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Mixed, Componentwise Condition Numbers and Small Sample Statistical
Condition Estimation for Generalized Spectral Projections and Matrix Sign

Functions

Wei-Guo Wang, Chern-Shuh Wang*, Yi-Min Wei and Peng-Peng Xie

Abstract. The explicit expressions of mixed and componentwise condition numbers
for the spectral projections, generalized spectral projections and sign functions for
matrices and regular matrix pairs are derived. The condition numbers improve some
known results of the normwise type and reveal the structured perturbations. Sta-
tistical condition estimation is applied to these problems which can be calculated

efficiently.

1. Introduction

We consider the mixed and componentwise condition numbers for the generalized spectral
projections and the sign functions for matrices and regular matrix pairs. It is well known
that the spectral projections and matrix sign functions play an important role in the per-
turbation theory for eigenvalue problems [6,9,16,28,34]. Applying the theory of condition
number developed by Rice [25], the explicit expressions of the normwise case have been
well investigated in [30L[31]. A nice survey of the matrix sign function is presented in [18].
The survey introduces some historical background, perturbation theory, and applications
in control problem and in eigenproblems. The computation of matrix sign functions can
be adopted for finding invariant subspaces corresponding to certain eigenvalues and hence
can be applied to solve Riccati and Sylvester equations as well [1,2,[12,|14}|18}2233]. The
perturbation analysis of the matrix sign function has been studied in |12, 12.|18}24.29)].
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Let A € C"™ and U € C™*" be a unitary matrix. The Schur decomposition [11] is

Ay A
(1.1) A=u |7 TRlUH A ec™™ (m<n).
0 Axp

Assume that the eigenvalues A\(A11) N A\(Aaz) = 0, then the Sylvester equation
(1.2) AnX — X Agy = — Ay,

has a unique solution X.
Notice that

I, X A 0 I, X A 0
13) A=U H v =g | S,
0 Infm 0 A22 0 Infm 0 A22
where
I |
(14) S=U =1[5,5), T=S5"'= ,(Sp €T Ty e O,
0 Infm T2

Let the range spaces R(S1) and R(S2) be the invariant subspaces of A corresponding
to A(A11) and A\(Agg), respectively. The spectral projection of A associated with A(A11)
is defined by [31]

I, Of _, In —X
(1.5) P=S ST=U
0 0 0o o

UH

i.e., the spectral projection P is the projection onto R(S7) along R(S2).

If A\(A11) € C~ (eigenvalues in the open left complex plane), A(Agy) € Ct (eigenvalues
in the open right complex plane) in , then the matrix sign function sign(A) can be
computed by [11[2}|18}29]

. I Y |
(1.6) sign(A) =U u”,
0 In—m

where Y € C™*(n=m) ig the solution of Sylvester equation: A11Y — Y Aoy = —2A45.
Let A= ZJZ~! be the Jordan decomposition of A [11], where

J 0
0o Jy

J= , Jye C™m o gy e ClimmIxtmm) o (\(J) e €T, A(Jp) € CT).
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It is well known that the matrix sign function sign(A) can also be characterized by [2,12,29)

Iy O )
(1.7) sign(A) =7 zZ .
0 I m

Let the regular matrix pair (A, B) of order n have the generalized Schur decomposition
[11]
Apn A Bi1 B

(1.8) A=Q ZzH  B=qQ A
0 A22 0 322

where A(A11, B11) € Ct, A(Ag2, Bag) € C7, in which we denote \(A, B) the set of all
eigenvalues of a regular matrix pair (A, B) (i.e., det(A + AB) # 0 for A € C) |11]. Two
matrix sign functions of (A, B) can be defined as follows [1},32,33]:

I -2G 1 —2H
SignL(A7 B) - Q " QHu SignR<A7 B) =Z " ZH7
0 _Infm 0 _Infm

where G and H are determined by the generalized Sylvester equations [7]
(1.9) A11H — GAgyy = —A12, B11H — GByy = —Bho.
It is easy to see that
sign; (A, B) = sign(AB™'), signg(A, B) = sign(B~1A).

The normwise condition numbers can often overestimate the actual condition since the
structures of the perturbation are ignored [26]. The mixed and componentwise condition
numbers [10] have been presented for Moore-Penrose inverse and linear least squares prob-
lems [5], the total least squares |35, Tikhonov regularization [4], the generalized Sylvester
equation [23] and symmetric algebraic Riccati equations [36]. In this paper, we investigate
the mixed and componentwise condition numbers of the spectral projection, generalized
spectral projection and two matrix sign functions. While in practical computation, it may
be difficult to estimate these condition numbers. Kenney and Laub [17] developed the
small-sample statistical condition estimates for general matrix functions, which is espe-
cially useful for the case where Fréchet derivative is known implicitly. We apply the idea
of statistical condition estimation to the spectral projections and matrix sign functions.

In Sections [B}ff] we derive the mixed and componentwise condition numbers of the
spectral projection, generalized spectral projection and matrix sign functions and obtain
computable upper bounds. The statistical condition estimation will be introduced in

Section [7] In Section [§] we report some numerical results.
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Throughout this paper, we use C"*"™ to denote the set of m x n complex matrices,
R™*™ the set of m x n real matrices. AT denotes the transpose of a matrix A, A the
conjugate of a matrix A, and A" = ZT, the conjugate transpose of A. I stands for the
identity matrix, and O denotes the null matrix. |-|| » represents the Frobenius norm, |||,
for the largest one of the absolute values of the entries, and |||, the spectral matrix norm
or the Euclidean vector norm. R(A) is the column space of A. A(A) denotes the set of all
eigenvalues of a square matrix A, and A(A, B) the set of all eigenvalues of a regular matrix
pair (A, B) [11]. For A = [a1,a9,...,a,] = (a;;) € R™*™ and a matrix B = (b;;) € RP*4,
A® B = (a;;B) € R™>*™ is a Kronecker product, and vec(A) is a vector defined by
vec(A) = [al,ak, ... al]T (see [11]15,27] for properties of the Kronecker product and vec

r'n

operation). For the normal distribution with mean yp and variance o, we denote N(y, o2).

2. Preliminaries

To deal with mixed and componentwise condition numbers, the following definition of

“distance” function will be helpful. For any points a,b € R", we define § = (c1, ca, . .. )t
with
ai/bia if bl ?é 07
¢ =10, if a; = b; =0,
o0, otherwise.

Then we define

d(a,b) =

a—2b ma ’CLZ‘ — bz’
= X .
b |l i=L2..n |bi]

d(a,b) =min{v > 0| |a; — b;| < v|b|, for i =1,2,...,n}.

Note that if d(a,b) < oo,

The distance of two matrices can be defined as
d(A, B) = d(vec(A), vec(B)).

