the three alternatives

(i) joining up with a bifurcation point of the form (m̃2; θ, 0) where m̃2 6= m2(m1);

(ii) joining up with ∞;

(iii) containing points of the form (m2, (u, v)) ∈ R× (Z \ {(0, 0)}).

If Γ1−{(m2(m1); θ, 0)} ⊂ P , where P =
{

(u, v) ∈ X : u > 0, v > 0 on Ω
}

, then it is clear

that (i) is impossible. By Lemmas 2 and 5 in [27], we see that 0 < u, v, u+ v < z and 0 <

m2 < A(m1, k1, k2, β1, β2). Thanks to Lp estimates, we find ‖u‖W 2,p(Ω) , ‖v‖W 2,p(Ω) < K

for some constant K, which is independent of m2. So Γ1 is bounded in R×X and (ii) is

impossible. Furthermore, if Γ1 − {(m2(m1); θ, 0)} ⊂ P holds, then
∫

Ω−∆ψ(m1) · v dx =∫
Ωm2(m1)g(z − θ, 0)ψ(m1) · v dx > 0, which implies that (iii) is also impossible. This

proves that Γ1 − {(m2(m1); θ, 0)} 6⊂ P .

The remaining analysis is similar to the proof of Theorem 1 in [27]. Hence, we complete

the whole proof.

Remark 4.3. Suppose that m2 > σ1. Then (m1(m2); 0,Θm2) is also a bifurcation point for

(1.3). Let Γ2 be the positive solution branch bifurcating from (m1(m2); 0,Θm2). Then Γ2

joins with the semitrivial branch {(m1; θm1 , 0) | m1 > λ1} at the point (m̂1; θm̂1
, 0), where

m̂1 is given uniquely by m2 = m2(m1).

4.2. Bifurcation from a double eigenvalue

We begin to establish the existence and stability of positive solutions to (1.3) when

(m1,m2) lies in a neighborhood of (λ1, σ1).

For this, we define a nonlinear mapping H : R× R×X → Y by

H(m1,m2;U) =

∆u+m1uf(z − u− v, u)

∆v +m2vg(z − u− v, v)

 for U =

u
v

 ∈ X.
It is clear that H(m1,m2;U) = 0 for all m1,m2 and HU (λ1, σ1; 0) = T0(λ1, σ1). For

convenience, we simply write T0(λ1, σ1) by T0 in the following. Clearly, 0 is a double
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eigenvalue of T0 with the corresponding eigenfunctions Φ = (φ1, 0)> and Ψ = (0, ψ1)>.

Hence, we see that N(T0) = span {Φ,Ψ} and dimN(T0) = codimR(T0) = 2. Moreover,

(h1, h2)> ∈ R(T0) if and only if (h1, φ1)2 = (h2, ψ1)2 = 0.

Obviously, the Crandall-Rabinowitz bifurcation theorem [3] does not work. We now

resort to the techniques of space decomposition and implicit function theorem to deal with

this case.

First, for U = (u, v)> ∈ X, we define the operator P by

PU = (u, φ1)2Φ + (v, ψ1)2Ψ

and decompose X as X1⊕X2 with X1 = PX and X2 = (I−P )X. Similarly, we decompose

Y as Y = Y1 ⊕ Y2 with Y1 = PY and Y2 = (I − P )Y . Hence, X1 = Y1 = N(T0),

X2 = R(T0) ∩X and Y2 = R(T0).

Next, we apply the implicit function theorem to look for the solutions of H(m1,m2;U)

= 0 in the form:

U = s(cosωΦ + sinωΨ +W (s)), W (s) = (w1(s), w2(s))> ∈ X2,

where s, ω ∈ R are parameters. Since we are only concerned with positive solutions,

we may restrict ω to (0, π/2). For fixed ω ∈ (0, π/2), we define a nonlinear mapping

K(α, β,W ; s) : R× R×X2 × R→ Y by

K(α, β,W ; s) = s−1H(λ1 + α(s), σ1 + β(s), s(cosωΦ + sinωΨ +W (s)))

= T0W +

α(cosωφ1 + w1)f(z − u− v, u)

β(sinωψ1 + w2)g(z − u− v, v)


+

λ1(cosωφ1 + w1)(f(z − u− v, u)− f(z, 0))

σ1(sinωψ1 + w2)(g(z − u− v, v)− g(z, 0))

 ,

where u = s(cosωφ1+w1) and v = s(sinωψ1+w2). It is clear that K : R×R×X2×R→ Y

is a C1 mapping, which satisfies K(0, 0, 0; 0) = 0. By some calculations, we know that the

Fréchet derivative of K with respect to (α, β,W ) at (0, 0, 0; 0) is the linear mapping

K(α,β,W )(0, 0, 0; 0)(α̂, β̂, Ŵ ) = T0Ŵ + (α̂ cosωf(z, 0)) Φ +
(
β̂ sinωg(z, 0)

)
Ψ,

where (α̂, β̂, Ŵ ) ∈ R× R×X2.