It is easy to know that |[vec(A)|l = || Al pax-
We recall the definition in [5]. For ¢ > 0, we denote B%(a,e) = {z | d(x,a) < ¢}. For

a partial function F': RP — R, hereafter, Dom(F') denotes the domain of F'.

Definition 2.1. Let F: RP — R? be a continuous mapping defined on an open set
Dom(F') C RP such that 0 € Dom(F'). Let a € Dom(F') such that F(a) # 0.

(i) The mixed condition number of F' at a is defined by
[F(z) = Fla)lly, 1

x

F: =1 .
miEe) =l e T F@l.  da)
r#a
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(ii) Suppose that F(a) = (f1(a),f2(a),...,fq(a))T is such that fj(a) # 0 for j =
1,2,...,q. Then the componentwise condition number of F' at a is

¢(F;a) =lim sup M.

e=0 4 BO(q,2) d(z,a)
r#a

The explicit expressions of the mixed and componentwise condition numbers of F' at

a are determined by the following lemma.

Lemma 2.2. [10] Suppose F' is Fréchet differentiable at a. Then

|| F”(a) Diag(a)|| [1E7(a)] |al|
(a) If F(a) #0, then m(F;a) = X = =
1E(a)ll 1F(a)ll
(b) If (F(a)); # 0 for i = 1,2,...,q, then ¢(F;a) = ||Diag(F(a))~'F'(a) Diag(a)|
‘ % , where Diag(a) is a p x p diagonal matriz with ay,as,...,a, on the
diagonal. =

Note that in the rest of this paper, once we deal with componentwise condition num-

bers, we assume that the solution has non-zero components.

3. The spectral projection

Let A be perturbed to A=A+ AA, and the spectral projection P be perturbed to
P=P+ AP, respectively.
Let

(3.1) Q=I, m®@An - AL oL, T=AL &1L, - I, ® As.

If || AA||  is sufficiently small, then the explicit expression of vec(AP) can be approximated
by (31,

(3.2) vec(AP) ~ ®vec(AA),
where
(3.3) d= (T4 ®5)Q ST oT) + (T] ® So)I " HST @ Ty).

Now we define the mapping
Yp: vec(A) — vec(P),

where P is the spectral projection [31].
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The mixed and componentwise condition numbers for the spectral projection P can

be defined as follows:

AP 1
wp(d)— i sip | Hmax‘AAH

E—)OHAAH <e HP”

max ‘ max

1
cp(A) =lim  sup
e

Y

Se H A Hmax max

Here % is an entrywise division defined by % = unvec (

)

Remark 3.1. unvec(a) is an operator which transforms a vector into a matrix with appro-

priate orders.

The main result of this section is the following theorem. It provides explicit expressions

for the mixed and componentwise condition numbers for the spectral projection.

Theorem 3.2. Let |AA| be sufficiently small. Using the notations above, we have

9] vec(|AD]
3.4 A) = x|
34 A = Pl
@] vee(JA])
(3:5) C”(A)‘ vee(P) Hoo
Proof. 1t follows from that
Wp(A) =

From (a) of Lemma we obtain

l1vp(@)llally _ 12l vee(AD o

mp(A) = m(p;a) = [vp(@)l, — [vec(P)|,

and

cp(A) =

H K4 !a\ 0

Theorem 3.2| presents explicit expressions for the condition numbers mp(A) and cp(A).

]@\Vec \A|
c(P

ve

But they will not be easy to compute due to their dependance on the Kronecker products.

In order to obtain the easier computable upper bounds, we list the following lemma.

Lemma 3.3. For any matrices M, N, P,Q, R, and S with dimensions making the following
well defined

(M ® N)P(Q® R)vec(S), N (Vec_l(P vec(RSQT))) MT,
let ) = unvec(P vec(RSQT)). Then we have

(M ® N)P(Q ® R) vec(S) = vec (NYMT).
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Proof. Using the Kronecker product, this lemma is easy to prove. O

The following corollary displays upper bounds which are not difficult to estimate for

these condition numbers.

Corollary 3.4. In the hypothesis of Theorem (3.2, we have

< 51 D1 [To] + [S2] D2 | T [l max
- | Pl ’

max

(3.6) mp(A)

9
max

(3.7) ep(4) < H |51 D1 |To] + [S2] D2 171

P

where 91 = unvec (|Q71| vec(|T1||A[[S2])), Y2 = unvec (|T~H vec(|To||A] [S1])).
Proof. Using Theorem [3.2] and Lemma [3.3] it is obvious that

@] vec(|A]) = [(T) @ S1)Q71(S3 @ T1) + (T] © So)I (ST @ Ty)| vec(|Al)
< |15 @S] 1971 [(S5 @ T1)| vec(|A])
+ (T @ So)| [T (ST ® T) | vec(|Al)
< (13 @ S1)| |7 vee(IT1[| Al Sal) + [(T] @ Sa)| [T | vee(|T2||Al|S1])
= (T3 ® S1)| vec(V1) + [(T{ © Sa)| vec(Y2)
= vec([S1 D1 [Tz|) + vec(|S2| D2 [T1]).

Taking norms (and dividing by P), the corollary follows. O

4. The generalized spectral projection

Let (A, B) be a regular matrix pair, U and V be unitary matrices. The generalized Schur

decomposition [11] is

Ay A
(4.1) A=v |7 TBlud p=v Ut
0 A22 0 B22

where Aq1, Bj1 € C™*™ (m < n) [11]. Suppose that A(A11, B11) N A\(Aag, Baa) = 0, then
the generalized Sylvester equation [7}23]

A M — NAgy = —Ayg,
BHM — NB22 = _3127

(4.2)
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has a unique solution (M, N). Let
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I, M . T T
S=U = [5175’2}3 T=3S = ) (SlaTI 6Cn><m)7
0 I,_m 1>
(4.3) - - -
I, N _ Ry nxm
Q:V E[Q17Q2]7 R:Q 1E ) (Ql,R{GCX )
0 In_m Ry
Then we obtain
Ay 0 (B, 0
(4.4) Qtas=|"" . o'Bs=|"" ,
0 Ay 0 DB

which indicates that R(S1) and R(Q1) are the right and left deflating subspaces of (A, B)

corresponding to A(A11, Bi1) [27,30].

The generalized spectral projections P, and P, of (A, B) associated with A(A11, B11)

are defined by [27,30]

Im Of | Iy —M
P =S5 S =U
0 O 0 0
(4.5) :
I, I, —N
P =Q Ql'=V
0 O 0 0

i.e., the generalized spectral projections P, and P, are the
R(Q1) along R(S2) and R((Q)2), respectively.

UH

VH

projections onto R(S7) and

Let the matrix pair (4, B) be perturbed to (A4, B) = (A, B) + (AA,AB), and the
generalized spectral projections P, be perturbed to /Pvr = P.+AP, and P, to ]51 = P+AP,.

Assume that ||[(AA, AB)|| is sufficiently small. Let

(4.6) Q= BJ,® A1 — AL, ® By,
(47) —(BLh®In)Q™" (AL L)t |
_(Infm ® Bll)Qil (Infm & All)Qil
and
(4 8) _(Bipl ® In—m)r_1 (A{l ® In—?ﬂ)r_1 _
—(I;n ® Bago)T 1 (I, @ Ago)T 1 |

I = AT, @ Byy — BT, ® Ao,

D1y
Doy

D1
Do

)

Cn
Co1

Ci2
Cao

Then the explicit expressions of vec(AP,) and vec(AP,) are approximated in [30],

vec(AA)
vec(AB)

(49) VGC(APT) =~ [CI)H, @12]

)
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and
vec(AA)
(410) VGC(AB) ~ [@21, (I)QQ] s
vec(AB)
where
(4.11) ®y; = (T ®51)D1;(S3 @ Ry) — (T{ ® S2)C1;(ST @ R2), (j =1,2),
and

(4.12) a5 = (Ry ® Q1)D2j(S3 @ Ri) — (R{ ® Q2)C(ST @ Ra), (j = 1,2).
Now we define the mappings
Yp,: vec(A, B) — vec(P,), p: vec(A, B) — vec(P),

where P, and P, are the generalized spectral projections.
The following main result provides explicit expressions for the mixed and component-

wise condition numbers for the generalized spectral projections.

Theorem 4.1. Let |[(AA,AB)|  be sufficiently small. Using the notations above, we

have

vec(|4]) vec(|Al)
[[®@11, P12]| (1B) (@22, P2o] (|B])
(413) mp(4) = vec S (4) = vec oo
fvee(Pll IveetF)loe
[[@11, P12]| Veci:g"; |[®21, Poo]| vecg‘lg\’;
(4.14) ¢p.(A) = vec(P,) o enld) = vec(P,)

Proof. Tt follows from (4.9) that ¢ (A, B) = [®11,®12]. From (a) of Lemma we
obtain

[y, 1) vec(|4])

b (a)|]a vec(|B
mp, (A, B) = m(yp,;a) = H’Q’Z)Pr( )“ |Hoo _ (1B])

(e8]

[P, (@)l [vee(Fr)ll oo ’
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and

vec(|Al)

[ @11, P12]| 1B))
|| ‘ vec
A B) =
on (4 8) = ctvnia) = | vee(P;)
o0
In a similar way, the remainder part of the theorem follows. O

Theorem presents explicit expressions for the mixed and componentwise condition
numbers for the generalized spectral projections. The following corollary gives upper

bounds which are convenient to compute for these condition numbers.

Corollary 4.2. Based on the hypothesis of Theorem we have
1151111 + Du2)[To] + 9] Br + S12)| Tl

4.15 A

9 ()= 1P e

(4.16) mp(A) < [1Q11(Y21 + @22)|R2H\P+”|Q2|(321 + 322)|R1|||max
l max

(4.17) ep,(4) < H 1S11(D11 + D12)|Ta| + [S2|(311 + 312)|T1]

|PT| max’
R R
(4.18) A) < H\Qﬂ(@m-l—@m)! 2| 4+ [Q2](321 + 320)| R ’
| B max
where 9;; = unvec(Y;;), 3i; = unvec(Zy;), (i,j = 1,2), with
Yii +Yiz|  |[Dul| [Daz| | vec(|R1|[A][S2])
Yor+Yar|  ||[Du| [Daal| |vec(|R1|[B]|S2])
Zu+Ziz|  |1Cul |Craf| |vec(|Ra| [A][S1])
Zon+Zn|  ||Caul [Cal| |vec(|Ra||B|[S51])
Proof. The inequalities can be proved similarly as Corollary O

5. The matrix sign function

Let A = XJX ! be the Jordan decomposition of A € C**™. Moreover, let AA € C**"
be

Fu F
A =XFXx~', F=|"" "B By ecmm

Fy1  Fy
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If ||AA]|| is sufficiently small for a consistent norm ||-||, then it holds [29)
. . 0 Ll -1 2
sign(A + AA) =sign(A) + X X+ O(||AA]%),
—2K; O

where K and L; are determined by two Sylvester equations
KyJy — oKy = Fa1,  JiLy — LyJo = —2F1s.
Denote

0 L
Agign(A) = sign(A + AA) —sign(A), Lggn(4,AA) =X oxt
—2K; O

Let X = [X1,X3], Y = X H = [V}, Y3], where X1,Y; € C"*™. From [29, Eqn. (3.26)], we
know that

(5.1) vec(Lgign (A, AA)) = Wvec(AA),
where
U= —2[(V1® Xo)(J @ Ly — In @ Jo) " (XT @ VT
+ (Vo2 X1)Tnem @ J1 — J§ @ L) N (X3 @ Y]
Now we define the mapping
Ysign: vec(A) — vec(sign(A4)),

where sign(A) is the matrix sign function.
The mixed and componentwise condition numbers of the matrix sign function sign(A)
are defined as follows:

. [ Asign(4) || 1
. A — 1 max
m51gn( ) 51~I>I(l) HMS‘TP - ||Slgn(A)HmaX HAA
A max

)

A ‘max

1 Asign(4)
| . sign
Sl ol e T T | 580A)

The following theorem derives explicit expressions for the condition numbers for the

matrix sign function.

Theorem 5.1. Let |[AA| be sufficiently small. Then

_ ¥l vec(JA] o
||vec(sign(A))

(5.2) Meign (A)

oo’
oo
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(5.3) Cuien(A) =

ela) )
vee(sign(4) |

U =-2[Y1®X2)(J] @ Ly — Inn® J2) " H(X] @ V")
+ Yo X)) In-m®@J1 — JL @ L,) Y(XT ® YIH)] .

Proof. 1t follows from (5.1 that ¢»(A) = ¥. From (a) of Lemma we obtain

Vi@ lal] _ jrjveeqap)
rraen(A) = miania) = Tl vec(sign(A)]
d
an . (A):C(IZ)' 'a): M — M O
sien 050 = | Tgga @ ||, ~ | veelsign(@))||.

Theorem reveals explicit expressions for the condition numbers mgjg, (A) and
Csign(A). The following corollary presents computable upper bounds for these condition

numbers.