To apply the implicit function theorem, we have to verify that K(α,β,W )(0, 0, 0; 0) : R×
R×X2×R→ Y is an isomorphism. Suppose that K(α,β,W )(0, 0, 0; 0)(α̂, β̂, Ŵ ) = 0. Then

we have

T0Ŵ + (α̂ cosωf(z, 0))Φ + (β̂ sinωg(z, 0))Ψ = 0.
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By the decomposition of Y , we obtain

T0Ŵ = 0 and (α̂ cosωf(z, 0))Φ + (β̂ sinωg(z, 0))Ψ = 0.

Note that T0 is an isomorphism from X2 to Y2. Then we get Ŵ = 0. Moreover, since

ω ∈ (0, π/2) and Φ and Ψ are the linearly independent, we see that α̂ = β̂ = 0. This

implies that K(α,β,W )(0, 0, 0; 0) is injective. On the other hand, for any (h, k)> ∈ Y , we

need to look for (α̂, β̂, Ŵ ) ∈ R× R×X2 such that K(α,β,W )(0, 0, 0; 0)(α̂, β̂, Ŵ ) = (h, k)>.

Making use of the decomposition of Y again, we find that

(h, k)> = (h1, k1)> + (h2, k2)>,

where (h1, k1)> ∈ Y1 and (h2, k2)> ∈ Y2. Hence, we obtain

T0Ŵ = (h2, k2)> and (α̂ cosωf(z, 0))Φ + (β̂ sinωg(z, 0))Ψ = (h1, k1)>.

Since T0 is an isomorphism from X2 to Y2, we get Ŵ = T−1
0 (h2, k2)>. Also

(α̂ cosωf(z, 0))Φ + (β̂ sinωg(z, 0))Ψ = (h1, k1)>

is equivalent to α̂ cosωf(z, 0)φ1 = h1 and β̂ sinωg(z, 0)ψ1 = k1, we have

α̂ = (cosωf(z, 0)φ1)−1h1 and β̂ = (sinωg(z, 0)ψ1)−1k1.

Hence, we can find (α̂, β̂, Ŵ ) ∈ R× R×X2 such that

K(α,β,W )(0, 0, 0; 0)(α̂, β̂, Ŵ ) = (h, k)>,

which suggests that K(α,β,W )(0, 0, 0; 0) is surjective. Hence, we show that K(α,β,W )(0, 0, 0;

0) : R× R×X2 × R→ Y is an isomorphism.

Therefore, by the implicit function theorem, we derive the existence of continuously

differentiable functions (α̂(s), β̂(s), Ŵ (s)) for sufficiently small s > 0 satisfying α̂(0) =

β̂(0) = 0, Ŵ (0) = (0, 0) and K(α̂(s), β̂(s), Ŵ (s)) = 0, where Ŵ (s) = (ŵ1(s), ŵ1(s))>

satisfies (ŵ1(s), φ1)2 = 0 and (ŵ2(s), ψ1)2 = 0. Let

(4.1) m̂1(s) = λ1 + α̂(s), m̂2(s) = σ1 + β̂(s),

(4.2) û(s) = s(cosωφ1 + ŵ1(s)), v̂(s) = s(sinωψ1 + ŵ2(s)).

Then we get a curve of non-constant positive solutions of H(m1,m2;U) = 0, which we

denote by (m̂1(s), m̂2(s); Û(s)) with Û(s) = (û(s), v̂(s))>.

Therefore, we have the following theorem about the existence of positive solutions to

system (1.3).
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Theorem 4.4. (λ1, σ1; (0, 0)) is a bifurcation point of H(m1,m2;U) = 0. Moreover, there

exists a curve of non-constant positive solutions (m̂1(s), m̂2(s); Û(s)) of H(m1,m2;U) = 0

for sufficiently small s > 0, where m̂1(s), m̂2(s), û(s), v̂(s) are given in (4.1) and (4.2).

Now, we investigate the global structure of bifurcating solutions obtained in Theo-

rem 4.4. Substituting (m̂1(s), m̂1(s), Û(s)) into (1.3) and dividing by s, we have

(4.3) ∆(cosωφ1 + ŵ1(s)) + (λ1 + α̂(s))(cosωφ1 + ŵ1(s))f(z − û(s)− v̂(s), û(s)) = 0,

(4.4) ∆(sinωψ1 + ŵ2(s)) + (σ1 + β̂(s))(sinωψ1 + ŵ2(s))g(z − û(s)− v̂(s), v̂(s)) = 0.