Corollary 5.2. Based on the hypothesis of Theorem [5.1], we have

- |2(1X2| 1 Y] + | X1 202 | Y5

(5.4) Mign (A) < - Hax
® [sign(A)]] yax
2(|1X2| 200 | Y| + | X1| 202 | Y5 ])
55 Csion A S N )
( ) g ( ) |81gn(A)\ .
where

201 = unvec (‘(JlT @In-m—In® Jg)‘l‘ Vec(}YZH‘ |Al|X1])),
Wy = unvec (|(In—m ® J1 — JI® L) Vec(}YlH‘ |A||Xa2])) .

Proof. Using Theorem and Lemma [3.3] it is easy to see that

U] vee(|A]) = [=2 [(Y1® Xo)(J{ @ Lo — I @ Jo) " (X] @ Y3")
+ (Yo @ X1)Tnom ® J1 — J3 @ L) (X7 @ Y{)]| vec(|A])
<2[|(YV1® X2)(J] @ Inem — I ® Jo) | vee(|Y57| |A] | X1))
+ (Yo ® X1)(Tnn @ J1 — J3 @ L)t vee(|Y{ | |A] | Xa])]
<2 H?l ® XQ‘ vec(2W1) + ‘?2 ® Xl} Vec(ﬂﬂg)]
=2 (| Xa| 20 |V | + | X3 202 |[VS']) .

Taking norms (and dividing by sign(A)), it proves the corollary. O
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6. The sign functions of regular matrix pairs

The following theorem is a direct result of [3, Theorem 3.1].

Theorem 6.1. Let the reqular matriz pair (A, B) have the generalized Schur decomposi-
tion (L.8)). Moreover, let E, F € C™*"™ be expressed by

E E Fy I
(61) E:Q 11 12 ZH, F:Q 11 12 ZH.
0 E22 0 F22

If ||[E, F]|| is sufficiently small for a consistent norm ||-||, then

, , GPL —Gi| )
SlgnL(A+EaB+F):SlgnL(AvB)+2Q Q +ﬁ(H[EaF]H )7
P PG
(6.2) -
. . HKl _Hl H 2
signp(A+ B, B+ F) = signg(A, B) + 22 2%+ 6(|[B, F)IP),
K, —-K\H

where G, H, P, K1 and Gy, Hy are determined by two generalized Sylvester equations (|1.9))

and

Pi Ay — Ay Ky = Eoy,

(6.3)
P1B11 — By Ky = Fa,
and
(6.4) A Hy — GiAg = G(Ea — P1A1) — (B + Ak )H — E,
Bi1Hy — G1Byy = G(Fa — P1Bi2) — (F11 + Bi2K1)H — Fia,
respectively.

The above theorem shows that the Fréchet derivatives Lgign, ((4, B), (E, F')) and
Lsign,, ((A, B), (E, F)) for the two matrix sign functions of (A4, B) can be expressed by

GP, -Gy
LsignL((Aa B),(E,F)) = 2Q QHa
P —-PG
(6.5) -
HK, —H, | _,
Lsign,((A,B),(E, F)) =2Z ZH.
K, —-KH

Let Q = [Q1,Q2], Z = [Z1, Z], where Q1,Z; € C"*™. Then

Lyign, (A, B),(E,F)) =2 (Q1GPiQY — Q1G1QY + Q2P1QY — Q2P1GQY ),
Lsign, ((A,B), (E,F)) =2(Z\HK\ Z{' — Z\H\ Z§ + Zo K, Z{' — ZoK\HZ3') .
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So we have

vec(Lsign, (4, B), (E, F))) = 2 [Q1 ® (Q1G) + Q1 ® Q2 — (Q2G") ® Q2] vec(P1)
—2(Q2 ® Q1) vec(Gy),

vec(Lsign,, (4, B), (B, F))) =2 [Z1 ® (Z1H) + Z1 ® Zs — (Z2H") ® Z5] vec(K)
—2(Zy ® Zy) vec(Hy).

(6.6)

Denote

In—m & All _Agz & Im S A{l & In—m —Am ® A22

In—m & Bll _Bgz & Im Bﬂ & In—m _Im & BQZ
1 _ T o1 S11 Siz
T Sa1 Sao

where Tyq, Sq; € Cn(n—m)xm(n—m) Thyg from (6.3]) and ( ., we have

vec(P vec(E S (ZT @ QY S12(ZT @ QU
(PO _ o (E21)| _ | Su(Z @ Q2) vee(E) + 12(Z1 ®Q3) vee(F)
VeC(Kl) VeC(Fgl) SQl(ZlT X Qf) 522(2%1 & Qg)
and
vec(Hy)| _; [vec(G(Bae — PrAre) — (B + ApKi)H — En)
VeC(G1> VeC(G(F22 — PlBlg) — (F11 + B12K1)H — F12)
=T 'Mvec(E) + T ' N vec(F)
T T
= M vec(E) + N vec(F).
T T
We take
- |73 @GR —(HTZD) @ Qff - 2§ @ Qff — (AL @ G)Su (2] @ Qf) — (HT ® Aw2)Sa (2] @ Qf)
~(BL, ® G)Su (2 ® Qff) — (HT ® B12)Sa1(2¥ ® Qff) ’
_ —(AT, ® G)S12(Z] ® QF) — (HT ® A12)S22(ZT © QL)
77 @ (GQY) — (HT2T) @ QY — 2T @ QI — (BT, ® G)S12(2T @ Q) — (HT ® B12)S22 (27 @ Q)|
Hence
vec(E)
vec(L 51gnL((A B),(E,F))) = [L17L2] )
vec(F)
(6.7) - :
vec(F)
VeC( SlgHR((A B) (E7F>)) = [L37L4] )
vec(F)

F
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where
L1=2[Q1®(Q1G)+ Q1 ® Q2 — (Q2G") ® Q2] S11(Z] © QF) —2(Q2 ® Q1)To M,
Ly =2[Q1® (Q1G) + Q1 ® Q2 — (Q2G") ® Q2] S12(Z] © Q) — 2(Q2 ® Q1) TN,
L3 =2[Z1®(Z1H) + 21 ® Zy — (Z2H") ® 23] Sn (2] @ QY) — 2(Z2 ® Z1)T1 M,
Li=2[Z1® (Z1H) + Z1 © Zo — (Z2H") ® Z5] Soa2(ZT © QY1) — 2(Z2 ® Z1)T1N.

Similarly, we obtain the mixed and componentwise condition numbers for the sign

functions of regular matrix pairs.

Theorem 6.2. Let ||(E, F)|| be sufficiently small. Using the notations above, we have

s, 2ol |2 . 2ol |0
vec(|B|) vec(|Bl)

[[vec(sign, ((4, B))) vec(sign,((A, B))) ||

(68) msignL ((Av B)) =

>, CsignL((Aa B)) =

oo

(L. L] vec(|Al) (L. L] vec(]Al)
69) me (B vee(BNJ|| (4B - vec(|BJ)
7). Msignp (14 — ||vec(signg (A, B)|l. Coignp L5 || vec(signg((A, B)))

7. Statistical condition estimation

Since an estimate of the condition number that is correct to within a factor 10 is usually
acceptable [13], we can often tolerate errors in the estimate up to a factor of 10 or a factor
that is a little bit bigger. In fact, we are interested in the magnitude of an error bound, not
a precise value. Statistical condition estimate (SCE) proposed by Kenney and Laub [17]

is an efficient method to estimate the condition numbers [8,/19-21].

7.1. Brief review of SCE

Suppose that f: RP? — R is at least twice continuously differentiable. Denote the gradient
T
of fat x € RP by Vf(z) = (8f(m) of@) af(x)) , then using the first order of Taylor

Oxr1 ’ Oxa ° ’ Oxp

expansion of f at x along d, we have

f(z+dd) = f(z)+ 6V f(x)Td+ 0(5%),

where § € R is small and d € RP has unit 2-norm. It shows that the norm of the

gradient can measure the local sensitivity of f approximately. If d is selected uniformly
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and randomly from the unit sphere S,_; in RP, which is denoted by d € U(Sp—1). Then

o . v Tq .
from [17], the expected value of the condition estimator v = % satisfies that

E(v)=[Vf(@)l2,

where w), is the Wallis factor

1, forp=1,
%, for p =2,
Wp = 1-3-5---
P8 for odd p > 2,
2:4-6--(p—2
%Wg_lg, for even p > 2,

and for v > 1 we have

2 1
Prob (” Tl o) < v f(a )\|2> >1-2 40 <2> .
g ™y Y
Therefore, we can use the absolute value

f(x +dd) — f(x)

owp

as a first order condition estimator, which can estimate ||V f(z)|, with high probability
for the function f at z. In practice, the Wallis factor can be approximated accurately [17]
by

T(p—3)
In situations where we need more reliability, we use more function evaluations to get

different values v, (@ . p(m) corresponding to independently randomly generated
vectors dV), d@) ... dm) e U(Sp—1) and then take the average

]/(1) + ]/(2) + . o + V(m)
m .

v(m) =

(Here we use superscripts in parentheses to distinguish between different vectors)
This is the so called “averaged small-sample statistical method” and we can show
that |17] for v > 1

o (P28 < eron) 1 (2 ()

Thus v(m) is a mth-order condition estimator.
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Compared with this method, the subspace statistical method can give sharper esti-
mates. Firstly, select k vectors from U(S,—1) and find mutually orthonormal vectors
dy,da,...,d; by using a Gram-Schmidt procedure or a QR decomposition [11]. Thus
the norm of the projection of V f(z) onto the span of dj,ds,...,dy is (}Vf(x)Td1’2 +
|Vf(x)Td2‘2 +--+ ‘Vf(x)Tdkf)l/Q. From [17], we know that

B ( VIV @ + 19 @)l ot (D) = 195,
p

Therefore, we can define the subspace condition estimator as

6(k) = |V F@) TP + (V7@ ol 4 -+ V()T

p

As shown in [17], these condition estimators give better results than the averaged statistical
estimators and are analytically very tractable.
From |17, Theorem 3.3], we find

Prob (” H@lllz < g9 < ’YHVf(w)Hz> ~1-

v Y

prob (19 < ¢3) < v sty ) w1 - 32
IV oy ST
peob (1 < ¢y < v sl ) 1 - 2

These estimates are generally very accurate for v > 10.

7.2. SCE for the spectral projection

Take AA = 52{, where HA\HF =1 and ¢ is sufficiently small. Denote

—~ AA AA
ST1As = |77 TR AAy e o,
AAy AAy

Obviously we can see that ||[AA;| < HS‘lgSHF < HS‘lHF |S|| 7, which implies that
|AA;||z = €(1). From [31], we know that

EF(I, — EF)™! ~E—~FEF(I,, - EF)"'E
F+ FEF(I, — EF)™1 ~F(I,, — EF)"'E

AP =S St

where E' and F' are the solutions to the two Sylvester equations:

A1E — FAy = —0AA1o + 0EAAy — AAWE + 0EAANE,

7.2)
( A F — FAy = —6AAgy + 0FAAy — 6AApnF + SFAALF,
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and satisfy

1Elp = 0(6), |Fllp=0€(5), as 6 — 0.
So AP has the first order perturbation expansion

0
AP ~6S | S,
F o0

where E and F can be derived by solving the two Sylvester equations:

A E — EAg = —AAs,

(7.3) L
A22F — FA11 = —AAgl.

In practice, let a™V,a®, ... a® be orthonormal vectors of length p = n? such that their
span is uniformly and randomly generated from the space of all k-dimensional subspaces
of R". Form the matrices 4; = unvec(a”) and we then define the subspace condition

estimators for each entry of P by

(k) = Z’“\/(KS))Q + (Kg)f S (Kl(f))Q,
p

where K is given by

50!
KO =g 0 E St
FO 0

Based on the above analysis, we now present the SCE algorithm for the spectral projection.
Algorithm 7.1 (Subspace condition estimation for the spectral projection).

1. Generate matrices <A, o, ..., with entries in N(0,1). Use a QR factorization

for the matriz
vec()) vec(et) - Vec(ﬂk)]

and form an orthonormal matriz [q1,q2,...,qk]. Each q; can be converted into the

desired matrices <f; with the unvec operation.
2. Let p =n?. Approximate w, and wy using (7.1).

3. Forl=1,2,...,k, solve (7.3)) to get E(l), FO and form KO . Calculate the absolute

condition matrix

§(k) = %\/’K(l)‘z—l— |K(2)’2_|_...+ ’K(k)|27
p

where the square root and power operation are performed componentwise.
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In Algorithm we generate matrices /1,9, ..., o, in N(0,1) instead of U(Sp—1),
which is based on the fact that the vector z = z/||z||, € U(Sp—1) if z € N(0, 1). Specifically,
to get a basis for a subspace of dimension m that is selected uniformly and randomly from
the set of all subspaces of dimension m in R", it is sufficient to generate m independent
vectors uniformly and randomly on S,_; and then find an orthonormal basis for these
vectors [17]. Now we can define the normwise, mixed and componentwise condition number
as follows:

(7.4)
BSSB0) = e(k) [ /Pl ps SR = €(h) /I Pl s S50 = €(K) /Py

7.3. SCE for the generalized spectral projections

Take AA = (511, AB = 5@, where H {A\, E} HF = 1. Denote

—~ AA AA ~ AB AB
QlAs= """ TR oigs= |77 TUR L AAn, ABy e Cm,
AAgr AAg ABy1 ABsg
Using the similar technique, we obtain
o -G| _, o —-J| _,
AP, ~ 0S5 | _ S™H, AP =0Q | Q -,
H 0 L 0

where @, H , J and L satisfy that

(75) AnG — JAy = —AAj,, B11G — JByy = —ABs,
' AgoH — LAy = —AAgy,  BooH — LBy = —ABoy.