We differentiate (4.3) with respect to s and set s = 0 to obtain

0 = ∆ŵ′1(0) + α̂′(0) cosωφ1f(z, 0) + λ1ŵ
′
1(0)f(z, 0)

− λ1 cosωφ1

(
f ′1(z, 0)(cosωφ1 + sinωψ1)− f ′2(z, 0) cosωφ1

)
.

Multiplying by φ1 and integrating by parts, we get

(4.5) α̂′(0)

∫
Ω
f(z, 0)φ2

1 dx = λ1

∫
Ω

(
f ′1(z, 0)(cosωφ1 + sinωψ1)− f ′2(z, 0) cosωφ1

)
φ2

1 dx.

For (4.4), we differentiate with respect to s and set s = 0 to derive

0 = ∆ŵ′2(0) + β̂′(0) sinωψ1g(z, 0) + σ1ŵ
′
2(0)g(z, 0)

− σ1 sinωψ1

(
g′1(z, 0)(cosωφ1 + sinωψ1)− g′2(z, 0) sinωψ1

)
.

Multiplying by ψ1 and integrating by parts, we have

(4.6) β̂′(0)

∫
Ω
g(z, 0)ψ2

1 dx = σ1

∫
Ω

(
g′1(z, 0)(cosωφ1 + sinωψ1)− g′2(z, 0) sinωψ1

)
ψ2

1 dx.

Hence, it follows from (4.5) and (4.6) that

lim
s→0

m̂2(s)− σ1

m̂1(s)− λ1
= lim

s→0

β̂(s)

α̂(s)
= lim

s→0

β̂′(s)

α̂′(s)
=
β̂′(0)

α̂′(0)

=
σ1

λ1
·
∫

Ω(g′1(z, 0)(cosωφ1 + sinωψ1)− g′2(z, 0) sinωψ1)ψ2
1 dx∫

Ω(f ′1(z, 0)(cosωφ1 + sinωψ1)− f ′2(z, 0) cosωφ1)φ2
1 dx

×
∫

Ω f(z, 0)φ2
1 dx∫

Ω g(z, 0)ψ2
1 dx

.

(4.7)

Denote the right hand of (4.7) by l1(ω) and let l2(ω) = 1/l1(ω). Then

lim
ω→0

l1(ω) =
σ1

λ1
·

∫
Ω g
′
1(z, 0)φ1ψ

2
1 dx∫

Ω(f ′1(z, 0)− f ′2(z, 0))φ3
1 dx

·
∫

Ω f(z, 0)φ2
1 dx∫

Ω g(z, 0)ψ2
1 dx
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and

lim
ω→π/2

l2(ω) =
λ1

σ1
·

∫
Ω f
′
1(z, 0)φ2

1ψ1dx∫
Ω(g′1(z, 0)− g′2(z, 0))ψ3

1 dx
·
∫

Ω g(z, 0)ψ2
1 dx∫

Ω f(z, 0)φ2
1 dx

.

By Lemma 3.3, we find that Γ1 curve, defined by m2 = m2(m1), satisfies

(4.8) lim
m1→λ1

m′2(m1) = lim
ω→0

l1(ω).

Moreover, by Lemma 3.5, the Γ2 curve, defined by m1 = m1(m2), satisfies

(4.9) lim
m2→σ1

m′1(m2) = lim
ω→π/2

l2(ω).

In view of (4.8) and (4.9), we see that for any ω ∈ (0, π/2) sufficiently close to zero,

(û(s), v̂(s)) derived in Theorem 4.4 coincides with positive solutions which bifurcating from

(θm1 , 0) at the Γ1 curve; while, for any ω ∈ (0, π/2) sufficiently close to π/2, (û(s), v̂(s))

coincides with the positive solution which bifurcates from (0,Θm2) at the Γ2 curve.

Therefore, we have the following result.

Theorem 4.5. If (m1,m2) lies in the neighborhood of (λ1, σ1), then (û(s), v̂(s)) connects

the bifurcation solution from the Γ1 curve with that from the Γ2 curve.

Finally, we discuss the asymptotic stability of (û(s), v̂(s)) by the spectral analysis.