The statistical condition estimation for the generalized spectral projections can be derived

similarly. Hence we can obtain the condition numbers.

7.4. SCE for the matrix sign function

The analysis in this subsection is based on |2, Theorem 3.2]. Taking AA = §A with

HA\ HF =1 and ¢ sufficiently small, we partition A conformally as

AAy AAgs
AAgyr AAs

UHAU =

Then Agign(A) has the first order expansion

YEy 2B, — YEaY
Aggn(A)~oU |~ 20 T2 | A,
2E9, —EyY
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where Egl and E’lg satisfy

A9y By — By Ay = AAy,
(76) YAAQQ AAHY YA21Y
2 2 4 )

The condition numbers of the matrix sign function can be derived similarly.

EipAg — A Eyp = AAjy —

8. Numerical examples

All computations are performed in MATLAB 7.12, with the usual double precision and the
floating point accuracy is 2.22 x 10716, We now use three numerical examples to illustrate

our results of Sections 3-7.
Example 8.1. Consider the matrix
AU A Ap T,
0 Ay

where the orthogonal matrix U is chosen to be the unitary factor of QR factorization of

a matrix with entries chosen to randomly uniformly distributed in the interval [0, 1]. Let

110 w1 0 00
An=10 1 1|, Ap=|-1 10 1 0 0,
0 0 1 0 -1 100 10
and ~ _
1—107* 1 0 0 0
0 1107k 1 0 0
Aggy = 0 0 1—107F 1 0
0 0 0 1—107* 1
0 0 0 0 1—107*

This example is originally arising from [30]. The target spectral projection P of A is
corresponding to the triple eigenvalue 1. The computed condition numbers are listed in

Tables R.118.6

I\k -1 0 1 2
0 | 1.2097¢-001 1.9917e+002 1.0849e+014  2.0474e+027
1 | 3.1520e-001  1.7467e+004 1.9624e+014 7.7607e+026
2 | 2.0708¢+001 1.7980e+006 9.7305¢+016  2.0001e+027
3 | 2.0590e+003 1.8039¢+008 1.1087e+019  9.6443e+029

Table 8.1: The absolute condition number caps(P) in [30, Eqn. (2.23)].
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Nk -1 0 1 2

0 | 1.4154¢4+000 1.7123e+002 1.0585¢+008 1.9279¢+015
1 | 3.4275e+000 7.6358¢+003 1.7543¢+009 2.9487e+015
2 | 2.0705e¢+002 7.0351e+005 6.7218e+011 1.7327e+017
3 | 2.0555¢+004 6.9934e+007 6.4911e4013  6.6815¢+019

Table 8.2: The relative condition number ¢, (P) in [30, Eqn. (2.23)].

K

-1

0

1

2

w N = O

9.9394e-001

3.1290e+-000
2.8411e4-002
3.3187e+-004

1.2841e+002
5.5280e+-003
4.4438e+4-005
3.4991e4-007

8.0650e+-007
1.0625e+009
4.0703e+011
3.4447e4-013

9.1299¢4-014
1.5370e+015
1.2084e+017
3.7777e4-019

Ta

ble 8.3: The mixed condition number mp(A) in (3.4).

-1

0

1

2

3.0528e+-001
6.1359¢+-001
8.1988e4-003
6.4062e+4-005

3.2737e+003
3.9940e+4-005
1.4488e+007
3.8123e+-010

2.2567e+008
1.2467e+009
4.5762e+011
4.0801e+-013

1.1403e+015
1.8935e+015
1.2889e+017
3.8488e+-019

Table 8.4:

The upper bound of mixed condition number mp(A) in (3.6].

K

-1

0

1

2

0
1
2
3

4.6966e+-000
1.2599e+001
7.1813e+-002
9.3672e+004

5.4408e+-002
1.5111e+004
1.1169e+006
8.9718e+007

1.6475¢-+009
3.4706e4-009
4.2969e+011
3.8798e+-013

1.2134e+016
5.0122e4-016
3.6637e+4-017
3.7950e+019

Table 8.5: The componentwise condition number cp(A) in (3.5)).

I\k -1 0 1 2

0 | 1.5856e+002 4.8141e+004 2.2962e4+009 1.2381¢+016
1 | 4.7307e+002  3.0632e+006 5.5438¢+009 5.9997¢+016
2 | 2.6608¢+004 1.0709e+008 5.0128¢+011  3.8025¢+017
3 | 2407004006 1.5770e+011 4.4983¢+013  3.8940e+019

Table 8.6: The upper bound of componentwise condition number cp(A) in (3.7)).

353

For the cases of k = 0, 1, 2, the mixed condition numbers mp(A) are much smaller than
the absolute condition numbers c,ps(P) in [30, Eqn. (2.23)]. But for the case of k = —1,

the mixed condition numbers mp(A) are not smaller. The upper bounds of the mixed and
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componentwise condition numbers are a little bit bigger with no surprise.

The corresponding SCE results for this example are listed in the next three tables.

Nk -1 0 1 2

0 1.2945e4+000 4.1552e4-001 6.2213e+007 7.2531e+014

1 7.9716e-001  9.6332e+002  3.5800e+008 5.6281e+014

2 1.2622e4+001 2.7743e+004  5.0356e+009 1.4264e+015

3 9.0830e+001  7.5957e+004 6.4316e4+010 2.4724e+4017

Table 8.7: Normwise condition number from SCE by nsSpCE’(s) in ((7.4).

I\K 1 0 1 2

0 1.0067e4+000 5.7192e+001  5.7191e+007  9.9939e+014

1 8.3759e-001  1.0148e+003 3.1131e+008 6.0435e+014

2 1.4625e4+001 2.9274e+004  6.3020e+009 1.4904e+015

3 9.9826e+001 6.5180e4004 5.0960e4010 2.3166e+017

Table 8.8: Mixed condition number from SCE by mi? BG) in (7.4).

Nk -1 0 1 2

0 4.4925e4000 1.3145e4+002 4.7887e4+008 1.2694e+015

1 2.6200e+000 7.1676e4003 5.0040e4+009 5.6004e+015

2 3.0031e+001 1.5961e4-005 4.0064e+010 4.0442e+015

3 2.3232e+002 2.5736e4005 2.5850e+011 1.3577e+018
SCE,(3)

Table 8.9: Componentwise condition number from SCE by c,

It is easy to see that in most cases the condition numbers devised from SCE are
sufficient. To see the performance of SCE more precisely, we plot the following three

ratios in Figure for the case of [ =0, k = 2,

SCE,(3) SCE,(3) SCE,(3)

ratio := = ratiog = 2 ratiog 1= 2
n ‘= m ‘= c = .
Crel(P) ’ ’I’)’LP(A) ’ Csign(A)

We test 1000 examples and the means of the three ratios are 0.5538, 1.0313, 8.3572,

respectively. So it is sufficient in practice.