Consider the following eigenvalue problem

(4.10) HU (m̂1(s), m̂2(s); Û(s))χ = γ(s)χ,

where γ(0) = 0. We will look for the eigenfunction χ:

(4.11) χ = Φ + pΨ +W (s), W (s) = (w1(s), w2(s))> ∈ X2,

where p ∈ R will be provided later and W (s) satisfying W (0) = (0, 0) can be determined

by the implicit function theorem. Substituting (4.11) into (4.10) to get

γ(s)(φ1 + w1) = ∆(φ1 + w1) + (λ1 + α̂)

×
(
f(z − û− v̂, û)− ûf ′1(z − û− v̂, û) + ûf ′2(z − û− v̂, û)

)
(φ1 + w1)

− (λ1 + α̂)ûf ′1(z − û− v̂, û)(pψ1 + w2),

(4.12)

γ(s)(pψ1 + w2) = ∆(pψ1 + w2) + (σ1 + β̂)

×
(
g(z − û− v̂, v̂)− v̂g′1(z − û− v̂, v̂) + v̂g′2(z − û− v̂, v̂)

)
(pψ1 + w2)

− (σ1 + β̂)v̂g′1(z − û− v̂, v̂)(φ1 + w1).

(4.13)
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Multiplying (4.12) by φ1, integrating by parts and using Green’s formula, we derive

(4.14) γ(s) = α̂(s)

∫
Ω
f(z, 0)(φ1 + w1)φ1 dx+ (λ1 + α̂(s))

∫
Ω

(
N(s)(Φ + pΨ +W ),Φ

)
2
.

For (4.13), we get

(4.15) pγ(s) = β̂(s)

∫
Ω
g(z, 0)(pψ1 +w2)ψ1 dx+(σ1 + β̂(s))

∫
Ω

(
N(s)(Φ + pΨ +W ),Ψ

)
2
.

In (4.14) and (4.15), N(s) is given by

N(s) =

f − ûf ′1 + ûf ′2 − f(z, 0) −ûf ′1
−v̂g′1 g − v̂g′1 + v̂g′2 − g(z, 0)

 ,

where f(z− û− v̂, û), f ′1(z− û− v̂, û), f ′2(z− û− v̂, û) are replace by f , f ′1, f ′2 respectively

and g, g′1, g′2 are similar. By (4.5) and (4.6), for sufficiently small s > 0, we have

α̂(s) = s
λ1

∫
Ω (f ′1(z, 0)(cosωφ1 + sinωψ1)− f ′2(z, 0) cosωφ1)φ2

1 dx∫
Ω f(z, 0)φ2

1 dx
+ o(s)

and

β̂(s) = s
σ1

∫
Ω (g′1(z, 0)(cosωφ1 + sinωψ1)− g′2(z, 0) sinωψ1)ψ2

1 dx∫
Ω g(z, 0)ψ2

1 dx
+ o(s).

Moreover, straightforward but tedious calculations show that

(N(s)Φ,Φ)2 = −s
∫

Ω
(2 cosωφ1f

′
1(z, 0)− 2 cosωφ1f

′
2(z, 0) + sinωψ1f

′
1(z, 0))φ2

1 dx+ o(s),

(N(s)Φ,Ψ)2 = −s
∫

Ω
sinωφ1ψ

2
1g
′
1(z, 0) dx+ o(s),

(N(s)Ψ,Φ)2 = −s
∫

Ω
cosωφ2

1ψ1f
′
1(z, 0) dx+ o(s),

(N(s)Ψ,Ψ)2 = −s
∫

Ω
(2 sinωψ1g

′
1(z, 0)− 2 sinωψ1g

′
2(z, 0) + cosωφ1g

′
1(z, 0))ψ2

1 dx+ o(s).

Set
(N(s)Φ,Φ)2 = −sa11 + o(s), (N(s)Φ,Ψ)2 = −sa12 + o(s),

(N(s)Ψ,Φ)2 = −sa21 + o(s), (N(s)Ψ,Ψ)2 = −sa22 + o(s).

Then

γ(s) = s

(
λ1

∫
Ω

(f ′1(z, 0)(cosωφ1 + sinωψ1)− f ′2(z, 0) cosωφ1)φ2
1 dx− λ1a11 − λ1pa21

)
+ o(s),

(4.16)
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pγ(s) = s

(
pσ1

∫
Ω

(g′1(z, 0)(cosωφ1 + sinωψ1)− g′2(z, 0) sinωψ1)ψ2
1 dx− σ1a12 − σ1pa22

)
+ o(s).

(4.17)

Substituting (4.16) into (4.17), we get the following equation about p,

(4.18) λ1a21p
2 + δp− σ1a12 + o(1) = 0,

where

δ = −λ1

∫
Ω

(
f ′1(z, 0)(cosωφ1 + sinωψ1)− f ′2(z, 0) cosωφ1

)
φ2

1 dx+ λ1a11

+ σ1

∫
Ω

(
g′1(z, 0)(cosωφ1 + sinωψ1)− g′2(z, 0) sinωψ1

)
ψ2

1 dx− σ1a22.

By the expression of a11 and a22, we have

− λ1

∫
Ω

(
f ′1(z, 0)(cosωφ1 + sinωψ1)− f ′2(z, 0) cosωφ1

)
φ2

1 dx+ λ1a11

= λ1

∫
Ω

(
f ′1(z, 0) cosωφ1 − f ′2(z, 0) cosωφ1

)
φ2

1 dx

and

σ1

∫
Ω

(
g′1(z, 0)(cosωφ1 + sinωψ1)− g′2(z, 0) sinωψ1

)
ψ2

1 dx− σ1a22

= σ1

∫
Ω

(
−g′1(z, 0) sinωψ1 + g′2(z, 0) sinωψ1

)
ψ2

1 dx.

Hence, by a simple rearrangement, we derive

δ = λ1

∫
Ω

(f ′1(z, 0)− f ′2(z, 0)) cosωφ3
1 dx+ σ1

∫
Ω

(g′2(z, 0)− g′1(z, 0)) sinωψ3
1 dx

= λ1

∫
Ω

cosωφ3
1

1 + β1z

(1 + k1z)2
dx− σ1

∫
Ω

sinωψ3
1

1 + β2z

(1 + k2z)2
dx.

It follows from (4.18) that

(4.19) p± =
1

2λ1a21

(
−δ ±

√
δ2 + 4λ1σ1a21a12

)
.

Substituting (4.19) into (4.16), we get

γ∓ =
s

2

(
λ1

∫
Ω

(f ′2(z, 0)− f ′1(z, 0)) cosωφ3
1 dx+ σ1

∫
Ω

(g′2(z, 0)− g′1(z, 0)) sinωψ3
1 dx

∓
√
δ2 + 4λ1σ1a21a12

)
+ o(s)

=
s

2

(
−λ1

∫
Ω

cosωφ3
1

1 + β1z

(1 + k1z)2
dx− σ1

∫
Ω

sinωψ3
1

1 + β2z

(1 + k2z)2
dx

∓
√
δ2 + 4λ1σ1a21a12

)
+ o(s).

(4.20)



866 Shanbing Li, Jianhua Wu and Yaying Dong

It is noted that λ1σ1a21a12 > 0 by the expression of a21 and a12, and so γ∓ is real.

Clearly, γ− < 0. Thus, we have show the following result.

Theorem 4.6. The non-constant positive solution (û(s), v̂(s)) of H(m1,m2;U) = 0 for

sufficiently small s > 0 is asymptotically stable if γ+ < 0, where γ+ is given in (4.20).

Remark 4.7. Note that φ1, ψ1 are independent of β1 and β2. Suppose that β1 and β2 are

both large. Then

a12 =

∫
Ω

sinωφ1ψ
2
1

1

(1 + k2z)2
dx <

∫
Ω

sinωψ3
1

1 + β2z

(1 + k2z)2
dx,

a21 =

∫
Ω

cosωφ2
1ψ1

1

(1 + k1z)2
dx <

∫
Ω

cosωφ3
1

1 + β1z

(1 + k1z)2
dx.

Thus,

δ2 + 4λ1σ1a21a12 <

(
λ1

∫
Ω

cosωφ3
1

1 + β1z

(1 + k1z)2
dx+ σ1

∫
Ω

sinωψ3
1

1 + β2z

(1 + k2z)2
dx

)2

.

Consequently, we have

λ1

∫
Ω

(f ′2(z, 0)− f ′1(z, 0)) cosωφ3
1 dx+ σ1

∫
Ω

(g′2(z, 0)− g′1(z, 0)) sinωψ3
1 dx

+
√
δ2 + 4λ1σ1a21a12

< −λ1

∫
Ω

cosωφ3
1

1 + β1z

(1 + k1z)2
dx− σ1

∫
Ω

sinωψ3
1

1 + β2z

(1 + k2z)2
dx

+

(
λ1

∫
Ω

cosωφ3
1

1 + β1z

(1 + k1z)2
dx+ σ1

∫
Ω

sinωψ3
1

1 + β2z

(1 + k2z)2
dx

)
= 0,

and so γ+ < 0. Therefore, we see that γ+ < 0 if β1 and β2 are both large, that is, the

non-constant positive solution (û(s), v̂(s)) of H(m1,m2;U) = 0 for sufficiently small s > 0

is asymptotically stable when β1 and β2 are both large.
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