Example 8.2. |30] Consider the real regular matrix pair (A4, B) with

An A UT. B-v B

0 A 0

Bis
Bas

A=V T,
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Ratio of normwise (red), mixed (blue) and componentwise (cyan) condition numbers

5 T T T
O Il Il
0 200 400 600 800 1000
5 T
m
0 Il Il Il
0 200 400 600 800 1000
50 T
C
0 1 L L
0 200 400 600 800 1000

Figure 8.1: SCE results compared with the exact condition numbers of the spectral pro-

jection.

where V = Is — 20T, v = [1,1,1,1,1,1]7 and U = I — juu”, u =[1,-1,1,-1,1, —1]7,
with

1 0 0 —4x107% 0 0
Aip=10 =5 0 |, Bu= 0 3 0
0 0 107F 0 0 —2x107!
and
10" 0 0 10 0
Ax=10 2 0 |, Be=|01 0 [,
0 0 —10 0 0 —10*
2x10F 1 0 7 2 0
Arp = 0 -1 3|, Bi2=10 5 1
0 0 0 0 0 —3x10*

Solving the generalized Sylvester equation (4.2]), we obtain (M, N) and the spectral

projections P, and P; of (A, B) corresponding to the eigenvalue —i x 10", —g, and —% X
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10'=*. The computational condition numbers are listed in Tables respectively.

Nk 0 1 2 3 4

0 | 2.0245e+000 9.0994e+001  9.1815e+003  9.1677e+005  9.1654e+007
1 | 7.4983¢+001 8.8198¢+002 4.7726e+004  4.7146e+006  4.7141e+008
2 | 7.4540e+003  7.4685e+004  8.8192e+005 4.7726e+007  4.7146e+009
3 | 7.4536e+005 7.4537e+006  7.4685e+007 8.8192e4+008  4.7726e+010
4 | 7.4536e+007  7.4536e+008  7.4537¢+009  7.4685e+010  8.8192e+011

Table 8.10: The absolute condition number cups(Pr) in |30, Eqn. (3.37)].

Nk 0 1 2 3 4

0 | 9.1146e+000 9.8595¢+001 6.8553e+003  6.6838¢4005 6.6684e+007
1 1.6910e+001  1.0481e4+002  3.0731e+003  2.3800e+005  2.3918¢+007
2 1.5209¢+002  7.5144e4+002  9.0821e+003  2.9075¢+005  2.2907¢+007
3 1.5520e+003  7.4193¢4+003  6.9310e+004  8.9087¢+005  2.8908e+007
4 1.5552¢4-004  7.4217¢+004  6.7502¢4+005 6.8919¢+006  8.8909¢+007

Table 8.11: The mixed condition number mp, (A) in (4.13)).

Nk 0 1 2 3 4

0 1.9832e+001  1.4795¢4+002  7.2723e+003  6.7243¢+005  6.6724e+007
1 2.6190e+001  1.7445¢4+002  3.6828e+003  2.5194¢4-005  2.4058¢+007
2 1.8591c+002  1.0653¢4+003  1.1710e+004  3.1657c+005  2.3314e+007
3 1.7859¢4+003  9.7696e+003  9.3243e+004  1.1171e+006  3.1165¢+007
4 1.7786e+004  9.6576e+004  9.0232e+005  9.1353¢+006  1.1117e+008

Table 8.12: The upper bound of mixed condition number mp,_ (A) in (4.15)).

Nk 0 1 2 3 4

0 1.9838¢4+002  2.6748¢+003  3.2182e+005 2.9302¢+008  2.9017e+011
1 9.8888e+001  2.2926e+002  6.8042e+003  6.6746e+005  6.6674e+007
2 1.8690e+002  8.3626e+002  9.4673e+003  2.9638¢+005  2.4784e+007
3 1.5859¢4+-003  7.5461e+003  7.0786e+004  8.9452¢+005  2.8961e+007
4 1.5586e+004  7.4352¢4+004  6.7928e+005 6.9106e+006  8.8945e+007

Table 8.13: The componentwise condition number cp, (A) in (4.14).

Ik 0 1 2 3 4

0 | 9.0216e+002 5.4314e4+003  3.5402e+005 2.9596e+008  2.9046e+011
1 2.0424e+002  5.1983¢+002  1.0130e+004  6.9978¢4005  6.6996e+007
2 2.2343¢4+002  1.2857¢4+003  1.3391c+004  3.5307c¢+005  2.6024¢+007
3 1.8197¢4+003  1.0053¢+004 9.7111e+004  1.1330e+006  3.1514e+007

4 | 1.7819e+004  9.6878¢+004  9.1331e+005  9.1825¢+006  1.1133e+008
Table 8.14: The upper bound of componentwise condition number cp,.(A) in (4.17).
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Nk 0 1 2 3 4

0 | 4.3943e+000 2.9272e+001  2.8947e+002  2.8767¢+003  2.8747e+004
1 9.7310e+000  4.4111e4+001  2.8947¢+002  2.8767¢+003  2.8747c+004
2 | 9.1954e+001 2.0183¢4+002  5.5980e+002  2.8767¢+003  2.8747e+004
3 | 9.1927e+002  9.1929¢+002  4.2778e+003  5.8048¢+003  2.8747e+004

4 | 9.1927¢+003  9.1927¢+003  1.9852¢+004  5.2423e+004  5.8271e+004
Table 8.15: The absolute condition number caps(F;) in [30, Eqn. (3.37)].

Nk 0 1 2 3 4

0 5.0748¢+000  6.1820e+001  3.3112e+003  2.9785¢4005  2.9440e+007
1 1.1563e+001  1.2273e+002  3.5132e+003  2.9975e+005  2.9459e+007
2 | 6.4579e+001 5.5135¢+002  8.6434e+003  3.2251e4+005  2.9686e+007
3 | 6.0613e+002 2.9053¢+003  6.3764e+004 8.1741e4+005  3.1984e+007
4 | 6.0201e+003  3.0036e+004  3.7667e+005 7.5064¢+006  8.1251e+007

Table 8.16: The mixed condition number mp,(A) in (4.13)).

Nk 0 1 2 3 4

0 1.7665¢+001  9.1293e+001  3.4443¢+003  2.9915¢+005  2.9453e+007
1 2.9913e+001  2.4133¢4+002  4.0597e+003  3.0243¢4005  2.9486e+007
2 1.1401e4-002  1.1092e+003  1.5053¢4+004  3.6619¢+005  2.9823e+007
3 | 9.6862e+002 7.0000e+003 1.0663e+005 1.4091e4+006  3.6214e+007
4 | 9.5128e+003  6.2640e+004  7.3348e+005  1.1095¢+007  1.3994e+008

Table 8.17: The upper bound of mixed condition number mp,(A) in (4.16).

Nk 0 1 2 3 4

0 2.4394e+001  3.0123¢+002  2.1942e+004  2.3950e+006  2.4394e+0083
1 8.9995¢+001  7.1714e+002  2.7404e+004  2.3598¢+006  2.4358e-+008
2 1.1597¢4+003  4.4183¢+003  8.5667¢+004  2.7769¢+006  2.4007e+008
3 1.2250e4+004  2.6681e+004  5.1276e+005 9.1441e+006  2.7822e+008
4 1.2323e+005  2.4874e4+005 3.1769e+006  6.2703e+007  9.2143e4008

Table 8.18: The componentwise condition number cp, (A) in (4.14]).

Nk 0 1 2 3 4

0 | 6.8742e+001 4.7580e+002 2.4061e+004  2.4362e+006  2.4436e-+008
1| 2.2992e4+002  1.5524e4+003 3.4133¢+004  2.5473¢+006  2.4548e+008
2 | 1.7387e+003  8.6260e+003  1.2997e+005 3.6548¢+006  2.5680e+008
3 | 1.6964e+004 5.4188¢+004  9.2589¢+005 1.3991e4+007  3.6877e+008
4 | 1.6940e+005 4.7888¢+005  6.9002¢+006 1.0430e4-008  1.4119e+009

Table 8.19: The upper bound of componentwise condition number cp,(A) in (4.18)).

The mixed condition numbers mp, (A) are smaller than the absolute condition numbers
Cabs(Pr) in [30, Eqn. (3.37)] except for [ = 0, k = 0, and the mixed condition numbers
mp, (A) are larger than the absolute condition numbers capg(F;) in [30, Eqn. (3.37)]. But
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the mixed condition numbers mp, (A) ~ mp,(A). The upper bounds of the mixed and
componentwise condition numbers increase a little bit.

The corresponding SCE results can be obtained similarly.

Example 8.3. |29] For a nonzero real scalar z, let

-1 0 1 —x/2
A — UX A)(_lUvT17 X = / ,
0 1 0 1
where the orthogonal matrix U is chosen to be the unitary factor of QR factorization of a
matrix with entries chosen to be randomly uniformly distributed in the interval [0,1]. It
follows from [29] that

sign(A) = UX ’ x-u”
0 1 '

The mixed and componentwise condition numbers and the corresponding SCE (3 sam-
ples) for sign(A) from one random U are listed in Tables and respectively.

T [29, Eqn. (3.27)]  mgign(A)  upper bound Csign(A)  upper bound mgigE(A) cs’gf(A)
—1.0 1.5000 1.2504 4.4971 1.4992 2.2477 2.8251 6.8673
—-0.9 1.4050 1.1933 4.7630 1.6134 2.6415 1.1223 3.7065
—0.8 1.3200 1.4497 3.0961 1.4497 1.6706 0.8062 3.6463
—0.7 1.2450 1.2427 1.2427 2.1159 2.1159 0.2645 2.2803
—0.6 1.1800 1.1223 4.9538 1.7553 3.3869 0.1662 0.9946
—0.5 1.1250 1.3218 3.0684 1.3564 1.8737 3.6262 26.4495
—0.4 1.0800 1.3595 2.7345 1.3595 1.7089 0.4402 2.1016
—0.3 1.0450 1.5496 1.6949 1.6533 1.8083 0.3255 4.1436
—0.2 1.0200 1.0971 4.4427 1.8058 3.8006 0.7538 7.0907
—0.1 1.0050 1.0951 4.2536 1.8098 3.8391 1.3298 4.9779

Table 8.20: The mixed and componentwise condition numbers.

x |29, Eqn. (3.27)]  mgign(A)  upper bound Csign(A)  upper bound mssig[]::(A) cssigr]::(A)
0.1 1.0050 1.3371 2.3566 1.3371 1.8045 2.0661 4.6214
0.2 1.0200 0.9237 0.9523 1.8797 1.9379 1.8488 3.5279
0.3 1.0450 0.8373 0.8478 1.9504 1.9749 0.5134 7.0444
0.4 1.0800 1.0872 5.1590 1.8256 4.0040 0.9117 1.2996
0.5 1.1250 1.6501 1.9986 1.6501 1.8063 0.2159 0.8094
0.6 1.1800 1.5759 2.3573 1.5759 1.7589 2.0993 22.9109
0.7 1.2450 1.1485 1.1485 2.1633 2.1633 0.2634 0.2634
0.8 1.3200 1.0119 14.9809 1.9763 10.0598 0.5284 0.6544
0.9 1.4050 1.5740 1.5740 2.2307 2.2307 0.8489 6.8765
1.0 1.5000 1.8976 2.2481 1.8976 1.9474 0.5551 2.9394

Table 8.21: The mixed and componentwise condition numbers.
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If £ = 0.1 ~ 1.0, the mixed condition numbers are smaller than the normwise condition
numbers in [29, Eqn. (3.27)]. But if z = —1.0 ~ —0.1, some mixed condition numbers are
larger. The upper bounds of the mixed and componentwise condition numbers increase a
little bit, if x is positive. Also we can see that the statistical condition estimate is adequate
because of its efficiency in computing.

To more clearly show the overestimation of the statistical condition estimation, we
generate random matrix U 1000 times, take z = 0.1 and 3 samples and plot the ratio in

figure. In Figure 8.2 we denote

SCE,(3) SCEL(3) ( 4
ratioy, = —en ( ., ratio, 1= —=en (4)
msign(A) Csign(A)

The averages of the two ratios are 1.6408 and 16.9633, respectively. As shown in
Figure the statistical condition estimations are within a factor of 100 to the true
condition numbers except several exceptional cases. It is computationally efficient and

adequate in practice. We suggest the statistical condition estimations for the applications.

Ratio of mixed condition estimates (blue), componentwise ones (cyan)

20 T T T T
ratiom
151 1
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Figure 8.2: SCE results compared with the exact condition numbers of the matrix sign

function

9. Conclusions

The perturbation analysis for the spectral projections, generalized spectral projections and
the matrix sign functions are derived in this paper. The explicit expressions for the mixed

and componentwise condition numbers are also presented. From the numerical examples,
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we can see that the statistical condition estimation is enough in practice for estimating

the actual conditioning.
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